Synthesis and Spectrophotometric Studies of Heterocyclic Bay-Substituted Naphthalenediimide Colorimetric pH Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. Synthesis
2.3.1. Method 1
- Compound 5
- Compound 1
2.3.2. Method 2
- Compound 2
- Compound 3
- Compound 4
2.4. Fluorescence Quantum Yields
2.5. Spectroscopic Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pantos, G.D. Naphthalenediimide and Its Congeners: From Molecules to Materials; CPI Group: Croydon, UK, 2017. [Google Scholar]
- Bhosale, S.V.; Al Kobaisi, M.; Jadhav, R.W.; Morajkar, P.P.; Jones, L.A.; George, S. Naphthalene diimides: Perspectives and promise. Chem. Soc. Rev. 2021, 50, 9845–9998. [Google Scholar] [CrossRef]
- Al Kobaisi, M.; Bhosale, S.V.; Latham, K.; Raynor, A.M.; Bhosale, S.V. Functional Naphthalene Diimides: Synthesis, Properties, and Applications. Chem. Rev. 2016, 116, 11685–11796. [Google Scholar] [CrossRef]
- Bhosale, S.V.; Jani, C.H.; Langford, S.J. Chemistry of naphthalene diimides. Chem. Soc. Rev. 2008, 37, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Sakai, N.; Mareda, J.; Vauthey, E.; Matile, S. Core-substituted naphthalenediimides. Chem. Commun. 2010, 46, 4225–4237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supur, M.; El-Khouly, M.E.; Seok, J.H.; Kay, K.-Y.; Fukuzumi, S. Elongation of Lifetime of the Charge-Separated State of Ferrocene-Naphthalenediimide-[60]Fullerene Triad via Stepwise Electron Transfer. J. Phys. Chem. A 2011, 115, 14430–14437. [Google Scholar] [CrossRef]
- Jameel, M.A.; Chien-Jen Yang, T.; Wilson, G.J.; Evans, R.A.; Gupta, A.; Langford, S.J. Naphthalene diimide-based electron transport materials for perovskite solar cells. J. Mater. Chem. A 2021, 9, 27170–27192. [Google Scholar] [CrossRef]
- Shukla, J.; Mukhopadhyay, P. Synthesis of Functionalized Naphthalene Diimides and their Redox Properties. Eur. J. Org. Chem. 2019, 7770–7786. [Google Scholar] [CrossRef]
- Thalacker, C.; Röger, C.; Würthner, F. Synthesis and Optical and Redox Properties of Core-Substituted Naphthalene Diimide Dyes. J. Org. Chem. 2006, 71, 8098–8105. [Google Scholar] [CrossRef]
- Cox, R.P.; Higginbotham, H.F.; Graystone, B.A.; Sandanayake, S.; Langford, S.J.; Bell, T.D.M. A new fluorescent H+ sensor based on core-substituted naphthalene diimide. Chem. Phys. Lett. 2012, 521, 59–63. [Google Scholar] [CrossRef]
- Doria, F.; Gallati, C.M.; Freccero, M. Hydrosoluble and solvatochromic naphthalene diimides with NIR absorption. Org. Biomol. Chem. 2013, 11, 7838–7842. [Google Scholar] [CrossRef] [PubMed]
- Weiβenstein, A.; Grande, V.; Saha-Möller, C.R.; Würthner, F. Water-soluble naphthalene diimides: Synthesis, optical properties, and colorimetric detection of biogenic amines. Org. Chem. Front. 2018, 5, 2641–2651. [Google Scholar] [CrossRef]
