Long- and Short-Range Ordered Gold Nanoholes as Large-Area Optical Transducers in Sensing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Long-Range Ordered Nanoholes: Fabrication Protocol by Nanosphere Lithography
2.2. Short-Range Ordered Nanoholes: Fabrication Protocol by Colloidal Lithography
2.3. Topography, Spectral, and Refractometric Sensing Characterizations
3. Results
3.1. Distribution Characterization
3.1.1. Long-Range Ordered Distributions
3.1.2. Short-Range Ordered Distributions
3.2. Spectral Characterization
3.2.1. Long-Range Ordered Nanohole Distributions
3.2.2. Short-Range Ordered Nanohole Distributions.
3.3. Refractometric Sensing Characterization
3.3.1. Long-Range Ordered Nanohole Distributions
3.3.2. Short-Range Ordered Nanohole Distributions
4. Discussion
4.1. Long-Range Ordered Nanohole Distributions
4.2. Short-Range Ordered Nanohole Distributions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ito, T.; Okazaki, S. Pushing the limits of lithography. Nature 2000, 406, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Fernández-Domínguez, A.I.; Bosman, M.; Maier, S.A.; Yang, J.K.W. Nanoplasmonics: Classical down to the nanometer scale. Nano Lett. 2012, 12, 1683–1689. [Google Scholar] [CrossRef] [PubMed]
- Scholder, O.; Jefimovs, K.; Shorubalko, I.; Hafner, C.; Sennhauser, U.; Bona, G.L. Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps. Nanotechnology 2013, 24, 395301. [Google Scholar] [CrossRef] [PubMed]
- Stroscio, J.A.; Eigler, D.M. Atomic and Molecular Manipulation with the Scanning Tunneling Microscope. Science 1991, 254, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Piner, R.D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C.A. “Dip-Pen” Nanolithography. Science 1999, 283, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Haynes, C.L.; Van Duyne, R.P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599–5611. [Google Scholar] [CrossRef]
- Duval Malinsky, M.; Kelly, K.L.; Schatz, G.C.; Van Duyne, R.P. Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles. J. Phys. Chem. B 2001, 105, 2343–2350. [Google Scholar] [CrossRef]
- Prikulis, J.; Hanarp, P.; Olofsson, L.; Sutherland, D.; Käll, M. Optical Spectroscopy of Nanometric Holes in Thin Gold Films. Nano Lett. 2004, 4, 1003–1007. [Google Scholar] [CrossRef]
- Hanarp, P.; Sutherland, D.S.; Gold, J.; Kasemo, B. Control of nanoparticle film structure for colloidal lithography. Colloids Surf. A Physicochem. Eng. Asp. 2003, 214, 23–36. [Google Scholar] [CrossRef]
- Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12, 693–713. [Google Scholar] [CrossRef]
- Burmeister, F.; Schäfle, C.; Keilhofer, B.; Bechinger, C.; Boneberg, J.; Leiderer, P. From Mesoscopic to Nanoscopic Surface Structures: Lithography with Colloid Monolayers. Adv. Mater. 1998, 10, 495–497. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Wang, D. Colloidal Lithography—The Art of Nanochemical Patterning. Chem. Asian J. 2009, 4, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Colson, P.; Henrist, C.; Cloots, R. Nanosphere lithography: A powerful method for the controlled manufacturing of nanomaterials. J. Nanomater. 2013, 2013, 948510. [Google Scholar] [CrossRef]
- Gray, J.J.; Bonnecaze, R.T. Adsorption of colloidal particles by Brownian dynamics simulation: Kinetics and surface structures. J. Chem. Phys. 2001, 114, 1366–1381. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Warszyński, P. Role of electrostatic interactions in particle adsorption. Adv. Colloid Interface Sci. 1996, 63, 41–149. [Google Scholar] [CrossRef]
- Thill, A.; Spalla, O. Aggregation due to capillary forces during drying of particle submonolayers. Colloids Surf. A Physicochem. Eng. Asp. 2003, 217, 143–151. [Google Scholar] [CrossRef]
