Electrocatalytic and Photoelectrocatalytic Sensors Based on Organic, Inorganic, and Hybrid Materials: A Review
Abstract
:1. Introduction
2. Inorganic Materials for Sensors
2.1. Detection by Electrocatalysis
2.1.1. Noble Metals
2.1.2. Transition Metal-Based Materials
Nickel
Cobalt
Material | Species to Be Detected Electrocatalytically | Type of Detection Technique | Limit of Detection | Reference |
---|---|---|---|---|
Cobalt hydroxide nanosheets with abundant cobalt vacancies | Glucose | Amperometric | 295nM | [62] |
Glassy carbon electrode with a nanocomposite from cobalt nanoparticle and tungsten carbide | Peroxide sensor | Amperometric | 6.3 nM | [69] |
Nanostructured spinel cobalt manganese oxides | Hydrogen peroxide sensor | Amperometric | 15 μM | [70] |
Cobalt phosphide nanowire array grown in situ on titanium mesh | Glucose | Amperometric | 0.1 μM | [71] |
CeO2 nanospheres codoped with Cu and Co | MicroRNA | Differential pulse voltammetry and electrochemical impedimetric spectroscopy | 33 aM | [72] |
Graphene oxide/silica-cobalt mesostructured nanocomposite | Salmonella spp. | Electrochemical impedimetric spectroscopy | 101 cfu mL−1 | [73] |
CNT-nickel–cobalt oxide/Nafion | Insulin | Amperometric | 0.22 μg/mL | [74] |
Iron
Copper
Titanium
Metal–Organic Framework (MOF)
Material | Specie to Be Detected Electrocatalytically | Type of Detection Technique | Limit of Detection | Reference |
---|---|---|---|---|
Co-MOF/titanium nanosheet | Hydrogen peroxide | Amperometric | 0.25 μM | [131] |
Fe-MOF/Pt nanoparticles | Tinidazole | Differential pulse voltammetry | 43 nM | [132] |
Ag Nanoparticles in cluster-based Co-MOF | Glucose | Amperometric | 1.32 μM | [133] |
Fe-MOF/rGO nanocomposite | Hydrogen peroxide | Amperometric | 0.5 μM | [134] |
MOF-derived MnO@C nanocomposite | Cancer biomarker | Differential pulse voltammetry and chronoamperometry | 0.31 pM (differential pulse voltammetry) and 0.25 pM (chronoamperometric) | [135] |
Ni-MOF | Glucose | Amperometric | 0.66 μM | [136] |
MOF-818 metal–organic framework-reduced graphene oxide/multiwalled carbon nanotubes composite | Caffeic acid, chlorogenic acid, and gallic acid | Differential pulse voltammetry | 5.2 nM (caffeic acid), 5.7 nM (chlorogenic), and 0.18 μM (gallic acid) | [137] |
2.2. Detection by Photoelectrocatalysis
2.2.1. Usual Semiconductors
2.2.2. Vanadates
3. Organic Materials for Sensors
3.1. Detection by Electrocatalysis
3.1.1. Phthalocyanines
3.1.2. Carbonaceous Materials
3.1.3. Conducting Polymers
3.2. Detection by Photoelectrocatalysis
4. Hybrid Materials for Sensors
4.1. Detection by Electrocatalysis
Main Substrate | Metal Nanostructures | Specie to Be Detected Electrocatalytically | Reference |
---|---|---|---|
Carbon ionic liquid electrode | Silver nanoparticles | Hydrogen peroxide | [196] |
PEDOT | Silver nanograins | Hydrogen peroxide | [197] |
Carbon nanotubes | Palladium nanoparticles | Glucose | [198] |
Reduced graphene oxide | ZnO nanoparticles | L-cysteine | [199] |
Graphene | Platinum nanoparticle | Hydrogen peroxide and trinitrotoluene | [200] |
Polyaniline | Palladium nanoparticles | Hydrazine | [201] |
Poly(m-phenylenediamine) | Silver nanoparticles | Hydrogen peroxide | [202] |
4.2. Detection by Photoelectrocatalysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivaska, A.; Bobacka, J. Electroanalytical Techniques. In Process Analysis; Elsevier: Amsterdam, The Netherlands; Abo Akademi University: Turku-Abo, Finland, 2005. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31, 1806739. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, W.; Zhu, W.; Wu, H.; Wang, F.; Xu, X. A photoelectrochemical sensor for highly sensitive detection of glucose based on Au–NiO1– hybrid nanowires. Sens. Actuators B Chem. 2020, 304, 127330. [Google Scholar] [CrossRef]
- Zhou, M.; Guo, S. Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors. ChemCatChem 2015, 7, 2744–2764. [Google Scholar] [CrossRef]
- Wang, Y.; Zu, M.; Zhou, X.; Lin, H.; Peng, F.; Zhang, S. Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing. Chem. Eng. J. 2020, 381, 122605. [Google Scholar] [CrossRef]
- Furst, A.L.; Hill, M.G.; Barton, J.K. Electrocatalysis in DNA sensors. Polyhedron 2014, 84, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Li, R.; Li, C. Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts. In Advances in Catalysis; Academic Press Inc.: Cambridge, MA, USA, 2017; Volume 60, pp. 1–57. [Google Scholar]
- Keçili, R.; Denizli, A. Molecular Imprinting-Based Smart Nanosensors for Pharmaceutical Applications. In Molecular Imprinting for Nanosensors and Other Sensing Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 19–43. [Google Scholar]
- Rajeshwar, K. Encyclopedia of Electrochemistry; The University of Texas at Arlington: Arlington, TX, USA, 2007; Volume 6. [Google Scholar]
- Peter, L.M. Semiconductor Electrochemistry. In Photoelectrochemical Solar Fuel Production; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–40. [Google Scholar]
- Low, S.S.; Chen, Z.; Li, Y.; Lu, Y.; Liu, Q. Design principle in biosensing: Critical analysis based on graphitic carbon nitride (G-C3N4) photoelectrochemical biosensor. TrAC Trends Anal. Chem. 2021, 145, 116454. [Google Scholar] [CrossRef]
- Shi, J.; Marshall, D. Surface Modification Approaches for Electrochemical Biosensors. In Biosensors—Emerging Materials and Applications; InTech: Charlotte, NC, USA; Purdue University: West Lafayette, IN, USA, 2011. [Google Scholar]
- Kickelbick, G. Hybrid Materials: Synthesis, Characterization, and Applications; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007. [Google Scholar]
- Bansal, D. PC-Based Data Acquisition. In Real-Time Data Acquisition in Human Physiology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 21–55. [Google Scholar]
- Kim, H.; Yoo, T.Y.; Bootharaju, M.S.; Kim, J.H.; Chung, D.Y.; Hyeon, T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. Adv. Sci. 2022, 9, 2104054. [Google Scholar] [CrossRef] [PubMed]
- Trojanowicz, M. Applications of Gold Nanoparticles in Electroanalysis. In Comprehensive Analytical Chemistry; Elsevier B.V.: Amsterdam, The Netherlands, 2014; Volume 66, pp. 429–476. [Google Scholar]
- Amin, H.M.A.; El-Kady, M.F.; Atta, N.F.; Galal, A. Gold Nanoparticles Decorated Graphene as a High Performance Sensor for Determination of Trace Hydrazine Levels in Water. Electroanalysis 2018, 30, 1749–1758. [Google Scholar] [CrossRef]
- Chang, F.; Ren, K.; Li, S.; Su, Q.; Peng, J.; Tan, J. A voltammetric sensor for bisphenol A using gold nanochains and carbon nanotubes. Ecotoxicol. Environ. Saf. 2023, 252, 114588. [Google Scholar] [CrossRef]
- Renganathan, V.; Balaji, R.; Chen, S.-M.; Kokulnathan, T. Coherent design of palladium nanostructures adorned on the boron nitride heterojunctions for the unparalleled electrochemical determination of fatal organophosphorus pesticides. Sens. Actuators B Chem. 2020, 307, 127586. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R.P.; ALOthman, Z.A.; Mola, G.T. Novel development of na-noparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci. 2019, 31, 257–269. [Google Scholar] [CrossRef]
