Colorimetric Materials for Fire Gas Detection—A Review
Abstract
:1. Introduction
- CO: 5–100 ppm
- NO2: 0.4–3 ppm
2. Materials for Carbon Monoxide Detection
3 Pd0 + 2 Mo6+ → 3 Pd2+ + 2 Mo3+
3. Materials for Nitrogen Dioxide Detection
3.1. Saltzman Method
3.2. Jacobs and Hochheiser Method
3.3. Metal Complexes
3.4. Other Methods
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Gutmacher, D.; Hoefer, U.; Wöllenstein, J. Gas sensor technologies for fire detection. Sens. Actuators B Chem. 2012, 175, 40–45. [Google Scholar] [CrossRef]
- Duric, A.; Ebner, H.; Forster, M.; Vinage, I. Development of a multi-sensor detector for fire detection and life safety applications. In Proceedings of the 14th International Conference on Automatic Fire Detection AUBE 2009, Duisburg, Germany, 8–10 September 2009. [Google Scholar]
- Solorzano, A.; Fonollosa, J.; Fernandez, L.; Eichmann, J.; Marco, S. Fire detection using a gas sensor array with sensor fusion algorithms. In Proceedings of the 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Montreal, QC, Canada, 28–31 May 2017. [Google Scholar]
- Reimann, P.; Schütze, A. Fire detection in coal mines based on semiconductor gas sensors. Sens. Rev. 2012, 32, 47–58. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed]
- Conrad, T.; Reimann, P.; Schütze, A. A hierarchical strategy for under-ground early fire detection based on a T-cycled semiconductor gas sensor. In Proceedings of the IEEE Sensors, Atlanta, GA, USA, 28–31 October 2007; pp. 1221–1224. [Google Scholar] [CrossRef]
- Pohle, R.; Simon, E.; Schneider, R.; Fleischer, M.; Sollacher, R.; Gao, H.; Müller, K.; Jauch, P.; Loepfe, M.; Frerichs, H.-P.; Wilbertz, C. Fire detection with low power fet gas sensors. Sens. Actuators B Chem. 2007, 120, 669–672. [Google Scholar] [CrossRef]
- Fleischer, M. Advances in application potential of adsorptive-type solid state gas sensors: High-temperature semiconducting oxides and ambient temperature GasFET devices. Meas. Sci. Technol. 2008, 19, 042001. [Google Scholar] [CrossRef]
- Lamb, A.B.; Hoover, C.R. Gas-Detector. U.S. Patent US1,321,062, 4 November 1919. [Google Scholar]
- Martinek, M.J.; Marti, W.C. Modified iodine-pentoxide method for determination of carbon monoxide in air and blood. Am. J. Public Health 1928, 19, 293–298. [Google Scholar] [CrossRef]
- Christman, A.A.; Block, W.D.; Schultz, J. Determination of carbon monoxide in air. Ind. Eng. Chem. 1937, 9, 153–156. [Google Scholar] [CrossRef]
- Allen, T.H.; Root, W.S. Colorimetric determination carbon monox-ide in air by an improved palladium chloride method. J. Biol. Chem. 1955, 216, 309–317. [Google Scholar] [PubMed]
- Shepherd, M. Rapid determination of small amounts of carbon monoxide. Anal. Chem. 1947, 19, 77–81. [Google Scholar] [CrossRef]
- Shepherd, G.M. Colorimetric Gas Detection. U.S. Patent US2,487,077, 8 November 1947. [Google Scholar]
- Herskovitz, T.; Peet, W.G. Composition, Indicator, Process and Device for Detecting Carbon Monoxide. U.S. Patent US4,482,635, 13 November 1984. [Google Scholar]
- Levaggi, D.A.; Feldstein, M. The colorimetric determination of low concentration of carbon monoxide. Am. Ind. Hyg. Assoc. J. 1964, 25, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.L.; Hamlin, P.A. A New Colorimetric Reagent for Carbon Monoxide. Anal. Lett. 1971, 4, 745–750. [Google Scholar] [CrossRef]
- Lambert, J.L.; Wiens, R.E. Induced colorimetric method for carbon monoxide. Anal. Chem. 1974, 46, 929–930. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.K. Determination of carbon monoxide by means of a palla-dium-promazine complex. J. Anal. Toxicol. 1977, 1, 54–56. [Google Scholar] [CrossRef]