- Whitney, A.V.; Myers, B.D.; Van Duyne, R.P. Sub-100 nm Triangular Nanopores Fabricated with the Reactive Ion Etching Variant of Nanosphere Lithography and Angle-Resolved Nanosphere Lithography. Nano Lett. 2004, 4, 1507–1511. [Google Scholar] [CrossRef]
- Freunscht, P.; Van Duyne, R.P.; Schneider, S. Surface-enhanced Raman spectroscopy of trans-stilbene adsorbed on platinum- or self-assembled monolayer-modified silver film over nanosphere surfaces. Chem. Phys. Lett. 1997, 281, 372–378. [Google Scholar] [CrossRef]
- Hulteen, J.C.; Young, M.A.; Van Duyne, R.P. Surface-Enhanced Hyper-Raman Scattering (SEHRS) on Ag Film over Nanosphere (FON) Electrodes: Surface Symmetry of Centrosymmetric Adsorbates. Langmuir 2006, 22, 10354–10364. [Google Scholar] [CrossRef] [PubMed]
- Stuart, D.A.; Yuen, J.M.; Shah, N.; Lyandres, O.; Yonzon, C.R.; Glucksberg, M.R.; Walsh, J.T.; Van Duyne, R.P. In Vivo Glucose Measurement by Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2006, 78, 7211–7215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, J.; Whitney, A.V.; Elam, J.W.; Van Duyne, R.P. Ultrastable Substrates for Surface-Enhanced Raman Spectroscopy: Al2O3 Overlayers Fabricated by Atomic Layer Deposition Yield Improved Anthrax Biomarker Detection. J. Am. Chem. Soc. 2006, 128, 10304–10309. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.B.; Wang, S.J.; Huan, A.C.H.; Wang, Y.H. Fabrication of tunable nanostructure arrays using ion-polishing-assisted nanosphere lithography. J. Appl. Phys. 2006, 99, 034308. [Google Scholar] [CrossRef]
- Vogel, N.; Goerres, S.; Landfester, K.; Weiss, C.K. A Convenient Method to Produce Close- and Non-close-Packed Monolayers using Direct Assembly at the Air–Water Interface and Subsequent Plasma-Induced Size Reduction. Macromol. Chem. Phys. 2011, 212, 1719–1734. [Google Scholar] [CrossRef]
- Kelf, T.A.; Sugawara, Y.; Cole, R.M.; Baumberg, J.J.; Abdelsalam, M.E.; Cintra, S.; Mahajan, S.; Russell, A.E.; Bartlett, P.N. Localized and delocalized plasmons in metallic nanovoids. Phys. Rev. B 2006, 74, 245415. [Google Scholar] [CrossRef] [Green Version]
- Hanarp, P.; Käll, M.; Sutherland, D.S. Optical Properties of Short Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography. J. Phys. Chem. B 2003, 107, 5768–5772. [Google Scholar] [CrossRef]
- Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic Properties of Supported Pt and Pd Nanostructures. Nano Lett. 2006, 6, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, H.; Alaverdyan, Y.; Dmitriev, A.; Langhammer, C.; Sutherland, D.S.; Zäch, M.; Kasemo, B. Hole-mask colloidal lithography. Adv. Mater. 2007, 19, 4297–4302. [Google Scholar] [CrossRef]
- Rindzevicius, T.; Alaverdyan, Y.; Dahlin, A.; Höök, F.; Sutherland, D.S.; Käll, M. Plasmonic Sensing Characteristics of Single Nanometric Holes. Nano Lett. 2005, 5, 2335–2339. [Google Scholar] [CrossRef] [PubMed]
- Murray-Methot, M.P.; Menegazzo, N.; Masson, J.F. Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography. Analyst 2008, 133, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-E.; Jung, Y.; Kim, M.; Nam, J.-M. Quantitative Nanoplasmonics. ACS Cent. Sci. 2018, 4, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- Junesch, J.; Sannomiya, T.; Dahlin, A.B. Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography. ACS Nano 2012, 11, 10405–10415. [Google Scholar] [CrossRef] [PubMed]
- Patoka, P.; Giersig, M. Self-assembly of latex particles for the creation of nanostructures with tunable plasmonic properties. J. Mater. Chem. 2011, 21, 16783–16796. [Google Scholar] [CrossRef]
- Ai, B.; Zhao, Y. Glancing angle deposition meets colloidal lithography: A new evolution in the design of nanostructures. Nanophotonics 2018. [Google Scholar] [CrossRef]
- Alkaisi, M.M.; Blaikie, R.J.; McNab, S.J.; Cheung, R.; Cumming, D.R.S. Sub-diffraction-limited patterning using evanescent near-field optical lithography. Appl. Phys. Lett. 1999, 75, 3560–3562. [Google Scholar] [CrossRef]
