Tetraphenylethylene-Substituted Bis(thienyl)imidazole (DTITPE), An Efficient Molecular Sensor for the Detection and Quantification of Fluoride Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Methods
2.2. Synthesis of 4-(1,2,2-Triphenylvinyl)benzaldehyde
2.3. Synthesis of 4,5-Di(thien-2-yl)-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-Imidazole (DTITPE)
2.4. UV-Vis. and Fluorescence Studies
2.5. Determination of Association Constants
2.6. Determination of Detection Limits and Quantification Limits for DTITPE
3. Results
3.1. Synthesis and Characterization of DTITPE
3.2. Optical Studies of the Molecular Sensor DTITPE
3.2.1. Aggregation Induced Emission (AIE)
3.2.2. Mechanochromism
3.3. Computational Studies
3.4. Detection of F− Anions Using a Silica Gel Dip-Strip Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, N.; Zhao, L.-X.; Jiang, C.-Y.; Li, P.; Liu, Y.; Fu, Y.; Ye, F. A naked-eye visible colorimetric and fluorescent chemosensor for rapid detection of fluoride anions: Implication for toxic fluorine-containing pesticides detection. J. Mol. Liq. 2020, 302, 112549. [Google Scholar] [CrossRef]
- Mukherjee, S.; Betal, S.; Chattopadhyay, A.P. A novel turn-on red light emitting chromofluorogenic hydrazone based fluoride sensor: Spectroscopy and DFT studies. J. Photochem. Photobiol. A Chem. 2020, 389, 112219. [Google Scholar] [CrossRef]
- Xiao, L.; Ren, L.; Jing, X.; Li, Z.; Wu, S.; Guo, D. A selective naphthalimide-based colorimetric and fluorescent chemosensor for “naked-eye” detection of fluoride ion. Inorg. Chim. Acta 2020, 500, 119207. [Google Scholar] [CrossRef]
- Yadav, P.; Kumari, M.; Jain, Y.; Agarwal, M.; Gupta, R. Antipyrine based Schiff’s base as a reversible fluorescence turn “off-on-off” chemosensor for sequential recognition of Al3+ and F− ions: A theoretical and experimental perspective. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117596. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.P.; Kigga, M.; Govindappa, H.; Patil, P.; Jung, H.-Y.; Yu, J.; Kurkuri, M. A reversible fluoride chemosensor for the development of multi-input molecular logic gates. New J. Chem. 2019, 43, 12734–12743. [Google Scholar] [CrossRef]
- Kumar, J.R.; Reddy, E.R.; Trivedi, R.; Vardhaman, A.K.; Giribabu, L.; Mirzadeh, N.; Bhargava, S.K. Isophorone-boronate ester: A simple chemosensor for optical detection of fluoride anion. Appl. Organomet. Chem. 2019, 33, e4688. [Google Scholar] [CrossRef] [Green Version]
- Yalçın, E.; Alkış, M.; Seferoğlu, N.; Seferoğlu, Z. A novel coumarin-pyrazole-triazine based fluorescence chemosensor for fluoride detection via deprotonation process: Experimental and theoretical studies. J. Mol. Struct. 2018, 1155, 573–581. [Google Scholar] [CrossRef]
- Sun, X.; Reuther, J.F.; Phillips, S.T.; Anslyn, E.V. Coupling activity-based detection, target amplification, colorimetric and fluorometric signal amplification, for quantitative chemosensing of fluoride generated from nerve agents. Chem. A Eur. J. 2017, 23, 3903–3909. [Google Scholar] [CrossRef]
- Lohar, S.; Dhara, K.; Roy, P.; Babu, S.P.S.; Chattopadhyay, P. Highly sensitive ratiometric chemosensor and biomarker for cyanide ions in the aqueous medium. ACS Omega 2018, 3, 10145–10153. [Google Scholar] [CrossRef]