- Selvapathy, P.; Pitchai, R.; Ramakrishna, T.V. A rapid spectropho-tometric method for the determination of carbon monoxide in ambient air. Talanta 1990, 37, 539–544. [Google Scholar] [CrossRef]
- Shuler, K.E.; Schrauzer, G.N. Catalyst and Method for Oxidizing Reducing Gases. U.S. Patent US4,043,934, 23 October 1977. [Google Scholar]
- Goswami, K.; Saini, D.P.S.; Klainer, S.M.; Ejiofor, C.H. Specific and Reversible Carbon Monoxide Sensor. U.S. Patent US5,302,350, 12 April 1994. [Google Scholar]
- Pal, T.; Ganguly, A.; Maity, D.S. Silver-gelatin method for the de-termination of trace amounts of carbon monoxide in air. Bull. Chem. Soc. Jpn. 1987, 60, 3001–3004. [Google Scholar] [CrossRef]
- Filippini, D.; Alimelli, A.; Di Natale, C.; Paolesse, R.; D’Amico, A.; Lundström, I. Chemical Sensing with Familiar Devices. Angew. Chem. Int. Ed. 2006, 45, 3800–3803. [Google Scholar] [CrossRef] [PubMed]
- James, B.R.; Reimer, K.J.; Wong, T.C.T. Reaction of carbon monoxide with ferrous porphyrins. Kinetics and equilibria for the binding of carbon monoxide to octamethyltetrabenzoporphyriniron(II) derivatives. J. Am. Chem. Soc. 1977, 99, 4815–4820. [Google Scholar] [CrossRef] [PubMed]
- Eaton, G.R.; Eaton, S.S. Reversible carbon monoxide binding by ruthenium carbonyl porphyrins. J. Am. Chem. Soc. 1975, 97, 235–236. [Google Scholar] [CrossRef]
- Fernández-Sánchez, J.F.; Fernández, I.; Steiger, R.; Beer, R.; Cannas, R.; Spichiger-Keller, U.E. Second generation nanostructured metal oxide matrices to increase the thermal stability of CO and NO2 sensing layers based on iron(II) phthalocyanine. Adv. Funct. Mater. 2007, 17, 1188–1198. [Google Scholar] [CrossRef]
- Benito-Garagorri, D.; Puchberger, M.; Mereiter, K.; Kirchner, K. Stereospecific and reversible CO binding at iron pincer complexes. Angew. Chem. Int. Ed. 2008, 47, 9142–9145. [Google Scholar] [CrossRef] [PubMed]
- Esteban, J.; Ros-Lis, J.V.; Martínez-Máñez, R.; Marcos, M.D.; Moragues, M.; Soto, J.; Sancenón, F. Sensitive and selective chromogenic sensing of carbon monoxide by using binuclear rhodium complexes. Angew. Chem. 2010, 49, 4934–4937. [Google Scholar] [CrossRef] [PubMed]
- Moragues, M.E.; Esteban, J.; Ros-Lis, J.V.; Martínez-Máñez, R.; Marcos, M.D.; Martínez, M.; Sancenón, F. Sensitive and selective chromogenic sensing of carbon monoxide via reversible axial CO coordination in binuclear rhodium complexes. J. Am. Chem. Soc. 2011, 133, 15762–15772. [Google Scholar] [CrossRef] [PubMed]
- Moragues, M.E.; Esteban, J.; Ros-Lis, J.V.; Martínez-Máñez, R.; Marcos, M.D.; Martínez, M.; Sancenón, F. An optoelectronic sensing device for CO detection in air based on a binuclear rhodium complex. Sens. Actuators B Chem. 2014, 191, 257–263. [Google Scholar] [CrossRef]
- Tarantik, K.; Schmitt, K.; Pannek, C.; Miensopust, L.; Wöllenstein, J. Investigation of Gasochromic Rhodium Complexes Regarding Their Reactivity towards CO. Multidiscip. Dig. Publ. Inst. Proc. 2017, 1, 454. [Google Scholar] [CrossRef]
- Saltzman, B.E. Colorimetric Microdetermination of nitrogen dioxide in atmosphere. Anal. Chem. 1954, 26, 1949–1955. [Google Scholar] [CrossRef]
- Jacobs, M.B.; Hochheiser, S. Continuous sampling and ultramicrodetermination of nitrogen dioxide in air. Anal. Chem. 1958, 30, 426–428. [Google Scholar] [CrossRef]
- Thomas, M.D.; MacLeod, J.A.; Robbins, R.C.; Goettelman, R.C.; Elridge, R.W.; Rodgers, L.H. Automatic apparatus for determination of nitric oxide and nitrogen dioxide in the atmosphere. Anal. Chem. 1956, 28, 1810–1816. [Google Scholar] [CrossRef]