- Luo, X.; Ishihara, T. Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express 2004, 12, 3055–3065. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Joly, A.G.; El-Khoury, P.Z.; Hess, W.P. Interferometric Plasmonic Lensing with Nanohole Arrays. J. Phys. Chem. Lett. 2014, 5, 4243–4248. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.M.; Zheludev, N.; Chen, Y.; de Abajo, F. Focusing of light by a nanohole array. Appl. Phys. Lett. 2007, 90, 091119. [Google Scholar] [CrossRef] [Green Version]
- Stuart, D.A.; Haes, A.J.; Yonzon, C.R.; Hicks, E.M.; Duyne, R.P. Van Biological applications of localised surface plasmonic phenomenae. IEE Proc. Nanobiotechnol. 2005, 152, 13–32. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.J.; Moskovits, M. A SERS-Active System Based on Silver Nanoparticles Tethered to a Deposited Silver Film. J. Phys. Chem. B 2006, 110, 13722–13727. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Blair, S. Fluorescence enhancement from an array of subwavelength metal apertures. Opt. Lett. 2003, 28, 507–509. [Google Scholar] [CrossRef] [PubMed]
- Garrett, S.H.; Smith, L.H.; Barnes, W.L. Fluorescence in the presence of metallic hole arrays. J. Mod. Opt. 2005, 52, 1105–1122. [Google Scholar] [CrossRef]
- Brolo, A.G.; Kwok, S.C.; Moffitt, M.G.; Gordon, R.; Riordon, J.; Kavanagh, K.L. Enhanced Fluorescence from Arrays of Nanoholes in a Gold Film. J. Am. Chem. Soc. 2005, 127, 14936–14941. [Google Scholar] [CrossRef] [PubMed]
- Blanchard-Dionne, A.-P.; Meunier, M. Sensing with periodic nanohole arrays. Adv. Opt. Photonics 2017, 9, 891–940. [Google Scholar] [CrossRef]
- Yesilkoy, F.; Terborg, R.A.; Pello, J.; Belushkin, A.A.; Jahani, Y.; Pruneri, V.; Altug, H. Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light Sci. Appl. 2018, 7, 17152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, R.; Sinton, D.; Kavanagh, K.L.; Brolo, A.G. A New Generation of Sensors Based on Extraordinary Optical Transmission. Acc. Chem. Res. 2008, 41, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Brolo, A.G.; Gordon, R.; Leathem, B.; Kavanagh, K.L. Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films. Langmuir 2004, 20, 4813–4815. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, A.; Zäch, M.; Rindzevicius, T.; Käll, M.; Sutherland, D.S.; Höök, F. Localized Surface Plasmon Resonance Sensing of Lipid-Membrane-Mediated Biorecognition Events. J. Am. Chem. Soc. 2005, 127, 5043–5048. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Genet, C.; Ebbesen, T.W. Light in tiny holes. Nature 2007, 445, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Bethe, H.A. Theory of Diffraction by Small Holes. Phys. Rev. 1944, 66, 163–182. [Google Scholar] [CrossRef]
- Garcia-Vidal, F.J.; Martin-Moreno, L.; Ebbesen, T.W.; Kuipers, L. Light passing through subwavelength apertures. Rev. Mod. Phys. 2010, 82, 729–787. [Google Scholar] [CrossRef] [Green Version]
- Ghaemi, H.F.; Thio, T.; Grupp, D.E.; Ebbesen, T.W.; Lezec, H.J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 1998, 58, 6779–6782. [Google Scholar] [CrossRef]
- Sarrazin, M.; Vigneron, J.-P.; Vigoureux, J.-M. Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys. Rev. B 2003, 67, 085415. [Google Scholar] [CrossRef]
- Genet, C.; van Exter, M.P.; Woerdman, J.P. Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt. Commun. 2003, 225, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Sannomiya, T.; Scholder, O.; Jefimovs, K.; Hafner, C.; Dahlin, A.B. Investigation of Plasmon Resonances in Metal Films with Nanohole Arrays for Biosensing Applications. Small 2011, 7, 1653–1663. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.; Emilsson, G.; Dahlin, A.B. Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. Analyst 2016, 141, 3803–3810. [Google Scholar] [CrossRef] [PubMed]