- Alal, O.; Caglar, A.; Kivrak, H.; Sahin, O. Dendrimer Templated Synthesis of Carbon Nanotube Supported PdAu Catalyst and its Application as Hydrogen Peroxide Sensor. Electroanalysis 2019, 31, 1646–1655. [Google Scholar] [CrossRef]
- Bach, L.; Thi, M.; Son, N.; Bui, Q.; Nhac-Vu, H.-T.; Ai-Le, P. Mesoporous gold nanoparticles supported cobalt nanorods as a free-standing electrochemical sensor for sensitive hydrogen peroxide detection. J. Electroanal. Chem. 2019, 848, 113359. [Google Scholar] [CrossRef]
- Waqas, M.; Lan, J.; Zhang, X.; Fan, Y.; Zhang, P.; Liu, C.; Jiang, Z.; Wang, X.; Zeng, J.; Chen, W. Fabrication of Non-enzymatic Electrochemical Glucose Sensor Based on Pd−Mn Alloy Nanoparticles Supported on Reduced Graphene Oxide. Electroanalysis 2020, 32, 1226–1236. [Google Scholar] [CrossRef]
- Li, X.; Du, X. Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sens. Actuators B Chem. 2017, 239, 536–543. [Google Scholar] [CrossRef]
- Trafela, Š.; Zavašnik, J.; Šturm, S.; Rožman, K. Formation of a Ni(OH)2/NiOOH active redox couple on nickel nanowires for formaldehyde detection in alkaline media. Electrochim. Acta 2019, 309, 346–353. [Google Scholar] [CrossRef]
- Han, L.; Yang, D.-P.; Liu, A. Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis. Biosens. Bioelectron. 2015, 63, 145–152. [Google Scholar] [CrossRef]
- Kong, L.-T.; Zhang, M.; Liu, X.; Ma, F.-Y.; Wei, B.; Wumaier, K.; Zhao, J.-G.; Lu, Z.-P.; Sun, J.-G.; Chen, J.; et al. Green and rapid synthesis of iron molybdate catalyst by mechanochemistry and their catalytic performance for the oxidation of methanol to formaldehyde. Chem. Eng. J. 2019, 364, 390–400. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.; Zhu, C.; Huang, Z.; Ou, R.; Gao, S.; Yang, Z. A miniature CuO nanoarray sensor for noninvasive detection of trace salivary glucose. Anal. Biochem. 2022, 656, 114857. [Google Scholar] [CrossRef]
- Dey, S.; Mehta, N.S. Synthesis and applications of titanium oxide catalysts for lower temperature CO oxidation. Curr. Res. Green Sustain. Chem. 2020, 3, 100022. [Google Scholar] [CrossRef]
- Gao, F.; Tu, X.; Ma, X.; Xie, Y.; Zou, J.; Huang, X.; Qu, F.; Yu, Y.; Lu, L. NiO@Ni-MOF nanoarrays modified Ti mesh as ultrasensitive electrochemical sensing platform for luteolin detection. Talanta 2020, 215, 120891. [Google Scholar] [CrossRef] [PubMed]
- Bonyani, M.; Mirzaei, A.; Leonardi, S.G.; Bonavita, A.; Neri, G. Electrochemical Properties of Ag@iron Oxide Nanocomposite for Application as Nitrate Sensor. Electroanalysis 2015, 27, 2654–2662. [Google Scholar] [CrossRef]
- Jiang, A.; Chen, J.; Liu, S.; Wang, Z.; Li, Q.; Xia, D.; Dong, M. Intermetallic Rhodium Alloy Nanoparticles for Electrocatalysis. ACS Appl. Nano Mater. 2021, 4, 13716–13723. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, Y.; Song, D.; Wu, H.; Cao, F.; Lei, Y. Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and solid-state pH sensing. Biosens. Bioelectron. 2018, 112, 136–142. [Google Scholar] [CrossRef]
- Shin, S.; Kwon, T.; Lee, Y. Palladium-rhodium binary oxide composite nanofibers with various composition ratios for highly efficient electrochemical sensing of carbon monoxide in neutral aqueous media. Appl. Surf. Sci. 2022, 598, 153847. [Google Scholar] [CrossRef]
- Daly, R.; Narayan, T.; Shao, H.; O’riordan, A.; Lovera, P. Platinum-Based Interdigitated Micro-Electrode Arrays for Reagent-Free Detection of Copper. Sensors 2021, 21, 3544. [Google Scholar] [CrossRef] [PubMed]
- Bin, Q.; Wang, M.; Wang, L. Ag nanoparticles decorated into metal-organic framework (Ag NPs/ZIF-8) for electrochemical sensing of chloride ion. Nanotechnology 2020, 31, 125601. [Google Scholar] [CrossRef]
- Miao, Z.; Zhang, D.; Chen, Q. Non-enzymatic Hydrogen Peroxide Sensors Based on Multi-wall Carbon Nanotube/Pt Nanoparticle Nanohybrids. Materials 2014, 7, 2945–2955. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Ren, C.; Lambert, A.; Zhang, G.; Li, J.; Cheng, Q.; Hu, X.; Yang, Z. Platinum Nanoparticle-decorated Graphene Oxide@Polystyrene Nanospheres for Label-free Electrochemical Immunosensing of Tumor Markers. ACS Sustain. Chem. Eng. 2020, 8, 4392–4399. [Google Scholar] [CrossRef]
- Sun, H.; Chao, J.; Zuo, X.; Su, S.; Liu, X.; Yuwen, L.; Fan, C.; Wang, L. Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv. 2014, 4, 27625–27629. [Google Scholar] [CrossRef]
- Jahandari, S.; Taher, M.A.; Fazelirad, H.; Sheikhshoai, I. Anodic stripping voltammetry of silver(I) using a carbon paste electrode modified with multi-walled carbon nanotubes. Microchim. Acta 2013, 180, 347–354. [Google Scholar] [CrossRef]
- Sidambaram, P.; Colleran, J. Nanomole Silver Detection in Chloride-Free Phosphate Buffer Using Platinum and Gold Micro- and Nanoelectrodes. J. Electrochem. Soc. 2019, 166, B532–B541. [Google Scholar] [CrossRef]
- Miao, Y.; Ouyang, L.; Zhou, S.; Xu, L.; Yang, Z.; Xiao, M.; Ouyang, R. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens. Bioelectron. 2014, 53, 428–439. [Google Scholar] [CrossRef]
- Hall, D.S.; Lockwood, D.J.; Bock, C.; MacDougall, B.R. Nickel Hydroxides and Related Materials: A Review of Their Structures, Synthesis and Properties. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140792. [Google Scholar] [CrossRef]
- Raoof, J.-B.; Omrani, A.; Ojani, R.; Monfared, F. Poly(N-methylaniline)/nickel modified carbon paste electrode as an efficient and cheep electrode for electrocatalytic oxidation of formaldehyde in alkaline medium. J. Electroanal. Chem. 2009, 633, 153–158. [Google Scholar] [CrossRef]
- Neiva, E.G.; Bergamini, M.F.; Oliveira, M.M.; Marcolino, L.H.; Zarbin, A.J. PVP-capped nickel nanoparticles: Synthesis, characterization and utilization as a glycerol electrosensor. Sens. Actuators B Chem. 2014, 196, 574–581. [Google Scholar] [CrossRef]
- Uwaya, G.E.; Wen, Y.; Bisetty, K. A combined experimental-computational approach for electrocatalytic detection of epinephrine using nanocomposite sensor based on polyaniline/nickel oxide. J. Electroanal. Chem. 2022, 911, 116204. [Google Scholar] [CrossRef]
- Neiva, E.G.; Oliveira, M.M.; Marcolino, L.H.; Zarbin, A.J. Nickel nanoparticles with hcp structure: Preparation, deposition as thin films and application as electrochemical sensor. J. Colloid Interface Sci. 2016, 468, 34–41. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, P.R.; Schibelbain, A.F.; Neiva, E.G.; Zarbin, A.J.; Marcolino, L.H.; Bergamini, M.F. Nickel hexacyanoferrate supported at nickel nanoparticles for voltammetric determination of rifampicin. Sens. Actuators B Chem. 2018, 260, 816–823. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Karimi, F.; Orooji, Y.; Mansouri, G.; Razmjou, A.; Aygun, A.; Sen, F. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci. Rep. 2020, 10, 11699. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, E.; Salimi, A.; Shams, E. Electrocatalytic activity of nickel oxide nanoparticles as mediatorless system for NADH and ethanol sensing at physiological pH solution. Biosens. Bioelectron. 2013, 45, 260–266. [Google Scholar] [CrossRef]
- Adeniyi, O.; Nwahara, N.; Mwanza, D.; Nyokong, T.; Mashazi, P. High-performance non-enzymatic glucose sensing on nanocomposite electrocatalysts of nickel phthalocyanine nanorods and nitrogen doped-reduced graphene oxide nanosheets. Appl. Surf. Sci. 2023, 609, 155234. [Google Scholar] [CrossRef]