- Kaushik, R.; Ghosh, A.; Singh, A.; Gupta, P.; Mittal, A.; Jose, D.A. Selective detection of cyanide in water and biological samples by an off-the-shelf compound. ACS Sens. 2016, 1, 1265–1271. [Google Scholar] [CrossRef]
- Gale, P.A.; Busschaert, N.; Haynes, C.; Karagiannidis, L.E.; Kirby, I.L. Anion receptor chemistry: Highlights from 2011 and 2012. Chem. Soc. Rev. 2014, 43, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, M.; Hiscock, J.R.; Gale, P.A. Anion receptor chemistry: Highlights from 2010. Chem. Soc. Rev. 2012, 41, 480–520. [Google Scholar] [CrossRef] [PubMed]
- Na Kim, H.; Guo, Z.; Zhu, W.; Yoon, J.; Tian, H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev. 2011, 40, 79–93. [Google Scholar] [CrossRef]
- Duke, R.; Veale, E.; Pfeffer, F.; Kruger, P.E.; Gunnlaugsson, T. Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1, 8-naphthalimide-based chemosensors. Chem. Soc. Rev. 2010, 10, 3936–3953. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.-G.; Sessler, J.L. Modern reaction-based indicator systems. Chem. Soc. Rev. 2009, 38, 1647–1662. [Google Scholar] [CrossRef]
- Moragues, M.E.; Martínez-Máñez, R.; Sancenón, F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chem. Soc. Rev. 2011, 40, 2593–2643. [Google Scholar] [CrossRef]
- Whitford, G.M. Acute Toxicity of Ingested Fluoride. Monogr. Oral Sci. 2011, 22, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Kirk, K.L. Biochemistry of Inorganic Fluoride. In Biochemistry of the Elemental Halogens and Inorganic Halides; Springer Science and Business Media LLC: Boston, MA, USA, 1991; pp. 19–68. [Google Scholar]
- Kleerekoper, M. The role of fluoride in the prevention of osteoporosis. Endocrinol. Metab. Clin. N. Am. 1998, 27, 441–452. [Google Scholar] [CrossRef]
- Briançon, D. Fluoride and osteoporosis: An overview. Rev. Rhum. 1997, 64, 78–81. [Google Scholar]
- Pitt, P.; Berry, H. Fluoride treatment in osteoporosis. Postgrad. Med. J. 1991, 67, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Chen, K.; Tian, H. A colorimetric and fluorescent chemodosimeter: Fluoride ion sensing by an axial-substituted subphthalocyanine. J. Mater. Chem. 2005, 15, 2676–2680. [Google Scholar] [CrossRef]
- Konieczka, P.; Zygmunt, B.; Namiesnik, J. Comparison of fluoride ion-selective electrode based potentiometric methods of fluoride determination in human urine. Bull. Environ. Contam. Toxicol. 2000, 64, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Christison, T.T.; Rohrer, J.S. Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. J. Chromatogr. A 2007, 1155, 31–39. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Na Kim, H.; Yoon, J. ChemInform Abstract: Sensors for the Optical Detection of Cyanide Ion. ChemInform 2010, 41, 127–137. [Google Scholar] [CrossRef]
- Chung, Y.M.; Raman, B.; Kim, D.-S.; Ahn, K.H. Fluorescence modulation in anion sensing by introducing intramolecular H-bonding interactions in host–guest adducts. Chem. Commun. 2006, 2, 186–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safavi, A.; Maleki, N.; Shahbaazi, H. Indirect determination of cyanide ion and hydrogen cyanide by adsorptive stripping voltammetry at a mercury electrode. Anal. Chim. Acta 2004, 503, 213–221. [Google Scholar] [CrossRef]
