Clinical, Biochemical, and Psychological Predictors of Metabolic Syndrome in Climacteric Women
Highlights
- Women in the early postmenopausal stage showed higher total cholesterol, HDL-cholesterol, and perceived stress compared with perimenopausal and late postmenopausal groups.
- Perceived stress, systemic arterial hypertension, Type 2 DM, and elevated glucose were the main predictors of metabolic syndrome in climacteric women.
- Psychological stress plays a relevant role in the development of metabolic syndrome, highlighting the need for integrated psychobiological evaluation during the climacteric period.
- Early detection and management of stress and metabolic risk factors may reduce cardiovascular morbidity in postmenopausal women.
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Participant Characteristics
3.1.1. Biochemical and Clinical Parameters
3.1.2. Group Differences in Glucose and Lipid Profiles
3.1.3. Psychological Symptoms and Stress Perception
3.1.4. Predictors of Metabolic Syndrome
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PERI | Perimenopausal |
| PM | Postmenopausal |
| BMI | Body Mass Index |
| WHR | Waist-to-Hip Ratio |
| HDL | High-Density Lipoprotein |
| LDL | Low-Density Lipoprotein |
| MS | Metabolic Syndrome |
References
- Santoro, N.; Roeca, C.; Peters, B.A.; Neal-Perry, G. The Menopause Transition: Signs, Symptoms, and Management Options. J. Clin. Endocrinol. Metab. 2021, 106, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J. The Stages of Reproductive Aging Workshop (STRAW+10) revisited: Updates on staging and terminology. Fertil. Steril. 2022, 118, 731–739. [Google Scholar]
- World Health Organization. Menopause; WHO Fact Sheet; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/menopause (accessed on 27 November 2025).
- Santoro, N. Understanding the menopause journey. Climacteric 2025, 28, 384–388. [Google Scholar] [CrossRef]
- Faubion, S.S.; Shufelt, C.L.; Manson, J.E. Menopausal symptoms and cardiovascular disease risk: Implications for preventive care. Circulation 2022, 146, 1312–1326. [Google Scholar]
- Gumpeny, N.; Gumpeny, L.; Gumpeny, S.R. Metabolic syndrome in menopause. Explor. Endocrinol. Metab. Dis. 2025, 2, 101440. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Aggarwal, B.; Beckie, T.M.; Hodis, H.N.; Johnson, A.E.; Langer, R.D.; Limacher, M.C.; Manson, J.E.; Stefanick, M.L.; Allison, M.A.; et al. Menopause transition and cardiovascular disease risk: Implications for timing of early prevention. Circulation 2020, 142, e506–e532. [Google Scholar] [CrossRef]
- Yousefzai, S.; Amin, Z.; Faizan, H.; Ali, M.; Soni, S.; Friedman, M.; Kazmi, A.; Metlock, F.E.; Sharma, G.; Javed, Z. Cardiovascular health during menopause transition: The role of traditional and nontraditional risk factors. Methodist DeBakey Cardiovasc. J. 2025, 21, 121–128. [Google Scholar] [CrossRef]
- De Franciscis, P.; Schiattarella, A.; Colacurci, N.; Riemma, G.; La Verde, M.; Schiattarella, A.; Cobellis, L. Metabolic syndrome and menopause: Pathophysiology and therapeutic perspectives. Int. J. Mol. Sci. 2023, 24, 4704. [Google Scholar]
- Avis, N.E.; Crawford, S.L.; Greendale, G.A.; Bromberger, J.T.; Gold, E.B.; Hess, R.; Joffe, H.; Kravitz, H.M.; Tepper, P.G.; Thurston, R.C. The importance of female reproductive history on self-reported sleep quality, mood, and urogenital symptoms in midlife. Menopause 2023, 30, 234–243. [Google Scholar] [CrossRef]
- Choi, Y.J.; Kim, G.S.; Chu, S.H.; Lee, K.H.; Park, C.G.; Sohn, M. Metabolic syndrome clustering patterns and the association with cardiovascular disease among postmenopausal Korean women. Sci. Rep. 2024, 14, 22702. [Google Scholar] [CrossRef] [PubMed]
- Mundhra, R.; Kumari, A.; Singh, N.; Sharma, P. Relationship between metabolic syndrome and mental disorders among older women. J. Midlife Health 2024, 15, 245–252. [Google Scholar]
- Escobedo, J.; Schargrodsky, H.; Champagne, B.; Silva, H.; Boissonnet, C.P.; Vinueza, R.; Torres, M.; Hernandez, R.; Wilson, E. Prevalence of the metabolic syndrome in Latin America and its association with sub-clinical carotid atherosclerosis: The CARMELA cross-sectional study. Cardiovasc. Diabetol. 2009, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, L.; Liu, C.; Wang, H.; Li, J.; Chen, X.; Zhao, Q.; Huang, Y. The association between the uric acid to HDL cholesterol ratio (UHR) index and abdominal obesity in postmenopausal women. Lipids Health Dis. 2025, 24, 95. [Google Scholar] [CrossRef] [PubMed]