- Vedharathinam, V.; Botte, G.G. Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium. Electrochim. Acta 2012, 81, 292–300. [Google Scholar] [CrossRef]
- Jafarian, M.; Mahjani, M.; Heli, H.; Gobal, F.; Heydarpoor, M. Electrocatalytic oxidation of methane at nickel hydroxide modified nickel electrode in alkaline solution. Electrochem. Commun. 2003, 5, 184–188. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, Y.; Huang, Z.; Mei, H.; Xie, Y.; Long, D.; Zhu, F.; Gong, W. Nonenzymetic glucose sensitive device based on morchella shaped nickel-copper layered double hydroxide. Appl. Surf. Sci. 2022, 597, 153658. [Google Scholar] [CrossRef]
- Pal, N.; Banerjee, S.; Bhaumik, A. A facile route for the syntheses of Ni(OH)2 and NiO nanostructures as potential candidates for non-enzymatic glucose sensor. J. Colloid Interface Sci. 2018, 516, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Sithini, T.N.; Thiyagasundaram, T.; Zen, J.-M. A nickel hydroxide platform prepared on a hydroxyl-enriched screen-printed carbon electrode for oxidative electrocatalysis. Anal. Methods 2022, 14, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Wolfart, F.; Lorenzen, A.L.; Nagata, N.; Vidotti, M. Nickel/cobalt alloys modified electrodes: Synthesis, characterization and optimization of the electrocatalytical response. Sens. Actuators B Chem. 2013, 186, 528–535. [Google Scholar] [CrossRef]
- Fu, R.; Lu, Y.; Ding, Y.; Li, L.; Ren, Z.; Si, X.; Wu, Q. A novel non-enzymatic glucose electrochemical sensor based on CNF@Ni-Co layered double hydroxide modified glassy carbon electrode. Microchem. J. 2019, 150, 104106. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, P.; Xie, Z.; Ni, M.; Wang, C.; Yang, P.; Xie, Y.; Fei, J. Selective determination of epinephrine using electrochemical sensor based on ordered mesoporous carbon/nickel oxide nanocomposite. Talanta 2021, 233, 122545. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Wang, T.-J.; Ahmed, F.; Arshi, N. Fabrication of flower-like nickel cobalt-layered double hydroxide for electrochemical detection of carbendazim. Surf. Interfaces 2023, 36, 102570. [Google Scholar] [CrossRef]
- Balasubramanian, P.; He, S.-B.; Deng, H.-H.; Peng, H.-P.; Chen, W. Defects engineered 2D ultrathin cobalt hydroxide nanosheets as highly efficient electrocatalyst for non-enzymatic electrochemical sensing of glucose and l-cysteine. Sens. Actuators B Chem. 2020, 320, 128374. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Wang, T.-J.; Kumar, E.A.; Ahmed, F. Construction of nickel cobalt-layered double hydroxide/functionalized–halloysite nanotubes composite for electrochemical detection of organophosphate insecticide. Chem. Eng. J. 2022, 433, 133639. [Google Scholar] [CrossRef]
- Zhong, H.; Campos-Roldán, C.A.; Zhao, Y.; Zhang, S.; Feng, Y.; Alonso-Vante, N. Recent Advances of Cobalt-Based Electrocatalysts for Oxygen Electrode Reactions and Hydrogen Evolution Reaction. Catalysts 2018, 8, 559. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, L.; Liu, J. Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. J. Alloys Compd. 2020, 821, 153542. [Google Scholar] [CrossRef]
- Tran, T.; Thi, M.; Son, N.; Bui, Q.; Ai-Le, P.; Nhac-Vu, H.-T. Novel nanoneedle structures of zinc-doped cobalt hydroxide as a self-supported sensor for sensitive glucose detection. Mater. Res. Bull. 2019, 120, 110580. [Google Scholar] [CrossRef]
- Zou, J.; Guan, J.-F.; Zhao, G.-Q.; Jiang, X.-Y.; Liu, Y.-P.; Yu, J.-G.; Li, W.-J. Construction of a highly sensitive signal electrochemical sensor based on self-assembled cobalt oxide-hydroxylated single-walled carbon nanotubes composite for detection of dopamine in bovine serum samples. J. Environ. Chem. Eng. 2021, 9, 105831. [Google Scholar] [CrossRef]
- Sreekanth, T.; Sindhu, R.; Kumar, E.P.; Abhilash, M.; Wei, X.; Kim, J.; Yoo, K. Controllable synthesis of urea-assisted Co3O4 nanostructures as an effective catalyst for urea electrooxidation. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 657, 130576. [Google Scholar] [CrossRef]
- Annalakshmi, M.; Balasubramanian, P.; Chen, S.-M.; Chen, T.-W. Enzyme-free electrocatalytic sensing of hydrogen peroxide using a glassy carbon electrode modified with cobalt nanoparticle-decorated tungsten carbide. Microchim. Acta 2019, 186, 265. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-C.; Lan, W.-J.; Chen, C.-H. Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: Highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide. Nanoscale 2014, 6, 334–341. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Kong, R.; Du, G.; Asiri, A.M.; Lu, Q.; Sun, X. Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing. J. Mater. Chem. B 2017, 5, 1901–1904. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Li, Q.; Wang, L.; You, W.; Zhang, J.; Che, R. Copper- and Cobalt-Codoped CeO2 Nanospheres with Abundant Oxygen Vacancies as Highly Efficient Electrocatalysts for Dual-Mode Electrochemical Sensing of MicroRNA. Anal. Chem. 2019, 91, 2659–2666. [Google Scholar] [CrossRef] [PubMed]
- Appaturi, J.N.; Pulingam, T.; Muniandy, S.; Dinshaw, I.J.; Fen, L.B.; Johan, M.R. Supported cobalt nanoparticles on graphene oxide/mesoporous silica for oxidation of phenol and electrochemical detection of H2O2 and Salmonella spp. Mater. Chem. Phys. 2019, 232, 493–505. [Google Scholar] [CrossRef]
- Arvinte, A.; Westermann, A.C.; Sesay, A.M.; Virtanen, V. Electrocatalytic oxidation and determination of insulin at CNT-nickel–cobalt oxide modified electrode. Sens. Actuators B Chem. 2010, 150, 756–763. [Google Scholar] [CrossRef]
- Sander, M.; Hofstetter, T.B.; Gorski, C.A. Electrochemical Analyses of Redox-Active Iron Minerals: A Review of Nonmediated and Mediated Approaches. Environ. Sci. Technol. 2015, 49, 5862–5878. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, K.; Bai, S.; Guan, C.; Wei, H.; Chu, H. High productivity of tartronate from electrocatalytic oxidation of high concentration glycerol through facilitating the intermediate conversion. Appl. Catal. B Environ. 2022, 317, 121784. [Google Scholar] [CrossRef]
- Hou, X.; Shen, W.; Huang, X.; Ai, Z.; Zhang, L. Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B. J. Hazard. Mater. 2016, 308, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Wahab, R.; Khan, F.; Al-Khedhairy, A.A. Hematite iron oxide nanoparticles: Apoptosis of myoblast cancer cells and their arithmetical assessment. RSC Adv. 2018, 8, 24750–24759. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Wang, T.; Li, L.; Gong, J.; Zhang, L.; Chen, W. Copper oxide nanoleaves covered with loose nickel oxide nanoparticles for sensitive and selective non-enzymatic nitrite sensors. Mater. Res. Bull. 2022, 149, 111712. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, W.; Sun, Y.; Jiang, Y.; Han, N.; Zou, J.; Si, W.; Wang, F.; Núñez-Delgado, A.; Liu, S. Highly active iron-nitrogen-boron-carbon bifunctional electrocatalytic platform for hydrogen peroxide sensing and oxygen reduction. Environ. Res. 2021, 201, 111563. [Google Scholar] [CrossRef] [PubMed]
- Heli, H.; Majdi, S.; Sattarahmady, N. Ultrasensitive sensing of N-acetyl-l-cysteine using an electrocatalytic transducer of nanoparticles of iron(III) oxide core–cobalt hexacyanoferrate shell. Sens. Actuators B Chem. 2010, 145, 185–193. [Google Scholar] [CrossRef]