- Shan, D.; Mousty, C.; Cosnier, S. Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors. Anal. Chem. 2004, 76, 178–183. [Google Scholar] [CrossRef]
- Suzuki, T.; Hioki, A.; Kurahashi, M. Development of a method for estimating an accurate equivalence point in nickel titration of cyanide ions. Anal. Chim. Acta 2003, 476, 159–165. [Google Scholar] [CrossRef]
- Rao, V.K.; Suresh, S.; Rao, N.; Rajaram, P. An electrochemical sensor for detection of hydrogen cyanide gas. Bull. Electrochem. 1997, 13, 327–329. [Google Scholar]
- Itai, K.; Tsunoda, H. Highly sensitive and rapid method for determination of fluoride ion concentrations in serum and urine using flow injection analysis with a fluoride ion-selective electrode. Clin. Chim. Acta 2001, 308, 163–171. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 18, 1741. [Google Scholar]
- Feng, G.; Yuan, Y.; Fang, H.; Zhang, R.; Xing, B.; Zhang, G.; Zhang, D.; Liu, B. A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging, naked-eye detection and photodynamic killing of Gram-positive bacteria. Chem. Commun. 2015, 51, 12490–12493. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, W.; Yu, L.; Wang, Y. Click synthesis of a novel triazole bridged AIE active cyclodextrin probe for specific detection of Cd2+. Chem. Commun. 2015, 51, 4298–4301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; He, B.; Tang, B.Z. Aggregation-induced emission of siloles. Chem. Sci. 2015, 6, 5347–5365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, B.; Lu, H.; Wang, Z.; Zhang, J.; Zhang, Y.; Dong, Y.; Ma, K.; Wen, S.; Tian, W. Label-free fluorescence turn-on detection of Pb2+ based on AIE-active quaternary ammonium salt of 9,10-distyrylanthracene. Anal. Methods 2013, 5, 438–441. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Zhang, X.; Yang, B.; Wei, Y. Stable biocompatible cross-linked fluorescent polymeric nanoparticles based on AIE dye and itaconic anhydride. Colloids Surf. B 2014, 121, 347–353. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, Y.; Liu, J.; Li, P.; Zhang, D.; Zhang, X.; Yu, T.; Chen, J.; Yang, G.; Li, Y. Highly emissive nanoparticles based on aie-active molecule and pamam dendritic “molecular glue”. Langmuir 2015, 31, 4386–4393. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Nie, H.; Song, B.; Li, L.; Sun, J.Z.; Qin, A.; Tang, B.Z. Triphenylamine-functionalized tetraphenylpyrazine: Facile preparation and multifaceted functionalities. J. Mater. Chem. C 2015, 4, 2901–2908. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Shao, A.; Zhu, W.-H. Long wavelength AIEgen of quinoline-malononitrile. J. Mater. Chem. C 2015, 4, 2640–2646. [Google Scholar] [CrossRef]
- Li, N.; Feng, H.; Gong, Q.; Wu, C.; Zhou, H.; Huang, Z.; Yang, J.; Chen, X.; Zhao, N. BINOL-based chiral aggregation-induced emission luminogens and their application in detecting copper(II) ions in aqueous media. J. Mater. Chem. C 2015, 3, 11458–11463. [Google Scholar] [CrossRef]
- Shan, G.-G.; Li, H.-B.; Sun, H.-Z.; Zhu, D.-X.; Cao, H.-T.; Su, Z.-M. Controllable synthesis of iridium(III)-based aggregation-induced emission and/or piezochromic luminescence phosphors by simply adjusting the substitution on ancillary ligands. J. Mater. Chem. C 2013, 1, 1440–1449. [Google Scholar] [CrossRef]
- Ding, D.; Li, K.; Liu, B.; Tang, B.Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453. [Google Scholar] [CrossRef] [PubMed]