- Ghule, N.V.; Bhosale, R.S.; Kharat, K.; Puyad, A.L.; Bhosale, S.V.; Bhosale, S.V. A Naphthalenediimide-Based Fluorescent Sensor for Detecting the pH within the Rough Endoplasmic Reticulum of Living Cells. ChemPlusChem 2015, 80, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Doria, F.; Folini, M.; Grande, V.; Cimino-Reale, G.; Zaffaroni, N.; Freccero, M. Naphthalene diimides as red fluorescent pH sensors for functional cell imaging. Org. Biomol. Chem. 2015, 13, 570–576. [Google Scholar] [CrossRef]
- Doria, F.; Nadai, M.; Sattin, G.; Pasotti, L.; Richter, S.N.; Freccero, M. Water soluble extended naphthalene diimides as pH fluorescent sensors and G-quadruplex ligands. Org. Biomol. Chem. 2012, 10, 3830–3840. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhu, W.; Xie, Y.; Li, X.; Gao, Y.; Li, F.; Tian, H. Near-IR Core-Substituted Naphthalenediimide Fluorescent Chemosensors for Zinc Ions: Ligand Effects on PET and ICT Channels. Chem. Eur. J. 2010, 16, 8355–8364. [Google Scholar] [CrossRef]
- Hughes, W.; Rananaware, A.; La, D.D.; Jones, L.A.; Bhargava, S.; Bhosale, S.V. Aza-crown ether-core substituted naphthalene diimide fluorescence “turn-on” probe for selective detection of Ca2+. Sens. Actuators B Chem. 2017, 244, 854–860. [Google Scholar] [CrossRef]
- Cox, R.P.; Sandanayake, S.; Scarborough, D.L.A.; Izgorodina, E.I.; Langford, S.J.; Bell, T.D.M. Investigation of cation binding and sensing by new crown ether core substituted naphthalene diimide systems. New J. Chem. 2019, 43, 2011–2018. [Google Scholar] [CrossRef]
- Hangarge, R.V.; La, D.D.; Boguslavsky, M.; Jones, L.A.; Kim, Y.S.; Bhosale, S.V. An Aza-12-crown-4 Ether-Substituted Naphthalene Diimide Chemosensor for the Detection of Lithium Ion. ChemistrySelect 2017, 2, 11487–11491. [Google Scholar] [CrossRef]
- Bora, H.J.; Barman, P.; Bordoloi, S.; Gogoi, G.; Gogoi, B.; Sarma, N.S.; Kalita, A. Realization of multi-configurable logic gate behaviour on fluorescence switching signalling of naphthalene diimide congeners. RSC Adv. 2021, 11, 35274–35279. [Google Scholar] [CrossRef]
- Ajayakumar, M.R.; Hundal, G.; Mukhopadhyay, P.A. Tetrastable naphthalenediimide: Anion induced charge transfer, single and double electron transfer for combinational logic gates. Chem. Commun. 2013, 49, 7684–7686. [Google Scholar] [CrossRef]
- Jiang, W.; Han, M.; Zhang, H.-Y.; Zhang, Z.-J.; Liu, Y. A Double Plug–Socket System Capable of Molecular Keypad Locks through Controllable Photooxidation. Chem. Eur. J. 2009, 15, 9938–9945. [Google Scholar] [CrossRef]
- Magri, D.C. Recent Progress on the Evolution of Pourbaix Sensors: Molecular Logic Gates for Protons and Oxidants. Chemosensors 2018, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Magri, D.C. Logical sensing with fluorescent molecular logic gates based on photoinduced electron transfer. Coord. Chem. Rev. 2021, 426, 213598. [Google Scholar] [CrossRef]
- Vella Refalo, M.; Farrugia, N.V.; Johnson, A.D.; Klejna, S.; Szaciłowski, K.; Magri, D.C. Fluorimetric naphthalimide-based polymer logic beads responsive to acidity and oxidisability. J. Mater. Chem. C 2019, 7, 15225–15232. [Google Scholar] [CrossRef]