- Adekunle, A.S.; Agboola, B.O.; Pillay, J.; Ozoemena, K.I. Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform. Sens. Actuators B Chem. 2010, 148, 93–102. [Google Scholar] [CrossRef]
- Mani, V.; Vilian, A.T.E.; Chen, S.-M. Graphene Oxide Dispersed Carbon Nanotube and Iron Phthalocyanine Composite Modified Electrode for the Electrocatalytic Determination of Hydrazine. Int. J. Electrochem. Sci. 2012, 7, 12774–12785. [Google Scholar]
- Rezaei, B.; Damiri, S. Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate(II) electrocatalyst system as a sensor for determination of captopril. Sens. Actuators B Chem. 2008, 134, 324–331. [Google Scholar] [CrossRef]
- Nehru, R.; Hsu, Y.-F.; Wang, S.-F. Electrochemical determination of caffeic acid in antioxidant beverages samples via a facile synthesis of carbon/iron-based active electrocatalyst. Anal. Chim. Acta 2020, 1122, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, C.; An, J.; Yang, L.; Yang, Y.; Liu, X. Ultra-fast synthesis of iron decorated multiwalled carbon nanotube composite materials: A sensitive electrochemical sensor for determining dopamine. J. Alloys Compd. 2022, 897, 163257. [Google Scholar] [CrossRef]
- Movlaee, K.; Ganjali, M.R.; Norouzi, P.; Neri, G. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors. Nanomaterials 2017, 7, 406. [Google Scholar] [CrossRef] [PubMed]
- Wahab, R.; Khan, F.; Ahmad, N.; Alam, M. Copper and iron based bimetallic nanocomposite: An enhanced and operative phenol sensor. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 144, 115419. [Google Scholar] [CrossRef]
- Chen, S.-H.; Zhu, J.-J.; Li, P.-H.; Sun, Y.-F.; Yang, M.; Huang, X.-J. In-situ growth of zero-valent iron in FeOx/Mn3O4 to improve the surficial redox for high-efficient electrocatalysis of Pb(II). Chem. Eng. J. 2022, 430, 132959. [Google Scholar] [CrossRef]
- Hao, X.; Yan, T.; Wang, Z.; Liu, S.; Liang, Z.; Shen, Y.; Pritzker, M. Unipolar pulse electrodeposition of nickel hexacyanoferrate thin films with controllable structure on platinum substrates. Thin Solid Film. 2012, 520, 2438–2448. [Google Scholar] [CrossRef]
- Šutinys, E.; Dzedzickis, A.; Samukaitė-Bubnienė, U.; Bučinskas, V. Novel synthetic iron (III) oxide-based force sensor. Sens. Actuators A Phys. 2021, 331, 113043. [Google Scholar] [CrossRef]
- Guo, C.; Zheng, Y.; Ran, J.; Xie, F.; Jaroniec, M.; Qiao, S. Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis. Angew. Chem. 2017, 129, 8659–8663. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Liu, Z.-Q.; Haruta, M.; Shen, W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749. [Google Scholar] [CrossRef]
- Thamilselvan, A.; Manivel, P.; Rajagopal, V.; Nesakumar, N.; Suryanarayanan, V. Improved electrocatalytic activity of Au@Fe3O4 magnetic nanoparticles for sensitive dopamine detection. Colloids Surfaces B Biointerfaces 2019, 180, 1–8. [Google Scholar] [CrossRef]
- Zokhtareh, R.; Rahimnejad, M.; Najafpour-Darzi, G.; Karimi-Maleh, H. A novel sensing platform for electrochemical detection of metronidazole antibiotic based on green-synthesized magnetic Fe3O4 nanoparticles. Environ. Res. 2023, 216, 114643. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Pan, S.; Yu, L.; Zhang, S.; Liu, R. A magnetically induced self-assembled and label-free electrochemical aptasensor based on magnetic Fe3O4/Fe2O3@Au nanoparticles for VEGF165 protein detection. Appl. Surf. Sci. 2022, 580, 152362. [Google Scholar] [CrossRef]
- Balaji, R.; Zheng, X.-H.; Chen, S.-M.; Renganathan, V. The copper oxide nanoflakes modified electrodes for selective and real time electrochemical sensing of caffeine. Inorg. Chem. Commun. 2020, 118, 108014. [Google Scholar] [CrossRef]
- Song, H.; Ni, Y.; Kokot, S. A novel electrochemical sensor based on the copper-doped copper oxide nano-particles for the analysis of hydrogen peroxide. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 465, 153–158. [Google Scholar] [CrossRef]
- Daemi, S.; Ghasemi, S.; Ashkarran, A.A. Electrospun CuO-ZnO nanohybrid: Tuning the nanostructure for improved amperometric detection of hydrogen peroxide as a non-enzymatic sensor. J. Colloid Interface Sci. 2019, 550, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chai, G.; Zhao, X.; Dai, Y.; Qi, Y. Effect of different copper sources on the morphology of cuprous oxide and its application as a non-enzymatic glucose sensor. Sens. Actuators B Chem. 2020, 321, 128485. [Google Scholar] [CrossRef]
- Yan, Q.; Zhi, N.; Yang, L.; Xu, G.; Feng, Q.; Zhang, Q.; Sun, S. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci. Rep. 2020, 10, 10607. [Google Scholar] [CrossRef]
- Amiripour, F.; Azizi, S.N.; Ghasemi, S. Gold-copper bimetallic nanoparticles supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine. Biosens. Bioelectron. 2018, 107, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Feng, H.; Zhang, Y.; Jiang, J.; Feng, Y.; Chen, M.; Qian, D. A facile one-step in situ synthesis of copper nanostructures/graphene oxide as an efficient electrocatalyst for 2-naphthol sensing application. Electrochim. Acta 2015, 153, 352–360. [Google Scholar] [CrossRef]
- Chiani, E.; Azizi, S.N.; Ghasemi, S. Superior electrocatalyst based on mesoporous silica nanoparticles/carbon nanotubes modified by platinum-copper bimetallic nanoparticles for amperometric detection of hydrazine. Int. J. Hydrogen Energy 2022, 47, 20087–20102. [Google Scholar] [CrossRef]
- Vinothkumar, V.; Prasad, G.V.; Chen, S.-M.; Sangili, A.; Jang, S.-J.; Lim, H.C.; Kim, T.H. One-step synthesis of calcium-doped copper oxide nanoparticles as an efficient bifunctional electrocatalyst for sensor and supercapacitor applications. J. Energy Storage 2023, 59, 106415. [Google Scholar] [CrossRef]
- Wei, C.; Liu, Y.; Li, X.; Zhao, J.; Ren, Z.; Pang, H. Nitrogen-Doped Carbon-Copper Nanohybrids as Electrocatalysts in H2O2 and Glucose Sensing. Chemelectrochem 2014, 1, 799–807. [Google Scholar] [CrossRef]
- Almutairi, E.M.; Ghanem, M.A.; Al-Warthan, A.; Kuniyil, M.; Adil, S.F. Hydrazine High-Performance Oxidation and Sensing Using a Copper Oxide Nanosheet Electrocatalyst Prepared via a Foam-Surfactant Dual Template. Nanomaterials 2022, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Ghicov, A.; Schmuki, P. Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2009, 20, 2791–2808. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Bai, J.; Zhou, B. Titanium Dioxide Nanomaterials for Sensor Applications. Chem. Rev. 2014, 114, 10131–10176. [Google Scholar] [CrossRef] [PubMed]
- Malode, S.J.; Prabhu K., K.; Shetti, N.P.; Reddy, K.R. Highly sensitive electrochemical assay for selective detection of Aminotriazole based on TiO2/poly(CTAB) modified sensor. Environ. Technol. Innov. 2021, 21, 101222. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Kumar, E.A.; Wang, T.-J. Design and In Situ Synthesis of Titanium Carbide/Boron Nitride Nanocomposite: Investigation of Electrocatalytic Activity for the Sulfadiazine Sensor. ACS Sustain. Chem. Eng. 2020, 8, 12471–12481. [Google Scholar] [CrossRef]
- Khan, A.L.; Jain, R. Polypyrrole/titanium dioxide nanocomposite sensor for the electrocatalytic quantification of sulfamoxole. Ionics 2018, 24, 2473–2488. [Google Scholar] [CrossRef]