- Molina, P.; Tárraga, A.; Otón, F. Imidazole derivatives: A comprehensive survey of their recognition properties. Org. Biomol. Chem. 2012, 10, 1711–1724. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, X.; Yang, H.; Zhang, T.; Han, A.; Zang, L. A Cu2+-selective probe based on phenanthro-imidazole derivative. Sensors 2016, 17, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Lv, X.; Pan, B.; Tan, J.; Jin, J.; Wang, L. Benzimidazole–phosphine oxide hybrid electron transporters for unilateral homogeneous phosphorescent organic light-emitting diodes with enhanced power efficiency. J. Mater. Chem. C 2015, 3, 11192–11201. [Google Scholar] [CrossRef]
- Guo, Z.; Song, N.R.; Moon, J.H.; Kim, M.; Jun, E.J.; Choi, J.; Lee, J.Y.; Bielawski, C.W.; Sessler, J.L.; Yoon, J. A benzobisimidazolium-based fluorescent and colorimetric chemosensor for CO2. J. Am. Chem. Soc. 2012, 134, 17846–17849. [Google Scholar] [CrossRef]
- Wu, Y.; Huo, J.-P.; Cao, L.; Ding, S.; Wang, L.-Y.; Cao, D.; Wang, Z.-Y. Design and application of tri-benzimidazolyl star-shape molecules as fluorescent chemosensors for the fast-response detection of fluoride ion. Sens. Actuators B Chem. 2016, 237, 865–875. [Google Scholar] [CrossRef]
- Swami, S.; Behera, D.; Agarwala, A.; Verma, V.P.; Shrivastava, R. β-Carboline–imidazopyridine hybrids: Selective and sensitive optical sensors for copper and fluoride ions. New J. Chem. 2018, 42, 10317–10326. [Google Scholar] [CrossRef]
- Tabasi, Z.A.; Younes, E.; Walsh, J.C.; Thompson, D.W.; Bodwell, G.J.; Zhao, Y. Pyrenoimidazolyl-benzaldehyde fluorophores: Synthesis, properties, and sensing function for fluoride anions. ACS Omega 2018, 3, 16387–16397. [Google Scholar] [CrossRef] [Green Version]
- Manivannan, R.; Satheshkumar, A.; Elango, K.P. Tuning of the H-bonding ability of imidazole N–H towards the colorimetric sensing of fluoride and cyanide ions as their sodium salts in water. New J. Chem. 2013, 37, 3152–3160. [Google Scholar] [CrossRef]
- Causey, C.P.; Allen, W.E. Anion binding by fluorescent biimidazole diamides. J. Org. Chem. 2002, 67, 5963–5968. [Google Scholar] [CrossRef]
- Cui, Y.; Mo, H.-J.; Chen, J.-C.; Niu, Y.-L.; Zhong, Y.-R.; Zheng, K.-C.; Ye, B.-H. Anion-selective interaction and colorimeter by an optical metalloreceptor based on ruthenium(ii) 2,2′-biimidazole: Hydrogen bonding and proton transfer. Inorg. Chem. 2007, 46, 6427–6436. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.-G.; Nichols, J.; Dixon, D.A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003, 107, 4184–4195. [Google Scholar] [CrossRef] [Green Version]
- Naha, S.; Velmathi, S.J.C. Phenazine-based fluorescence “turn-off” sensor for fluoride: Application on real samples and to cell and zebrafish imaging. ChemistrySelect 2019, 4, 2912–2917. [Google Scholar] [CrossRef]
- Bhattacharyya, B.; Kundu, A.; Guchhait, N.; Dhara, K. Anthraimidazoledione based reversible and reusable selective chemosensors for fluoride ion: Naked-eye, colorimetric and fluorescence “ON-OFF”. J. Fluoresc. 2017, 27, 1041–1049. [Google Scholar] [CrossRef]
- Yang, Z.; Chi, Z.; Mao, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Aldred, M.P.; Chi, Z. Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Mater. Chem. Front. 2018, 2, 861–890. [Google Scholar] [CrossRef]