- Huygen, I.C. Reaction of nitrogen dioxide with Griess type reagents. Anal. Chem. 1970, 42, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Nash, T. An efficient absorbing reagent for nitrogen dioxide. Atmos. Environ. 1970, 4, 661–665. [Google Scholar] [CrossRef]
- Smith, A.B. Colorimetric Indicator for the Detection of Nitrogen Dioxide. U.S. Patent US3,681,027, 1 October 1972. [Google Scholar]
- Tanaka, T.; Ohyama, T.; Maruo, Y.Y.; Hayashi, T. Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor. Sens. Actuators B Chem. 1998, 47, 65–69. [Google Scholar] [CrossRef]
- Maruo, Y.Y.; Tanaka, T.; Ohyama, T.; Hayashi, T. System for detecting environmental ppb-level nitrogen dioxide. Sens. Actuators B Chem. 1999, 57, 135–141. [Google Scholar] [CrossRef]
- Tanaka, T.; Guilleux, A.; Ohyama, T.; Maruo, Y.Y.; Hayashi, T. A ppb-level NO2 gas sensor using coloration reactions in porous glass. Sens. Actuators B Chem. 1999, 56, 247–253. [Google Scholar] [CrossRef]
- Ohyama, T.; Maruo, Y.Y.; Tanaka, T.; Hayashi, T. A ppb-level NO2 detection system using coloration reactions in porous glass and its humidity dependence. Sens. Actuators B Chem. 2000, 64, 142–146. [Google Scholar] [CrossRef]
- Alexy, M.; Hanko, M.; Rentmeister, S.; Heinze, J. Disposable optochemical sensor chip for nitrogen dioxide detection based on oxidation of N,N′-diphenyl-1,4-phenylenediamine. Sens. Actuators B Chem. 2006, 114, 916–927. [Google Scholar] [CrossRef]
- Pannek, C.; Schmitt, K.; Wöllenstein, J. Colorimetric materials for gas selective sensing in low-power applications. In Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015. [Google Scholar]
- Pannek, C. Mikrosystem zur Brandgasdetektion nach dem Farbumschlagsprinzip. PhD Thesis, University of Freiburg, Freiburg, Germany, 2014. (In German). [Google Scholar]
- Nezel, T.; Spichiger-Keller, U.E.; Ludin, C.; Hensel, A. Gas-Selective Optical Sensors for Fire Detectors. CHIMIA Int. J. Chem. 2001, 55, 725–731. [Google Scholar]
- Kudo, T.; Kimura, M.; Hanabusa, K.; Shirai, H.; Sakaguchi, T. Fabrication of gas sensors based on soluble phthalocyanines. J. Porphyr. Phthalocyanines 1999, 3, 65–69. [Google Scholar] [CrossRef]
- Basova, T.V.; Koltsov, E.K.; Igumenov, I.K. Spectral investigation of interaction of copper phthalocyanine with nitrogen dioxide. Sens. Actuators B Chem. 2005, 105, 259–265. [Google Scholar] [CrossRef]
- Baveja, A.K.; Chaube, A.; Gupta, V.K. Extractive spectrophotometric method for the determination of atmospheric nitrogen dioxide. Atmos. Environ. 1984, 18, 989–993. [Google Scholar] [CrossRef]
- Raman, V. Spectrophotometric determination of nitrogen dioxide. Microchem. J. 1991, 44, 322–326. [Google Scholar] [CrossRef]
- Kaveeshwar, R.; Amlathe, S.; Gupta, V.K. An efficient absorbing system for spectrophotometric determination of nitrogen dioxide. Atmos. Environ. 1992, 26A, 1025–1027. [Google Scholar] [CrossRef]
- Kumar, B.S.M.; Srikanth, T.R.; Balasubramanian, N. Spectrophotometric determination of nitrogen dioxide in air. Fresenius J. Anal. Chem. 1993, 345, 592–594. [Google Scholar] [CrossRef]
- Pandurangappa, M.; Venkataramanappa, Y. Aminophenyl benzimidazole as a new reagent for the estimation of NO2/Nitrite/Nitrate at trace level: Application to environmental samples. Anal. Lett. 2007, 40, 2974–2991. [Google Scholar] [CrossRef]
- Parmar, P.; Pillai, A.K.; Gupta, V.K. A sensitive spectrophotometric determination of nitrogen dioxide in the working atmosphere. Bull. Chem. Soc. Ethiop. 2009, 23. [Google Scholar] [CrossRef]