- Reys, J.R.M.; Lima, P.R.; Cioletti, A.G.; Ribeiro, A.S.; de Abreu, F.C.; Goulart, M.O.; Kubota, L.T. An amperometric sensor based on hemin adsorbed on silica gel modified with titanium oxide for electrocatalytic reduction and quantification of artemisinin. Talanta 2008, 77, 909–914. [Google Scholar] [CrossRef]
- Chen, T.-W.; Chinnapaiyan, S.; Chen, S.-M.; Mahmoud, A.H.; Elshikh, M.S.; Ebaid, H.; Yassin, M.T. Facile sonochemical synthesis of rutile-type titanium dioxide microspheres decorated graphene oxide composite for efficient electrochemical sensor. Ultrason. Sonochemistry 2020, 62, 104872. [Google Scholar] [CrossRef] [PubMed]
- Kumar, E.A.; Kokulnathan, T.; Wang, T.-J.; Anthuvan, A.J.; Chang, Y.-H. Two-dimensional titanium carbide (MXene) nanosheets as an efficient electrocatalyst for 4-nitroquinoline N-oxide detection. J. Mol. Liq. 2020, 312, 113354. [Google Scholar] [CrossRef]
- Annalakshmi, M.; Balasubramanian, P.; Chen, S.-M.; Chen, T.-W. Amperometric sensing of nitrite at nanomolar concentrations by using carboxylated multiwalled carbon nanotubes modified with titanium nitride nanoparticles. Microchim. Acta 2019, 186, 8. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, T.; Liu, L.; Hou, H.; Chen, S.; Wang, L. Flexible and conductive titanium carbide–carbon nanofibers for the simultaneous determination of ascorbic acid, dopamine and uric acid. J. Mater. Chem. B 2018, 6, 4610–4617. [Google Scholar] [CrossRef] [PubMed]
- Cameron, J. Keper Metal-Organic Framework Materials. In Porous Materials; Wiley: Hoboken, NJ, USA, 2010; ISBN 9780470997499. [Google Scholar]
- Liu, X.; Yang, H.; Diao, Y.; He, Q.; Lu, C.; Singh, A.; Kumar, A.; Liu, J.; Lan, Q. Recent advances in the electrochemical applications of Ni-based metal organic frameworks (Ni-MOFs) and their derivatives. Chemosphere 2022, 307, 135729. [Google Scholar] [CrossRef]
- Jiao, L.; Jiang, H.-L. Metal-organic frameworks for catalysis: Fundamentals and future prospects. Chin. J. Catal. 2023, 45, 1–5. [Google Scholar] [CrossRef]
- Downes, C.; Marinescu, S.C. Electrocatalytic Metal–Organic Frameworks for Energy Applications. Chemsuschem 2017, 10, 4374–4392. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, Y.; Dong, J.; He, C.-T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184. [Google Scholar] [CrossRef]
- Qin, N.; Pan, A.; Yuan, J.; Ke, F.; Wu, X.; Zhu, J.; Liu, J.; Zhu, J. One-Step Construction of a Hollow Au@Bimetal–Organic Framework Core–Shell Catalytic Nanoreactor for Selective Alcohol Oxidation Reaction. ACS Appl. Mater. Interfaces 2021, 13, 12463–12471. [Google Scholar] [CrossRef] [PubMed]
- Sheikh-Mohseni, M.H.; Nezamzadeh-Ejhieh, A. Modification of carbon paste electrode with Ni-clinoptilolite nanoparticles for electrocatalytic oxidation of methanol. Electrochim. Acta 2014, 147, 572–581. [Google Scholar] [CrossRef]
- Zhai, X.; Cao, Y.; Sun, W.; Cao, S.; Wang, Y.; He, L.; Yao, N.; Zhao, D. Core-shell composite N-doped-Co-MOF@polydopamine decorated with Ag nanoparticles for nonenzymatic glucose sensors. J. Electroanal. Chem. 2022, 918, 116491. [Google Scholar] [CrossRef]
- Mohan, B.; Kumari, R.; Singh, G.; Singh, K.; Pombeiro, A.J.; Yang, X.; Ren, P. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. Environ. Int. 2023, 175, 107928. [Google Scholar] [CrossRef]
- Johnson, E.M.; Ilic, S.; Morris, A.J. Design Strategies for Enhanced Conductivity in Metal–Organic Frameworks. ACS Central Sci. 2021, 7, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-Z.; Wang, Y.-S.; Liu, B.; Jiao, H.; Xu, L. A Non–Enzymatic Electrochemical Sensor of Cu@Co–MOF Composite for Glucose Detection with High Sensitivity and Selectivity. Chemosensors 2022, 10, 416. [Google Scholar] [CrossRef]
- Saeb, E.; Asadpour-Zeynali, K. Enhanced electrocatalytic reduction activity of Fe-MOF/Pt nanoparticles as a sensitive sensor for ultra-trace determination of Tinidazole. Microchem. J. 2022, 172, 106976. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, W.-J.; Lu, Y.-K.; Liu, G.; Hou, L.; Wang, Y.-Y. Nonenzymatic Glucose Sensing and Magnetic Property Based On the Composite Formed by Encapsulating Ag Nanoparticles in Cluster-Based Co-MOF. Inorg. Chem. 2019, 58, 16743–16751. [Google Scholar] [CrossRef]
- Yang, S. Facile Synthesis of Fe-MOF/rGO nanocomposite as an Efficient Electrocatalyst for Nonenzymatic H2O2 Sensing. Int. J. Electrochem. Sci. 2019, 14, 7703–7716. [Google Scholar] [CrossRef]
- Liu, F.; Geng, L.; Ye, F.; Zhao, S. MOF-derivated MnO@C nanocomposite with bidirectional electrocatalytic ability as signal amplification for dual-signal electrochemical sensing of cancer biomarker. Talanta 2022, 239, 123150. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Liu, Q.; Lu, S.; Chen, G.; Gao, S.; Lu, W.; Sun, X. High-performance non-enzymatic glucose detection: Using a conductive Ni-MOF as an electrocatalyst. J. Mater. Chem. B 2020, 8, 5411–5415. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Bo, X.; Guo, L. MOF-818 metal-organic framework-reduced graphene oxide/multiwalled carbon nanotubes composite for electrochemical sensitive detection of phenolic acids. Talanta 2020, 218, 121123. [Google Scholar] [CrossRef]
- Blaskievicz, S.F.; Mascaro, L.H.; Zhao, Y.; Marken, F. Semiconductor photoelectroanalysis and photobioelectroanalysis: A perspective. TrAC Trends Anal. Chem. 2021, 135, 116154. [Google Scholar] [CrossRef]
- Liu, W.; Duan, W.; Jia, L.; Wang, S.; Guo, Y.; Zhang, G.; Zhu, B.; Huang, W.; Zhang, S. Surface Plasmon-Enhanced Photoelectrochemical Sensor Based on Au Modified TiO2 Nanotubes. Nanomaterials 2022, 12, 2058. [Google Scholar] [CrossRef]
- Cui, H.; Yao, C.; Cang, Y.; Liu, W.; Zhang, Z.; Miao, Y.; Xin, Y. Oxygen vacancy-regulated TiO2 nanotube photoelectrochemical sensor for highly sensitive and selective detection of tetracycline hydrochloride. Sens. Actuators B Chem. 2022, 359, 131564. [Google Scholar] [CrossRef]
- Tanaka, K.; Capule, M.F.; Hisanaga, T. Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett. 1991, 187, 73–76. [Google Scholar] [CrossRef]
- Han, F.; Song, Z.; Nawaz, M.H.; Dai, M.; Han, D.; Han, L.; Fan, Y.; Xu, J.; Han, D.; Niu, L. MoS2/ZnO-Heterostructures-Based Label-Free, Visible-Light-Excited Photoelectrochemical Sensor for Sensitive and Selective Determination of Synthetic Antioxidant Propyl Gallate. Anal. Chem. 2019, 91, 10657–10662. [Google Scholar] [CrossRef]
- Araújo, M.D.S.; Barretto, T.R.; Galvão, J.C.R.; Tarley, C.R.T.; Dall’Antônia, L.H.; de Matos, R.; Medeiros, R.A. Visible Light Photoelectrochemical Sensor for Acetaminophen Determination using a Glassy Carbon Electrode Modified with BiVO4 Nanoparticles. Electroanalysis 2021, 33, 663–671. [Google Scholar] [CrossRef]
- Pelissari, M.R.D.S.; Neto, N.F.A.; Camargo, L.P.; Dall’antonia, L.H. Characterization and Photo-Induced Electrocatalytic Evaluation for BiVO4 Films Obtained by the SILAR Process. Electrocatalysis 2021, 12, 211–224. [Google Scholar] [CrossRef]
- Camargo, L.P.; Pelissari, M.R.D.S.; da Silva, P.R.C.; Batagin-Neto, A.; Medeiros, R.A.; Dias, M.A.; Dall’antonia, L.H. Visible Light Photoelectrochemical Sensor for Dopamine: Determination Using Iron Vanadate Modified Electrode. Molecules 2022, 27, 6410. [Google Scholar] [CrossRef] [PubMed]