- Sagara, Y.; Kato, T. Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 2009, 1, 605–610. [Google Scholar] [CrossRef]
- Sagara, Y.; Kubo, K.; Nakamura, T.; Tamaoki, N.; Weder, C. Temperature-dependent mechanochromic behavior of mechanoresponsive luminescent compounds. Chem. Mater. 2017, 29, 1273–1278. [Google Scholar] [CrossRef] [Green Version]
- Chi, Z.G.; Zhang, X.Q.; Xu, B.J.; Zhou, X.; Ma, C.P.; Zhang, Y.; Liu, S.W.; Xu, J.R. Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev. 2012, 41, 3878–3896. [Google Scholar] [CrossRef]
- Liang, J.; Chen, Z.; Xu, L.; Wang, J.; Yin, J.; Yu, G.-A.; Chen, Z.-N.; Liu, S.H. Aggregation-induced emission-active gold(I) complexes with multi-stimuli luminescence switching. J. Mater. Chem. C 2014, 2, 2243–2250. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, L.; Xie, L.; Liu, Z.; Li, Y.; Ning, R.; Zhang, G.; Gong, X.; Gao, B.; Liu, C.; et al. Colorimetric and On–Off fluorescent chemosensor for fluoride ion based on diketopyrrolopyrrole. Sens. Actuators B Chem. 2015, 207, 9–24. [Google Scholar] [CrossRef]
- Yang, X.; Xie, L.; Ning, R.; Gong, X.; Liu, Z.; Li, Y.; Zheng, L.; Zhang, G.; Gao, B.; Cui, Y.; et al. A diketopyrrolopyrrole-based near-infrared sensor for selective recognition of fluoride ions. Sens. Actuators B Chem. 2015, 210, 784–794. [Google Scholar] [CrossRef]
- Reddy, T.S.; Maragani, R.; Misra, R. Triarylborane substituted naphthalimide as a fluoride and cyanide ion sensor. Dalton Trans. 2015, 45, 2549–2553. [Google Scholar] [CrossRef]
- Hutchison, G.; Ratner, M.A.; Marks, T.J. Intermolecular charge transfer between heterocyclic oligomers. effects of heteroatom and molecular packing on hopping transport in organic semiconductors. J. Am. Chem. Soc. 2005, 127, 16866–16881. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakku, R.K.; Mirzadeh, N.; Privér, S.H.; Reddy, G.; Vardhaman, A.K.; Lingamallu, G.; Trivedi, R.; Bhargava, S.K. Tetraphenylethylene-Substituted Bis(thienyl)imidazole (DTITPE), An Efficient Molecular Sensor for the Detection and Quantification of Fluoride Ions. Chemosensors 2021, 9, 285. https://doi.org/10.3390/chemosensors9100285
Jakku RK, Mirzadeh N, Privér SH, Reddy G, Vardhaman AK, Lingamallu G, Trivedi R, Bhargava SK. Tetraphenylethylene-Substituted Bis(thienyl)imidazole (DTITPE), An Efficient Molecular Sensor for the Detection and Quantification of Fluoride Ions. Chemosensors. 2021; 9(10):285. https://doi.org/10.3390/chemosensors9100285
Chicago/Turabian StyleJakku, Ranjith Kumar, Nedaossadat Mirzadeh, Steven H. Privér, Govind Reddy, Anil Kumar Vardhaman, Giribabu Lingamallu, Rajiv Trivedi, and Suresh Kumar Bhargava. 2021. "Tetraphenylethylene-Substituted Bis(thienyl)imidazole (DTITPE), An Efficient Molecular Sensor for the Detection and Quantification of Fluoride Ions" Chemosensors 9, no. 10: 285. https://doi.org/10.3390/chemosensors9100285
APA StyleJakku, R. K., Mirzadeh, N., Privér, S. H., Reddy, G., Vardhaman, A. K., Lingamallu, G., Trivedi, R., & Bhargava, S. K. (2021). Tetraphenylethylene-Substituted Bis(thienyl)imidazole (DTITPE), An Efficient Molecular Sensor for the Detection and Quantification of Fluoride Ions. Chemosensors, 9(10), 285. https://doi.org/10.3390/chemosensors9100285