Complex | Description and Characteristics |
---|---|
(5,10,15,20-tetraphenylporphyrin) zinc | Upon binding of CO or NO2, red-shifted absorption occurs. Details on stability or reversibility are not yet known [24]. |
Octamethyltetrabenzoporphyrin iron | This compound is stable in the solid state and binds CO. In solution, a color change from green to red occurs. The compound is only stable in solution when pyridine is added as a stabilizer [25]. |
Ruthenium porphyrin derivative | The CO-complexed molecule binds another CO reversibly and stronger than other porphyrins. There is no information about a color change [26]. |
Iron(II) phthalocyanine | Binds CO and NO2. It is thermally unstable (loss of amino functionality) [27]. |
Iron pincer complex | Extremely selective reaction with CO; no cross-sensitivities to NO or SO2 are known. Complete regeneration is accomplished by heating at 100 °C for 5 min. No detailed information on gas sensitivities is available yet [28]. |
Compound | X= | R= | A= |
---|---|---|---|
1∙(A)2 | 4-OCH3 | CH3 | CH3CO2H |
2∙(A)2 | 3-CH3 | CH3 | CH3CO2H |
3∙(A)2 | 3-F | CH3 | CH3CO2H |
4∙(A)2 | 4-OCH3; 3,5-CH3 | CH3 | CH3CO2H |
5∙(A)2 | 3-CH3 | CF3 | CF3CO2H |
Complex | Description and Characteristics |
---|---|
(5,10,15,20-tetraphenylporphyrin) zinc | Upon binding of CO or NO2, red-shifted absorption occurs. Details on stability or reversibility are not yet known [24]. |
aquacyanocobalt(III)-cobyrinate derivative | Reacts very selectively to NO2 but is not completely reversible. Captures a concentration range of 25–800 ppb within a few seconds. Was intended to be commercialized in a fire gas detector, but the compound turned out to be unstable from approx. 50 °C [46]. |
2,9,16,23-tetra(2,6-dimethylphenoxy)metallophthalocyanine | So far, only results on the reaction of Cu/Co. phthalocyanines on NO2 exist, in which the conductivity is measured (no color change) [47]. The reaction is reversible. A detailed description of the chemical reaction (IR or Raman spectroscopic studies) upon binding of NO2 can be found in [48]. |
Materials for CO Detection | |||
Compound | Reversibility | Measuring Range/Limit of Detection (ppm) | Cross-Sensitivity |
Iodine pentoxide | irreversible | 5–10 | |
Molybdenum complexes | reversible | 2–100 | n.a. |
Metal complexes | Partly reversible | 5–180 | Towards NO2, SO2 |
Rhodium complexes | reversible | 10–200 | |
Materials for NO2 Detection | |||
Compound | Reversibility | Measuring Range/Limit of Detection (ppm) | Cross-Sensitivity |
Organic dyes | Partly reversible | <0.1 ppm | Towards O3 |
Metal complexes | Partly reversible | 25–800 ppb | Towards CO, SO2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitt, K.; Tarantik, K.R.; Pannek, C.; Wöllenstein, J. Colorimetric Materials for Fire Gas Detection—A Review. Chemosensors 2018, 6, 14. https://doi.org/10.3390/chemosensors6020014
Schmitt K, Tarantik KR, Pannek C, Wöllenstein J. Colorimetric Materials for Fire Gas Detection—A Review. Chemosensors. 2018; 6(2):14. https://doi.org/10.3390/chemosensors6020014
Chicago/Turabian StyleSchmitt, Katrin, Karina R. Tarantik, Carolin Pannek, and Jürgen Wöllenstein. 2018. "Colorimetric Materials for Fire Gas Detection—A Review" Chemosensors 6, no. 2: 14. https://doi.org/10.3390/chemosensors6020014
APA StyleSchmitt, K., Tarantik, K. R., Pannek, C., & Wöllenstein, J. (2018). Colorimetric Materials for Fire Gas Detection—A Review. Chemosensors, 6(2), 14. https://doi.org/10.3390/chemosensors6020014