- Eyele-Mezui, S.; Vialat, P.; Higy, C.; Bourzami, R.; Leuvrey, C.; Parizel, N.; Turek, P.; Rabu, P.; Rogez, G.; Mousty, C. Electrocatalytic Properties of Metal Phthalocyanine Tetrasulfonate Intercalated in Metal Layered Simple Hydroxides (Metal: Co, Cu, and Zn). J. Phys. Chem. C 2015, 119, 13335–13342. [Google Scholar] [CrossRef]
- Tajbakhsh, E.; McKearney, D.; Leznoff, D.B.; Warren, J.J. Heterogenous Preparations of Solution-Processable Cobalt Phthalocyanines for Carbon Dioxide Reduction Electrocatalysis. Inorganics 2023, 11, 43. [Google Scholar] [CrossRef]
- Buschow, K.H.J. Wright Phthalocyanines. In Encyclopedia of Materials: Science and Technology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 6987–6991. [Google Scholar]
- Valverde-González, A.; Guan, L.Z.; Ferrer, M.L.; Iglesias, M.; Maya, E.M. Iron Phthalocyanine-Knitted Polymers as Electrocatalysts for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2020, 12, 32681–32688. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, Z.; Bu, J.; Ma, W.; Zhang, L.; Zhong, H.; Cheng, L.; Li, S.; Wang, T.; Zhang, J. Metal phthalocyanines as efficient electrocatalysts for acetylene semihydrogenation. Chem. Eng. J. 2022, 431, 134129. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Z.; Zhang, X.; Li, L.; Li, Y.; Xu, H.; Li, X.; Yu, X.; Zhang, Z.; Liang, Y.; et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675. [Google Scholar] [CrossRef]
- Kumar, Y.; Kibena-Põldsepp, E.; Kozlova, J.; Rähn, M.; Treshchalov, A.; Kikas, A.; Kisand, V.; Aruväli, J.; Tamm, A.; Douglin, J.C.; et al. Bifunctional Oxygen Electrocatalysis on Mixed Metal Phthalocyanine-Modified Carbon Nanotubes Prepared via Pyrolysis. ACS Appl. Mater. Interfaces 2021, 13, 41507–41516. [Google Scholar] [CrossRef]
- Zhan, X.; Tong, X.; Gu, M.; Tian, J.; Gao, Z.; Ma, L.; Xie, Y.; Chen, Z.; Ranganathan, H.; Zhang, G.; et al. Phosphorus-Doped Graphene Electrocatalysts for Oxygen Reduction Reaction. Nanomaterials 2022, 12, 1141. [Google Scholar] [CrossRef] [PubMed]
- Pogacean, F.; Socaci, C.; Pruneanu, S.; Biris, A.R.; Coros, M.; Magerusan, L.; Katona, G.; Turcu, R.; Borodi, G. Graphene based nanomaterials as chemical sensors for hydrogen peroxide—A comparison study of their intrinsic peroxidase catalytic behavior. Sens. Actuators B Chem. 2015, 213, 474–483. [Google Scholar] [CrossRef]
- Wang, J.; Kong, H.; Zhang, J.; Hao, Y.; Shao, Z.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717. [Google Scholar] [CrossRef]
- Li, X.; Duan, X.; Han, C.; Fan, X.; Li, Y.; Zhang, F.; Zhang, G.; Peng, W.; Wang, S. Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting. Carbon 2019, 148, 540–549. [Google Scholar] [CrossRef]
- Harik, V. Nanotechnology of Carbon Nanotubes. In Mechanics of Carbon Nanotubes; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–24. [Google Scholar]
- Sheng, J.; Zhu, S.; Jia, G.; Liu, X.; Li, Y. Carbon nanotube supported bifunctional electrocatalysts containing iron-nitrogen-carbon active sites for zinc-air batteries. Nano Res. 2021, 14, 4541–4547. [Google Scholar] [CrossRef]
- Liu, J.; Li, R.; Yang, B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6, 2179–2195. [Google Scholar] [CrossRef]
- Dash, S.R.; Bag, S.S.; Golder, A.K. Carbon Dots Derived from Waste Psidium Guajava Leaves for Electrocatalytic Sensing of Chlorpyrifos. Electroanalysis 2022, 34, 1141–1149. [Google Scholar] [CrossRef]
- Stadler, P. Isotropic metallic transport in conducting polymers. Synth. Met. 2019, 254, 106–113. [Google Scholar] [CrossRef]
- Idumah, C.I. Novel trends in conductive polymeric nanocomposites, and bionanocomposites. Synth. Met. 2021, 273, 116674. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Shoaie, I.S.; Khalilzadeh, M.A.; Asl, M.S.; Van Le, Q.; Zhang, K.; Jang, H.W.; Shokouhimehr, M. Recent developments in conducting polymers: Applications for electrochemistry. RSC Adv. 2020, 10, 37834–37856. [Google Scholar] [CrossRef]
- Guo, X.; Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 2020, 19, 922–928. [Google Scholar] [CrossRef]
- Xia, L.; Wei, Z.; Wan, M. Conducting polymer nanostructures and their application in biosensors. J. Colloid Interface Sci. 2010, 341, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Bredas, J.L.; Street, G.B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 1985, 18, 309–315. [Google Scholar] [CrossRef]
- Ibanez, J.G.; Rincón, M.E.; Gutierrez-Granados, S.; Chahma, M.; Jaramillo-Quintero, O.A.; Frontana-Uribe, B.A. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem. Rev. 2018, 118, 4731–4816. [Google Scholar] [CrossRef]
- Le, T.-H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, K.; Ye, K.; Yan, J.; Wang, G.; Cao, D. Hierarchical conducting polymer coated conjugated polyimide anode towards durable lithium-ion batteries. J. Power Sources 2022, 552, 232226. [Google Scholar] [CrossRef]
- Hryniewicz, B.M.; Volpe, J.; Bach-Toledo, L.; Kurpel, K.C.; Deller, A.E.; Soares, A.L.; Nardin, J.M.; Marchesi, L.F.; Simas, F.F.; Oliveira, C.C.; et al. Development of polypyrrole (nano)structures decorated with gold nanoparticles toward immunosensing for COVID-19 serological diagnosis. Mater. Today Chem. 2022, 24, 100817. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Zhang, G.; Wang, S.; Zhu, S.; Wu, X.; Wang, Y.; Wang, Q.; Hu, C. Conducting polymer/silver nanowires stacking composite films for high-performance electrochromic devices. Sol. Energy Mater. Sol. Cells 2019, 200, 109919. [Google Scholar] [CrossRef]
- Khalid, M.; Honorato, A.M.; Varela, H.; Dai, L. Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy 2018, 45, 127–135. [Google Scholar] [CrossRef]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Shi, G. Conducting Polymer-Based Catalysts. J. Am. Chem. Soc. 2016, 138, 2868–2876. [Google Scholar] [CrossRef] [PubMed]
- Vagin, M.; Che, C.; Gueskine, V.; Berggren, M.; Crispin, X. Ion-Selective Electrocatalysis on Conducting Polymer Electrodes: Improving the Performance of Redox Flow Batteries. Adv. Funct. Mater. 2020, 30, 2007009. [Google Scholar] [CrossRef]
- Malinauskas, A. Electrocatalysis at Conducting Polymers. Synth. Met. 1999, 107, 75–83. [Google Scholar] [CrossRef]
- Soares, A.L.; Zamora, M.L.; Marchesi, L.F.; Vidotti, M. Adsorption of catechol onto PEDOT films doped with gold nanoparticles: Electrochemical and spectroscopic studies. Electrochim. Acta 2019, 322, 134773. [Google Scholar] [CrossRef]
- Ren, Y.; Lin, Z.; Mao, X.; Tian, W.; Voorhis, T.; Hatton, T.A. Superhydrophobic, Surfactant-doped, Conducting Polymers for Electrochemically Reversible Adsorption of Organic Contaminants. Adv. Funct. Mater. 2018, 28, 1801466. [Google Scholar] [CrossRef]
- Rahman, H.A.; Rafi, M.; Putra, B.R.; Wahyuni, W.T. Electrochemical Sensors Based on a Composite of Electrochemically Reduced Graphene Oxide and PEDOT:PSS for Hydrazine Detection. ACS Omega 2022, 8, 3258–3269. [Google Scholar] [CrossRef]
- Getachew, T.; Addis, F.; Mehretie, S.; Yip, H.-L.; Xia, R.; Admassie, S. Electrocatalytic reduction of oxygen at platinum nanoparticles dispersed on electrochemically reduced graphene oxide/PEDOT:PSS composites. RSC Adv. 2020, 10, 30519–30528. [Google Scholar] [CrossRef]
- Tang, X.; Raskin, J.-P.; Kryvutsa, N.; Hermans, S.; Slobodian, O.; Nazarov, A.N.; Debliquy, M. An ammonia sensor composed of polypyrrole synthesized on reduced graphene oxide by electropolymerization. Sens. Actuators B Chem. 2020, 305, 127423. [Google Scholar] [CrossRef]
- Shyamala, S.; Kalaiarasi, S.; Karpagavinayagam, P.; Vedhi, C.; Muthuchudarkodi, R. Electrochemical studies and electrocatalytic applications of Zirconia-Polyaniline nanocomposite. J. Electroanal. Chem. 2022, 923, 116834. [Google Scholar] [CrossRef]
- Uwaya, G.E.; Bisetty, K. Electrocatalytic Detection of Epinephrine at Polyaniline-Biosynthesized Nickel Oxide Modified Electrode-Supported By Computational Study. Electrochem. Soc. Meet. Abstr. 2021, 240, 54. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Rajabzadeh-Khosroshahi, M.; Tabar, F.S.; Ajalli, N.; Samadi, A.; Yazdani, M.; Yazdian, F.; Rahdar, A.; Díez-Pascual, A.M. Two-Dimensional Graphitic Carbon Nitride (g-C3N4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications. J. Funct. Biomater. 2022, 13, 204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Lv, S.; Zhou, Q.; Tang, D. CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction. Sens. Actuators B Chem. 2020, 307, 127631. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Chen, X.; Huang, M.; Fu, Q.; Li, R.; Wang, Y.; Li, C.; Zhao, P.; Xie, Y.; et al. A non-enzymatic photoelectrochemical sensor based on g-C3N4@CNT heterojunction for sensitive detection of antioxidant gallic acid in food. Food Chem. 2022, 389, 133086. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, Y.; Pan, X.; Zhang, L.; Gong, J. Boosted photoelectrochemical immunosensing of metronidazole in tablet using coral-like g-C3N4 nanoarchitectures. Biosens. Bioelectron. 2019, 123, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-L.; Wang, E.-B.; Lan, Y.; Hu, C.-W. Renewable PMo 12-Based Inorganic-Organic Hybrid Material Bulk-Modified Carbon Paste Electrode: Preparation. Electrochem. Electrocatal. 2002, 14, 15–16. [Google Scholar] [CrossRef]
- Janaky, C.; Visy, C. Conducting polymer-based hybrid assemblies for electrochemical sensing: A materials science perspective. Anal. Bioanal. Chem. 2013, 405, 3489–3511. [Google Scholar] [CrossRef]
- Welch, C.M.; Compton, R.G. The use of nanoparticles in electroanalysis: A review. Anal. Bioanal. Chem. 2006, 384, 601–619. [Google Scholar] [CrossRef]
- Terán-Alcocer, Á.; Bravo-Plascencia, F.; Cevallos-Morillo, C.; Palma-Cando, A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. Nanomaterials 2021, 11, 252. [Google Scholar] [CrossRef]
- Xu, G.; Jarjes, Z.A.; Desprez, V.; Kilmartin, P.A.; Travas-Sejdic, J. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens. Bioelectron. 2018, 107, 184–191. [Google Scholar] [CrossRef]
- Wang, H.-H.; Chen, X.-J.; Li, W.-T.; Zhou, W.-H.; Guo, X.-C.; Kang, W.-Y.; Kou, D.-X.; Zhou, Z.-J.; Meng, Y.-N.; Tian, Q.-W.; et al. ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine. Talanta 2018, 176, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Demirkan, B.; Bozkurt, S.; Cellat, K.; Arıkan, K.; Yılmaz, M.; Şavk, A.; Çalımlı, M.H.; Nas, M.S.; Atalar, M.N.; Alma, M.H.; et al. Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid. Sci. Rep. 2020, 10, 2946. [Google Scholar] [CrossRef] [PubMed]
- Tajik, S.; Beitollahi, H.; Shahsavari, S.; Nejad, F.G. Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe3O4/ppy/Pd nanocomposite modified screen printed graphite electrode. Chemosphere 2022, 291, 132736. [Google Scholar] [CrossRef] [PubMed]
- Safavi, A.; Maleki, N.; Farjami, E. Electrodeposited Silver Nanoparticles on Carbon Ionic Liquid Electrode for Electrocatalytic Sensing of Hydrogen Peroxide. Electroanalysis 2009, 21, 1533–1538. [Google Scholar] [CrossRef]
- Balamurugan, A.; Chen, S.-M. Silver Nanograins Incorporated PEDOT Modified Electrode for Electrocatalytic Sensing of Hydrogen Peroxide. Electroanalysis 2009, 21, 1419–1423. [Google Scholar] [CrossRef]
- Baghayeri, M.; Veisi, H.; Veisi, H.; Maleki, B.; Karimi-Maleh, H.; Beitollahi, H. Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Adv. 2014, 4, 49595–49604. [Google Scholar] [CrossRef]
- Yang, S.; Li, G.; Qu, C.; Wang, G.; Wang, D. Simple synthesis of ZnO nanoparticles on N-doped reduced graphene oxide for the electrocatalytic sensing of l-cysteine. RSC Adv. 2017, 7, 35004–35011. [Google Scholar] [CrossRef]
- Guo, S.; Wen, D.; Zhai, Y.; Dong, S.; Wang, E. Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet: One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS Nano 2010, 4, 3959–3968. [Google Scholar] [CrossRef]
- Ivanov, S.; Lange, U.; Tsakova, V.; Mirsky, V.M. Electrocatalytically active nanocomposite from palladium nanoparticles and polyaniline: Oxidation of hydrazine. Sens. Actuators B Chem. 2010, 150, 271–278. [Google Scholar] [CrossRef]
- Tian, J.; Li, H.; Lu, W.; Luo, Y.; Wang, L.; Sun, X. Preparation of Ag nanoparticle-decorated poly(m-phenylenediamine) microparticles and their application for hydrogen peroxide detection. Analyst 2011, 136, 1806–1809. [Google Scholar] [CrossRef]
- Minta, D.; Moyseowicz, A.; Gryglewicz, S.; Gryglewicz, G. A Promising Electrochemical Platform for Dopamine and Uric Acid Detection Based on a Polyaniline/Iron Oxide-Tin Oxide/Reduced Graphene Oxide Ternary Composite. Molecules 2020, 25, 5869. [Google Scholar] [CrossRef] [PubMed]
- Malode, S.J.; Prabhu, K.K.; Shetti, N.P. Electrocatalytic behavior of a heterostructured nanocomposite sensor for aminotriazole. New J. Chem. 2020, 44, 19376–19384. [Google Scholar] [CrossRef]
- Singh, P.; Singh, K.R.; Verma, R.; Prasad, P.; Verma, R.; Das, S.N.; Singh, J.; Singh, R.P. Preparation, antibacterial activity, and electrocatalytic detection of hydrazine based on biogenic CuFeO2/PANI nanocomposites synthesized using Aloe barbadensis miller. New J. Chem. 2022, 46, 8805–8816. [Google Scholar] [CrossRef]
- Teng, J.; Liu, D.; Zhang, X.; Guo, J. PANI coated NiMoOP nanoarrays as efficient electrocatalyst for oxygen evolution. J. Electroanal. Chem. 2022, 908, 116129. [Google Scholar] [CrossRef]
- Qiao, L.; Zhu, Y.; Zeng, T.; Zhang, Y.; Zhang, M.; Song, K.; Yin, N.; Tao, Y.; Zhao, Y.; Zhang, Y.; et al. “Turn-off” photoelectrochemical aptasensor based on g-C3N4/WC/WO3 composites for tobramycin detection. Food Chem. 2023, 403, 134287. [Google Scholar] [CrossRef]
Class | Example of Materials | Main Characteristics | Main Applications in Sensors |
---|---|---|---|
Inorganic | Noble metals (gold, palladium, silver, and rhodium); nickel; cobalt; iron; copper; titanium; metal–organic framework; titanium dioxide; zinc oxide; vanadates (bismuth vanadate and iron vanadate). | High densities, high melting temperatures, high vapor pressures, high electrical and thermal conductivities, and optical reflectivities. | Detection of ions and organic molecules (such as glycerol, glucose, dopamine, and hydrazine). |
Organic | Phthalocyanines; carbonaceous material (carbon nanotubes, graphene and carbon dots); conducting polymers; graphitic carbon nitride. | Easy to modify and insoluble in water; high molecular weights; low melting and boiling points. | Detection of the oxygen reduction reaction, oxygen evolution reaction, CO2, and hydrogen evolution reaction. |
Hybrids | Carbonaceous material + metal nanoparticles; graphitic carbon nitride + different inorganic oxides; conducting polymers + metal nanostructures. | Union of characteristics and unique characteristics compared to the isolated materials. | Detection of hydrogen peroxide and organic molecules (glucose, dopamine, and uric acid). |
Material | Species to Be Detected Electrocatalytically | Type of Detection Technique | Limit of Detection | Reference |
---|---|---|---|---|
Platinum-based micro-electrode | Copper | Square wave voltammetry | 0.8 μg/L | [36] |
Silver nanoparticles decorated into the cavities of ZIF-8 using a modified glassy carbon electrode | Chloride ion | Differential pulse voltammetry | 0.61 μmol dm−3 | [37] |
Platinum electrodes modified with multiwalled carbon nanotube–platinum nanoparticle nanohybrids | Hydrogen peroxide | Amperometric | 0.3 μM | [38] |
Platinum nanoparticle-decorated reduced graphene oxide@polystyrene nanospheres | Tumor markers | Differential pulse voltammetry | 0.01 ng/mL | [39] |
Gold nanoparticle-decorated MoS2 nanocomposite | Dopamine, uric acid, and ascorbic acid | Differential pulse voltammetry | 100 mM (dopamine), 50 nM (uric acid), and 10 mM (ascorbic acid) | [40] |
Silver(I)-selective carbon paste electrode modified with multiwalled carbon nanotubes and silver-chelating Schiff base | Ag(I) | Differential pulse anodic stripping voltammetry | 0.08 ngmL−1 | [41] |
Gold and platinum micro- and nanoelectrodes | Silver in chloride-free phosphate buffer solution | Anodic stripping voltammetry | 1.3 pM (platinum nanoelectrode) | [42] |
Material | Species to Be Detected Electrocatalytically | Type of Detection Technique | Limit of Detection | Reference |
---|---|---|---|---|
Nickel nanoparticles stabilized by polyvinylpyrrolidone | Glycerol | Chronoamperometric | 95.0 μmol L−1 | [46] |
Nickel oxide nanoparticles with polyaniline supported on a glassy carbon electrode | Epinephrine | Square wave voltammetry | 0.05 µM | [47] |
Hexagonal close-packed nickel nanoparticles stabilized by polyvinylpyrrolidone | Glycerol | Chronoamperometric | 2.4 μmol L−1 | [48] |
Glassy carbon electrode modified with nanostructured nickel hexacyanoferrate | Rifampicin | Linear sweep voltammetry | 2.6 μmol L−1 | [49] |
NiO and Pt nanostructure hybrid, bis(1,10 phenanthroline) (1,10-phenanthroline-5,6-dione) nickel(II) hexafluorophosphate (B,1,10, P,1,10, PDNiPF6), and carbon paste electrode matrix | Cysteamine and serotonin | Square wave voltammetric | 0.5 nM (cysteamine) and 0.1 µM (serotonin) | [50] |
Glassy carbon electrode modified by nickel oxide nanoparticles | Ethanol | Amperometric | 6.4 μM | [51] |
A nanocomposite of nitrogen-doped reduced graphene oxide nanosheets and nickel phthalocyanine nanorods | Glucose | Chronoamperometry | 5.0 µM | [52] |
Material | Species to Be Detected Electrocatalytically | Type of Detection Technique | Limit of Detection | Reference |
---|---|---|---|---|
Iron–nitrogen–boron–carbon | Hydrogen peroxide | Chronoamperometry | 0.055 μM | [80] |
Nanoparticles of iron(III) oxide core–cobalt hexacyanoferrate shell-modified carbon paste electrode | N-acetyl-l-cysteine | Linear sweep voltammetry and amperometry | 205 (linear sweep voltammetry) and 20.9 nM (amperometry) | [81] |
Edge-plane pyrolytic graphite electrode modified with single-walled carbon nanotubes–iron (III) oxide nanoparticles | Dopamine | Square wave voltammetric | 0.36 μM | [82] |
Graphene-dispersed carbon nanotube and iron phthalocyanine composite | Hydrazine | Amperometric | 9.3 × 10−8 M | [83] |
Multiwalled-carbon nanotube-modified electrode–hexacyanoferrate(II) | Captopril | Cyclic voltammetric | 0.2 μM | [84] |
Glassy carbon electrode (GCE) with modified carbon/iron base | Caffeic acid | Differential pulse voltammetry | 0.002 μM | [85] |
Iron carbide-based heterostructure composite | Dopamine | Differential pulse voltammetry | 15 nM | [86] |
Material | Application | Type of Detection Technique | Limit of Detection | Reference |
---|---|---|---|---|
Ferrocene-decorated cuprous oxide | Uric acid sensing | Differential pulse voltammetry | 0.0596 μM | [101] |
Au-Cu nanoparticles supported on P nanozeolite-modified carbon paste electrode | Determination of hydrazine in trace levels | Cyclic voltammetry | 0.04 µM | [102] |
Copper nanostructure–graphene oxide | Detection of 2-naphthol | Differential pulse voltammetry | 5.0 nM | [103] |
Mesoporous silica nanoparticles/multiwalled carbon nanotubes dispersed in a carbon paste electrode with PtCu nanoparticles | Determination of hydrazine | Amperometric | 0.09 μM | [104] |
Calcium-doped copper oxide nanoparticles | Electrochemical detection of antipsychotic drug perphenazine | Differential pulse voltammetry | 0.0074 μM | [105] |
Nitrogen-doped carbon–copper nanohybrids | Glucose sensing | Amperometric | 5 μM | [106] |
Copper oxide nanosheet | Hydrazine sensing | Chronoamperometry | 15 μM | [107] |
Material | Species to Be Detected Electrocatalytically | Type of Detection Technique | Limit of Detection | Reference |
---|---|---|---|---|
Titanium carbide/boron nitride nanocomposite | Sulfadiazine | Differential pulse voltammetry | 3.0 nM | [113] |
Polypyrrole/titanium dioxide nanocomposite | Sulfamoxole | Square wave voltammetry | 1.24 ng mL−1 | [114] |
Titanium-oxide-modified silica | Artemisinin | Amperometric | 15 nmol L−1 | [115] |
Titanium dioxide nanoparticle-decorated graphene oxide nanocomposite | Theophylline | Amperometric | 13.26 nM | [116] |
Titanium carbide | 4-nitroquinoline N-oxide | Differential pulse voltammetry | 2 nM | [117] |
Glassy carbon electrode (GCE) with carboxylated multiwalled carbon nanotubes and titanium nitride nanoparticles | Nitrite | Amperometric | 4 nM | [118] |
Titanium carbide–carbon nanofibers | Ascorbic acid, dopamine, and uric acid | Differential pulse voltammetry | 0.3 μM (ascorbic acid), 20 nM (dopamine), and 0.3 μM (uric acid) | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasper, I.; Valério, T.L.; Klobukoski, V.; Pesqueira, C.M.; Massaneiro, J.; Camargo, L.P.; Dall’ Antonia, L.H.; Vidotti, M. Electrocatalytic and Photoelectrocatalytic Sensors Based on Organic, Inorganic, and Hybrid Materials: A Review. Chemosensors 2023, 11, 261. https://doi.org/10.3390/chemosensors11050261
Jasper I, Valério TL, Klobukoski V, Pesqueira CM, Massaneiro J, Camargo LP, Dall’ Antonia LH, Vidotti M. Electrocatalytic and Photoelectrocatalytic Sensors Based on Organic, Inorganic, and Hybrid Materials: A Review. Chemosensors. 2023; 11(5):261. https://doi.org/10.3390/chemosensors11050261
Chicago/Turabian StyleJasper, Isabela, Tatiana Lima Valério, Vanessa Klobukoski, Camila Melo Pesqueira, Jonas Massaneiro, Luan Pereira Camargo, Luiz Henrique Dall’ Antonia, and Marcio Vidotti. 2023. "Electrocatalytic and Photoelectrocatalytic Sensors Based on Organic, Inorganic, and Hybrid Materials: A Review" Chemosensors 11, no. 5: 261. https://doi.org/10.3390/chemosensors11050261
APA StyleJasper, I., Valério, T. L., Klobukoski, V., Pesqueira, C. M., Massaneiro, J., Camargo, L. P., Dall’ Antonia, L. H., & Vidotti, M. (2023). Electrocatalytic and Photoelectrocatalytic Sensors Based on Organic, Inorganic, and Hybrid Materials: A Review. Chemosensors, 11(5), 261. https://doi.org/10.3390/chemosensors11050261