- Magri, D.C. ‘Pourbaix sensors’: Fluorescent molecular logic gates for pE and pH. Supramol. Chem. 2017, 29, 741–748. [Google Scholar] [CrossRef]
- Farrugia, T.J.; Magri, D.C. ‘Pourbaix sensors’: A new class of fluorescent pE–pH molecular AND logic gates based on photoinduced electron transfer. New J. Chem. 2013, 37, 148–151. [Google Scholar] [CrossRef]
- Grech, J.; Spiteri, J.C.; Scerri, G.J.; Magri, D.C. Molecular logic with ferrocene-rylene conjugates: A comparison of naphthalenediimide, naphthalimide and perylenediimide Pourbaix sensor designs. Inorg. Chim. Acta 2023, 544, 121176. [Google Scholar] [CrossRef]
- Scerri, G.J.; Spiteri, J.C.; Magri, D.C. Pourbaix sensors in polyurethane molecular logic-based coatings for early detection of corrosion. Mater. Adv. 2021, 2, 434–439. [Google Scholar] [CrossRef]
- Cardona, M.A.; Magri, D.C. Synthesis and spectrophotometric studies of water-soluble amino[bis(ethanesulfonate)] azobenzene pH indicators. Tetrahedron Lett. 2014, 55, 4559–4563. [Google Scholar] [CrossRef]
- Cardona, M.A.; Makuc, D.; Szaciłowski, K.; Plavec, J.; Magri, D.C. Water-Soluble Colorimetric Amino[bis(ethanesulfonate)]Azobenzene pH Indicators: A UV−Vis Absorption, DFT, and 1H−15NNMR Spectroscopy Study. ACS Omega 2017, 2, 6159–6166. [Google Scholar] [CrossRef] [PubMed]
- Cardona, M.A.; Mallia, C.J.; Baisch, U.; Magri, D.C. Water-soluble amino(ethanesulfonate) and [bis(ethanesulfonate)] anthracenes as fluorescent photoinduced electron transfer (PET) pH indicators and Fe3+ chemosensors. RSC Adv. 2016, 6, 3783–3791. [Google Scholar] [CrossRef]
- Bell, T.D.M.; Yap, S.; Jani, C.H.; Bhosale, S.V.; Hofkens, J.; De Schryver, F.C.; Langford, S.J.; Ghiggino, K.P. Synthesis and Photophysics of Core-Substituted Naphthalene Diimides: Fluorophores for Single Molecule Applications. Chem. Asian J. 2009, 4, 1542–1550. [Google Scholar] [CrossRef] [PubMed]
- Maniam, S.; Higginbotham, H.F.; Bell, T.D.M.; Langford, S.J. Harnessing Brightness in Naphthalene Diimides. Chem. Eur. J. 2019, 25, 7044–7057. [Google Scholar] [CrossRef] [PubMed]
- Valeur, B.; Berberan-Santos, M.N. Molecular Fluorescence: Principles and Applications; John Wiley & Sons: Weinheim, Germany, 2012. [Google Scholar]
- de Silva, A.P.; Gunaratne, H.Q.N.; Lynch, P.L.M.; Patty, A.J.; Spence, G.L. Luminescence and Charge Transfer. Part 3. The Use of Chromophores with ICT (Internal Charge Transfer) Excited States in the Construction of Fluorescent PET (Photoinduced Electron Transfer) pH Sensors and Related Absorption pH Sensors with Aminoalkyl Side Chains. J. Chem. Soc. Perkins Trans. 2 1993, 1611–1616. [Google Scholar] [CrossRef]
- Bissell, R.A.; Calle, E.; de Silva, A.P.; de Silva, S.A.; Gunaratne, H.Q.N.; Habib-Jiwan, J.-L.; Annesley Peiris, S.L.; Rupasinghe, R.A.D.D.; Samarasinghe, T.K.S.D.; Sandanayake, K.R.A.S.; et al. Luminescence and Charge Transfer. Part 2. Aminomethyl Anthracene Derivatives as Fluorescent PET (Photoinduced Electron Transfer) Sensors for Protons. J. Chem. Soc. Perkins Trans. 2 1991, 1559–1564. [Google Scholar] [CrossRef]