- Baneu, C.; Văcărescu, C.; Drăgan, S.-R.; Cirin, L.; Lazăr-Höcher, A.-I.; Cozgarea, A.; Faur-Grigori, A.-A.; Crișan, S.; Gaiță, D.; Luca, C.-T.; et al. The Triglyceride/HDL Ratio as a Surrogate Biomarker for Insulin Resistance. Biomedicines 2024, 12, 1493. [Google Scholar] [CrossRef]
- Cota e Souza, L.A.; D’Angelo, G.C.D.O.; da Silva, G.N.; Lima, A.A. Uric acid level in climacteric women and its association with metabolic syndrome. Sci. Rep. 2023, 13, 8475. [Google Scholar] [CrossRef]
- Deshpande, N.; Rao, T.S.S. Psychological Changes at Menopause: Anxiety, Mood Swings, and Sexual Health in the Biopsychosocial Context. J. Psychosexual Health 2025, 7, 11–14. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using GPower 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2020, 52, 1061–1070. [Google Scholar]
- González-Ramírez, M.T.; Rodríguez-Ayán, M.N.; Landero Hernández, R. The Perceived Stress Scale: Normative data for a large-scale sample in Mexico. Span. J. Psychol. 2013, 16, E47. [Google Scholar] [CrossRef]
- Arnáez, S.; Sanz-Barbero, B.; Otero-García, L. Validation of the Spanish Short Health Anxiety Inventory (SHAI) in general and clinical populations. Int. J. Environ. Res. Public Health 2019, 16, 2920. [Google Scholar]
- Huerta-Franco, M.R.; Vargas-Luna, M.; Somoza, X.; Delgadillo-Holtfort, I.; Balleza-Ordaz, M.; Kashina, S. Gastric responses to acute psychological stress in climacteric women: A pilot study. Menopause 2019, 26, 469–475. [Google Scholar] [CrossRef]
- International Diabetes Federation (IDF). The IDF Consensus Worldwide Definition of the Metabolic Syndrome; International Diabetes Federation: Brussels, Belgium, 2006; Available online: https://idf.org/media/uploads/2023/05/attachments-30.pdf (accessed on 1 February 2025).
- Leeners, B.; Geary, N.; Tobler, P.N.; Asarian, L. Ovarian hormones and obesity. Hum. Reprod. Update 2017, 23, 300–321. [Google Scholar] [CrossRef]
- Mešalić, L.; Begic, Z.; Dervisefendic, M.; Sokolovic, S. Correlation of Body Mass Index and Waist-Hip Ratio with lipid and hormone profile in women in menopausal transition. J. Health Sci. 2014, 4, 12–18. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, J.; Zhang, W.; Li, Y.; Zhou, Y.; Jiang, Y. General and central obesity are associated with increased severity of menopausal symptoms among postmenopausal women: A cross-sectional study. Front. Endocrinol. 2022, 13, 814872. [Google Scholar]
- Inaraja, V.; Sierra, A.; Larrad, M.T.; Bello, S.; Martínez, M. Lipid profile changes during the menopausal transition. Menopause 2020, 27, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Kim, H.S. Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef] [PubMed]
- Inaraja, V.; Sierra, A.; Martínez, M.; Larrad, M.T.; Bello, S. Fasting plasmatic glucose changes during the menopausal transition. Ginecol. Obstet. Mex. 2020, 88, 162–170. [Google Scholar]
- Lou, Z.; Zhao, F.; Wang, S.; Li, J.; Chen, Y. Relationship between years since menopause and lipid profiles in postmenopausal women. Med. Sci. Monit. 2023, 29, e993928. [Google Scholar]
- Min, S.H.; Kim, J.; Park, S.; Oh, K.; Lee, J. Are there differences in symptoms experienced by midlife climacteric women with and without metabolic syndrome? A scoping review. Womens Health 2022, 18, 17455057221133933. [Google Scholar]
- Fang, Y.; Liu, F.; Zhang, X.; Chen, L.; Liu, Y.; Yang, L.; Zheng, X.; Liu, J.; Li, K.; Li, Z. Mapping global prevalence of menopausal symptoms among middle-aged women: A systematic review and meta-analysis. BMC Public Health 2024, 24, 1767. [Google Scholar] [CrossRef]
- Jia, Y.; Zhou, Z.; Xiang, F.; Hu, W.; Cao, X. Global prevalence of depression in menopausal women: A systematic review and meta-analysis. J. Affect. Disord. 2024, 358, 474–482. [Google Scholar] [CrossRef]
- Pérez-López, F.R.; Chedraui, P.; Cuadros-López, J.L. Stress, mood, and cardiometabolic risk in menopausal women: An integrative perspective. Maturitas 2022, 158, 34–42. [Google Scholar]
- Bromberger, J.T.; Kravitz, H.M. Mood and menopause: Findings from the Study of Women’s Health Across the Nation (SWAN). Obstet. Gynecol. Clin. N. Am. 2011, 38, 609–625. [Google Scholar] [CrossRef]
- Flückiger, O.; Krannich, A.; Recknagel, P.; Leiter, M.; Stix-Steinwald, T.; Poggio, E.; Hillen, C.; Nachtigall, I. Women’s Self-Assessment of Quality of Life and Menopausal Symptoms: An Online Survey of 26,000 Women in German-Speaking Countries. