Changes in Gait Performance in Stroke Patients after Taping with Scapular Setting Exercise
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Study Design and Process
2.3. Measurements
Timed Up-and-Go (TUG) Test
2.4. Intervention Method
2.4.1. Scapular Setting Exercise (SSE)
2.4.2. Kinesio Taping Method
2.5. Statistical Analyses
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Higginson, J.; Zajac, F.; Neptune, R.R.; Kautz, S.; Delp, S. Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J. Biomech. 2006, 39, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Muto, T.; Herzberger, B.; Hermsdorfer, J.; Miyake, Y.; Poppel, E. Interactive gait training device “Walk-Mate” for hemiparetic stroke rehabilitation. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 2268–2274. [Google Scholar]
- Umphred, D.A. Fisioterapia Neurológica; Manole: Plovdiv, Bulgaria, 1994. [Google Scholar]
- Duncan, P.W.; Zorowitz, R.; Bates, B.; Choi, J.Y.; Glasberg, J.J.; Graham, G.D.; Katz, R.C.; Lamberty, K.; Reker, D. Management of adult stroke rehabilitation care: A clinical practice guideline. Stroke 2005, 36, e100–e143. [Google Scholar] [CrossRef] [PubMed]
- Olney, S.J.; Richards, C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture 1996, 4, 136–148. [Google Scholar] [CrossRef]
- Algurén, B.; Lundgren-Nilsson, Å.; Sunnerhagen, K.S. Functioning of stroke survivors—A validation of the ICF core set for stroke in Sweden. Disabil. Rehabil. 2010, 32, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Dobkin, B.H. Rehabilitation after stroke. N. Engl. J. Med. 2005, 352, 1677–1684. [Google Scholar] [CrossRef] [Green Version]
- Takakusaki, K. Neurophysiology of gait: From the spinal cord to the frontal lobe. Mov. Disord. 2013, 28, 1483–1491. [Google Scholar] [CrossRef]
- Massion, J. Movement, posture and equilibrium: Interaction and coordination. Prog. Neurobiol. 1992, 38, 35–56. [Google Scholar] [CrossRef]
- Jackson, K.; Joseph, J.; Wyard, S. The upper limbs during human walking. Part 2: Function. Electromyogr. Clin. Neurophysiol. 1983, 23, 435–446. [Google Scholar]
- Ford, M.P.; Wagenaar, R.C.; Newell, K.M. Phase manipulation and walking in stroke. J. Neurol. Phys. Ther. 2007, 31, 85–91. [Google Scholar] [CrossRef]
- Visintin, M.; Barbeau, H. The effects of parallel bars, body weight support and speed on the modulation of the locomotor pattern of spastic paretic gait. A preliminary communication. Spinal Cord 1994, 32, 540. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.J.; Ferris, D.P. Neural coupling between upper and lower limbs during recumbent stepping. J. Appl. Physiol. 2004, 97, 1299–1308. [Google Scholar] [CrossRef] [PubMed]
- van Andel, C.; van Hutten, K.; Eversdijk, M.; Veeger, D.; Harlaar, J. Recording scapular motion using an acromion marker cluster. Gait Posture 2009, 29, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, B.; Lee, J. Effect of scapular stabilization exercise during standing on upper limb function and gait ability of stroke patients. J. Neurosci. Rural Pract. 2017, 8, 540–544. [Google Scholar] [PubMed]
- Hwang, Y.-I.; An, D.-H. Immediate effects of an elastic arm sling on walking patterns of chronic stroke patients. J. Phys. Ther. Sci. 2015, 27, 35–37. [Google Scholar] [CrossRef] [Green Version]
- Oujamaa, L.; Relave, I.; Froger, J.; Mottet, D.; Pelissier, J.-Y. Rehabilitation of arm function after stroke. Literature review. Ann. Phys. Rehabil. Med. 2009, 52, 269–293. [Google Scholar] [CrossRef]
- Canning, C.G.; Ada, L.; Paul, S.S. Is automaticity of walking regained after stroke? Disabil. Rehabil. 2006, 28, 97–102. [Google Scholar] [CrossRef]
- Ogawa, T.; Sato, T.; Ogata, T.; Yamamoto, S.I.; Nakazawa, K.; Kawashima, N. Rhythmic arm swing enhances patterned locomotor-like muscle activity in passively moved lower extremities. Physiol. Rep. 2015, 3, e12317. [Google Scholar] [CrossRef]
- Mottram, S. Dynamic stability of the scapula. Man. Ther. 1997, 2, 123–131. [Google Scholar] [CrossRef]
- Ebaugh, D.D.; McClure, P.W.; Karduna, A.R. Three-dimensional scapulothoracic motion during active and passive arm elevation. Clin. Biomech. 2005, 20, 700–709. [Google Scholar] [CrossRef]
- Awad, A.; Shaker, H.; Shendy, W.; Fahmy, M. Effect of shoulder girdle strengthening on trunk alignment in patients with stroke. J. Phys. Ther. Sci. 2015, 27, 2195–2200. [Google Scholar] [CrossRef] [Green Version]
- Rojhani-Shirazi, Z.; Amirian, S.; Meftahi, N. Effects of ankle kinesio taping on postural control in stroke patients. J. Stroke Cerebrovasc. Dis. 2015, 24, 2565–2571. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [PubMed]
- Ng, S.S.; Hui-Chan, C.W. The timed up & go test: Its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke. Arch. Phys. Med. Rehabil. 2005, 86, 1641–1647. [Google Scholar] [PubMed]
- Kim, B.-J.; Lee, J.-H. Effects of scapula-upward taping using kinesiology tape in a patient with shoulder pain caused by scapular downward rotation. J. Phys. Ther. Sci. 2015, 27, 547–548. [Google Scholar] [CrossRef] [Green Version]
- Asif, M.; Jameel, A.; Hussain, A.; Hwang, J.; Sahito, N. Linking Transformational Leadership with Nurse-Assessed Adverse Patient Outcomes and the Quality of Care: Assessing the Role of Job Satisfaction and Structural Empowerment. Int. J. Environ. Res. Public Health 2019, 16, 2381. [Google Scholar] [CrossRef] [Green Version]
- Mauritz, K.H. Gait training in hemiplegia. Eur. J. Neurol. 2002, 9, 23–29. [Google Scholar] [CrossRef]
- Guzik, A.; Drużbicki, M.; Przysada, G.; Kwolek, A.; Brzozowska-Magoń, A.; Sobolewski, M. Relationships between walking velocity and distance and the symmetry of temporospatial parameters in chronic post-stroke subjects. Acta Bioeng. Biomech. 2017, 19, 147–154. [Google Scholar]
- Ortega, J.D.; Fehlman, L.A.; Farley, C.T. Effects of aging and arm swing on the metabolic cost of stability in human walking. J. Biomech. 2008, 41, 3303–3308. [Google Scholar] [CrossRef] [Green Version]
- Behrman, A.L.; Harkema, S.J. Locomotor training after human spinal cord injury: A series of case studies. Phys. Ther. 2000, 80, 688–700. [Google Scholar] [CrossRef]
- Stephenson, J.L.; De Serres, S.J.; Lamontagne, A. The effect of arm movements on the lower limb during gait after a stroke. Gait Posture 2010, 31, 109–115. [Google Scholar] [CrossRef]
- Bovonsunthonchai, S.; Hiengkaew, V.; Vachalathiti, R.; Vongsirinavarat, M.; Tretriluxana, J. Effect of speed on the upper and contralateral lower limb coordination during gait in individuals with stroke. Kaohsiung J. Med. Sci. 2012, 28, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dell’Uomo, D.; Morone, G.; Centrella, A.; Paolucci, S.; Caltagirone, C.; Grasso, M.G.; Traballesi, M.; Iosa, M. Effects of scapulohumeral rehabilitation protocol on trunk control recovery in patients with subacute stroke: A pilot randomized controlled trial. NeuroRehabilitation 2017, 40, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-S.; Um, G.-M.; Choi, J.-H. Immediate effects of kinematic taping on lower extremity muscle tone and stiffness in flexible flat feet. J. Phys. Ther. Sci. 2016, 28, 1339–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayson, S.D.; Needle, A.R.; Kaminski, T.W. The effects of ankle Kinesio® taping on ankle stiffness and dynamic balance. Res. Sports Med. 2013, 21, 204–216. [Google Scholar] [CrossRef]
- dos Santos, G.L.; Souza, M.B.; Desloovere, K.; Russo, T.L. Elastic tape improved shoulder joint position sense in chronic hemiparetic subjects: A randomized sham-controlled crossover study. PLoS ONE 2017, 12, e0170368. [Google Scholar] [CrossRef]
Categories | SSE Group (n = 10) | TSSE Group (n = 10) | p |
---|---|---|---|
Gender (male/female) | 5/5 | 8/2 | 0.160 |
Etiology (infarction/hemorrhage) | 4/6 | 6/4 | 1.000 |
Paretic side (left/right) | 6/4 | 5/5 | 0.653 |
Age (years) | 63.10 ± 8.07 | 63.40 ± 7.79 | 0.934 |
Height (cm) | 159.10 ± 7.48 | 164.20 ± 6.97 | 0.132 |
Weight (kg) | 63.40 ± 8.60 | 65.60 ± 5.56 | 0.506 |
Disease duration (month) | 4.70 ± 0.67 | 4.00 ± 1.33 | 0.156 |
K-MMSE (point) | 27.20 ± 1.03 | 26.90 ± 1.28 | 0.572 |
Variable | Group | Pre Intervention | Post Intervention | t | p |
---|---|---|---|---|---|
Cadence (step/min) | SSE | 88.01 ± 17.32 | 90.38 ± 18.03 | –1.828 | 0.006 ** |
TSSE | 86.56 ± 22.71 | 92.13 ± 19.591 | –2.5632 | ||
Gait speed (m/s) | SSE | 0.81 ± 0.28 | 0.87 ± 0.28 | –3.7792 | 0.001 ** |
TSSE | 0.83 ± 0.30 | 0.92 ± 0.261 | –3.4572 | ||
Stride length (m) | SSE | 1.10 ± 0.22 | 1.12 ± 0.19 | –1.901 | 0.011 * |
TSSE | 1.10 ± 0.22 | 1.19 ± 0.231 | –2.3992 | ||
Gait cycle duration (sec) | SSE | 1.42 ± 0.32 | 1.37 ± 0.30 | 1.346 | 0.038 * |
TSSE | 1.50 ± 0.49 | 1.39 ± 0.501 | 2.5582 | ||
Step length (%) | SSE | 47.24 ± 3.49 | 47.27 ± 3.59 | –0.039 | 0.048 * |
TSSE | 47.49 ± 2.61 | 49.24 ± 1.501 | –2.3452 | ||
Stance phase duration (%) | SSE | 59.55 ± 3.44 | 62.59 ± 8.17 | –0.965 | 0.041 * |
TSSE | 59.30 ± 4.48 | 63.84 ± 6.651 | –2.3202 | ||
Swing phase duration (%) | SSE | 40.45 ± 3.44 | 37.41 ± 8.17 | 0.965 | 0.035 * |
TSSE | 40.80 ± 4.61 | 36.16 ± 6.651 | 2.3792 | ||
Double support duration (%) | SSE | 14.08 ± 8.25 | 13.55 ± 7.22 | 0.311 | 0.034 * |
TSSE | 18.01 ± 9.60 | 14.08 ± 8.431 | 2.3222 | ||
Single support duration (%) | SSE | 32.54 ± 10.00 | 35.56 ± 9.38 | –1.236 | 0.049 * |
TSSE | 31.88 ± 10.63 | 37.41 ± 7.161 | –2.4742 | ||
TUG test (sec) | SSE | 16.89 ± 4.25 | 15.84 ± 3.57 | 1.571 | 0.025 * |
TSSE | 17.83 ± 3.05 | 15.97 ± 3.101 | 2.865 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.J.; Oh, S. Changes in Gait Performance in Stroke Patients after Taping with Scapular Setting Exercise. Healthcare 2020, 8, 128. https://doi.org/10.3390/healthcare8020128
Park SJ, Oh S. Changes in Gait Performance in Stroke Patients after Taping with Scapular Setting Exercise. Healthcare. 2020; 8(2):128. https://doi.org/10.3390/healthcare8020128
Chicago/Turabian StylePark, Shin Jun, and Seunghue Oh. 2020. "Changes in Gait Performance in Stroke Patients after Taping with Scapular Setting Exercise" Healthcare 8, no. 2: 128. https://doi.org/10.3390/healthcare8020128
APA StylePark, S. J., & Oh, S. (2020). Changes in Gait Performance in Stroke Patients after Taping with Scapular Setting Exercise. Healthcare, 8(2), 128. https://doi.org/10.3390/healthcare8020128