- Keshri, S.K.; Mandal, K.; Kumar, Y.; Yadav, D.; Mukhopadhyay, P. Naphthalenediimides with High Fluorescence Quantum Yield: Bright-Red, Stable, and Responsive Fluorescent Dyes. Chem. Eur. J. 2021, 27, 6954–6962. [Google Scholar] [CrossRef]
- Patrick, G.L. An Introduction to Medicinal Chemistry, 5th ed.; Oxford Press: Oxford, UK, 2013. [Google Scholar]
- Zong, L.; Wang, C.; Song, Y.; Xie, Y.; Zhnag, P.; Peng, Q.; Li, Q. A dual-function probe based on naphthalene diimide for fluorescent recognition of Hg2+ and colorimetric detection of Cu2+. Sens. Actuators B Chem. 2017, 252, 1105–1111. [Google Scholar] [CrossRef]
- Johnson, A.D.; Buhagiar, J.A.; Magri, D.C. 4-Amino-1,8-naphthalimide–ferrocene conjugates as potential multi-targeted anticancer and fluorescent cellular imaging agents. RSC Med. Chem. 2021, 12, 2060–2064. [Google Scholar] [CrossRef]
PASS 0 | AND | ||
---|---|---|---|
Input (H+) | Input (Fe3+) | Output (Light) | Output (Light) |
0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
Parameter. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
λmax (pH 3)/nm | 368, 547, 617 | 358, 374, 595 | 360, 383, 565 | 362, 378, 550 |
Log ε (cm−1 mol−1 L) a | 3.94 | 4.31 | 4.29 | 4.40 |
λmax (pH 10)/nm | 366, 616 | 356, 377, 595 | 360, 376, 612 | 362, 373, 628 |
Log ε (cm−1 mol−1 L) a | 4.00 | 4.26 | 4.50 | 4.34 |
λisos/nm | 393, 435, 563 | − b | 383, 578 | 377, 563 |
pKa | 2.15 | <2.0 c | 2.91 | 3.38 |
λfluex375 (pH 3)/nm | 451 | 450 | 450 | 452 |
Λfluex375 (pH 10)/nm | 423 | 425 | 422 | 474 |
Φf (>pH 3)d | 0.0010 | 0.0016 | 0.0037 | 0.0021 |
Φf (pH 10)d | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
λfluex500 (pH 2)/nm e | 562 | 556 | 564 | 601 |
Log P (2H+) f | 1.92 | −0.07 | 2.83 | 3.75 |
Log P f | 2.14 | 0.71 | 2.97 | 3.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magro, F.; Camenzuli, L.; Magri, D.C. Synthesis and Spectrophotometric Studies of Heterocyclic Bay-Substituted Naphthalenediimide Colorimetric pH Indicators. Chemosensors 2023, 11, 360. https://doi.org/10.3390/chemosensors11070360
Magro F, Camenzuli L, Magri DC. Synthesis and Spectrophotometric Studies of Heterocyclic Bay-Substituted Naphthalenediimide Colorimetric pH Indicators. Chemosensors. 2023; 11(7):360. https://doi.org/10.3390/chemosensors11070360
Chicago/Turabian StyleMagro, Filippa, Luke Camenzuli, and David C. Magri. 2023. "Synthesis and Spectrophotometric Studies of Heterocyclic Bay-Substituted Naphthalenediimide Colorimetric pH Indicators" Chemosensors 11, no. 7: 360. https://doi.org/10.3390/chemosensors11070360
APA StyleMagro, F., Camenzuli, L., & Magri, D. C. (2023). Synthesis and Spectrophotometric Studies of Heterocyclic Bay-Substituted Naphthalenediimide Colorimetric pH Indicators. Chemosensors, 11(7), 360. https://doi.org/10.3390/chemosensors11070360