- Doskaliuk, N.M.; Fochuk, P.M.; Khalavka, Y.B. Effect of Conditions for Formation of Nanocomposite Films of Poly (Diallyldimethylammonium Chloride)—CdTe/CdS Nanocrystals on Their Structure and Optical Density. Theor. Exp. Chem. 2016, 52, 85–89. [Google Scholar] [CrossRef]
- Syrenova, S.; Wadell, C.; Langhammer, C. Shrinking-Hole Colloidal Lithography: Self-Aligned Nanofabrication of Complex Plasmonic Nanoantennas. Nano Lett. 2014, 14, 2655–2663. [Google Scholar] [CrossRef] [PubMed]
- Lvov, Y.M.; Rusling, J.F.; Thomsen, D.L.; Papadimitrakopoulos, F.; Kawakami, T.; Kunitake, T. High-speed multilayer film assembly by alternate adsorption of silica nanoparticles and linear polycation. Chem. Commun. 1998, 1229–1230. [Google Scholar] [CrossRef]
- Zheng, P.; Cushing, S.K.; Suri, S.; Wu, N. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 2015, 17, 21211–21219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, J.; Gompf, B.; Kobiela, G.; Dressel, M. How Holes Can Obscure the View: Suppressed Transmission through an Ultrathin Metal Film by a Subwavelength Hole Array. Phys. Rev. Lett. 2009, 103, 203901. [Google Scholar] [CrossRef] [PubMed]
- Murray, W.A.; Astilean, S.; Barnes, W.L. Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array. Phys. Rev. B 2004, 69, 165407. [Google Scholar] [CrossRef]
- Spevak, I.S.; Nikitin, A.Y.; Bezuglyi, E.V.; Levchenko, A.; Kats, A.V. Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films. Phys. Rev. B 2009, 79, 161406. [Google Scholar] [CrossRef]
- Parsons, J.; Hendry, E.; Burrows, C.P.; Auguié, B.; Sambles, J.R.; Barnes, W.L. Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys. Rev. B 2009, 79, 73412. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Sambles, J.R.; Bradberry, G.W. Long-range surface modes supported by thin films. Phys. Rev. B 1991, 44, 5855–5872. [Google Scholar] [CrossRef]
- Reilly, T.H.; Tenent, R.C.; Barnes, T.M.; Rowlen, K.L.; van de Lagemaat, J. Controlling the Optical Properties of Plasmonic Disordered Nanohole Silver Films. ACS Nano 2010, 4, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lindquist, N.C.; Wittenberg, N.J.; Jordan, L.R.; Oh, S.-H. Real-time full-spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance. Lab Chip 2012, 12, 3882–3890. [Google Scholar] [CrossRef] [PubMed]
- Malinsky, M.D.; Kelly, K.L.; Schatz, G.C.; Van Duyne, R.P. Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers. J. Am. Chem. Soc. 2001, 123, 1471–1482. [Google Scholar] [CrossRef]
- Ohno, T.; Wadell, C.; Inagaki, S.; Shi, J.; Nakamura, Y.; Matsushita, S.; Sannomiya, T. Hole-size tuning and sensing performance of hexagonal plasmonic nanohole arrays. Opt. Mater. Express 2016, 6, 1594–1603. [Google Scholar] [CrossRef]
- Bochenkov, V.E.; Frederiksen, M.; Sutherland, D.S. Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films. Opt. Express 2013, 21, 14763–14770. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Wang, S.; Cui, Z.; Li, Q.; Dai, S.; Du, Z. Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region. Appl. Phys. Lett. 2012, 100, 253101. [Google Scholar] [CrossRef]
- Nikolaides, M.G.; Bausch, A.R.; Hsu, M.F.; Dinsmore, A.D.; Brenner, M.P.; Gay, C.; Weitz, D.A. Electric-field-induced capillary attraction between like-charged particles at liquid interfaces. Nature 2002, 420, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Plettl, A.; Enderle, F.; Saitner, M.; Manzke, A.; Pfahler, C.; Wiedemann, S.; Ziemann, P. Non-close packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: Adding flexibility to colloidal lithography. Adv. Funct. Mater. 2009, 19, 3279–3284. [Google Scholar] [CrossRef]
- Blattler, T.M.; Binkert, A.; Zimmermann, M.; Textor, M.; Vörös, J.; Reimhult, E. From particle self-assembly to functionalized sub-micron protein pattern. Nanotechnology 2008, 19, 075301. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.D.; Zou, S.L.; Xue, C.; Atkinson, A.; Schatz, G.C.; Mirkin, C.A. Designing, fabricating and imaging Raman hot spots. Proc. Natl. Acad. Sci. USA 2006, 103, 13300–13303. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.L.; Kelly, K.L.; Schatz, G.C. The extinction spectra of silver nanoparticles arrays: Influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B 2003, 107, 7343–7350. [Google Scholar] [CrossRef]
- Pacifici, D.; Lezec, H.J.; Sweatlock, L.A.; Walters, R.J.; Atwater, H.A. Universal optical transmission features in periodic and quasiperiodic hole arrays. Opt. Express 2008, 16, 9222–9238. [Google Scholar] [CrossRef] [PubMed]
- Oberholzer, M.R.; Stankovich, J.M.; Carnie, S.L.; Chan, D.Y.C.; Lenhoff, A.M. 2-D and 3-D interactions in Random Sequential Adsorption of charged particles. J. Colloid Interface Sci. 1997, 194, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Rakers, S.; Chi, L.F.; Fuchs, H. Influence of the evaporation rate on the packing order of polydisperse latex monofilms. Langmuir 1997, 13, 7121–7124. [Google Scholar] [CrossRef]
- Kumar, R.; Mujumdar, S. Intensity correlations in metal films with periodic-on-average random nanohole arrays. Opt. Commun. 2016, 380, 174–178. [Google Scholar] [CrossRef]
- Correia-Ledo, D.; Gibson, K.F.; Dhawan, A.; Couture, M.; Vo-Dinh, T.; Graham, D.; Masson, J.-F. Assessing the location of surface plasmons over nanotriangle and nanohole arrays of different size and periodicity. J. Phys. Chem C 2012, 116, 6884–6892. [Google Scholar] [CrossRef] [PubMed]
- Blanchard-Dionne, A.-P.; Meunier, M. Multiperiodic nanohole array for high precision sensing. Nanophotonics 2019, 8, 325–329. [Google Scholar] [CrossRef]
- Carney, D.J.; Svavarsson, H.G.; Hemmati, H.; Fannin, A.; Yoon, J.W.; Magnusson, R. Refractometric Sensing with Periodic Nano-Indented Arrays: Effect of Structural Dimensions. Sensors 2019, 19, 897. [Google Scholar] [CrossRef] [PubMed]
- Lopez, G.A.; Estevez, M.C.; Soler, M.; Lechuga, L.M. Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration. Nanophotonics 2017, 6, 123–136. [Google Scholar] [CrossRef]
- Escobedo, C. On-chip nanohole array based sensing: A review. Lab Chip 2013, 13, 2445–2463. [Google Scholar] [CrossRef] [PubMed]
Colloidal Mask | DPS | ΔtPDDA | ΔtPS | dNN |
---|---|---|---|---|
PS80 (40 s–1 min)NaCl | 80 nm | 40 s | 1 min | NA |
PS80 (40–25 s) | 80 nm | 40 s | 25 s | (202 ± 31) nm |
PS80 (40 s–1 min) | 80 nm | 40 s | 1 min | (203 ± 31) nm |
PS80 (40 s–5 min) | 80 nm | 40 s | 5 min | (161 ± 32) nm |
PS80 (40 s–10 min) | 80 nm | 40 s | 10 min | (156 ± 32) nm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesaria, M.; Colombelli, A.; Lospinoso, D.; Taurino, A.; Melissano, E.; Rella, R.; Manera, M.G. Long- and Short-Range Ordered Gold Nanoholes as Large-Area Optical Transducers in Sensing Applications. Chemosensors 2019, 7, 13. https://doi.org/10.3390/chemosensors7010013
Cesaria M, Colombelli A, Lospinoso D, Taurino A, Melissano E, Rella R, Manera MG. Long- and Short-Range Ordered Gold Nanoholes as Large-Area Optical Transducers in Sensing Applications. Chemosensors. 2019; 7(1):13. https://doi.org/10.3390/chemosensors7010013
Chicago/Turabian StyleCesaria, Maura, Adriano Colombelli, Daniela Lospinoso, Antonietta Taurino, Enrico Melissano, Roberto Rella, and Maria Grazia Manera. 2019. "Long- and Short-Range Ordered Gold Nanoholes as Large-Area Optical Transducers in Sensing Applications" Chemosensors 7, no. 1: 13. https://doi.org/10.3390/chemosensors7010013
APA StyleCesaria, M., Colombelli, A., Lospinoso, D., Taurino, A., Melissano, E., Rella, R., & Manera, M. G. (2019). Long- and Short-Range Ordered Gold Nanoholes as Large-Area Optical Transducers in Sensing Applications. Chemosensors, 7(1), 13. https://doi.org/10.3390/chemosensors7010013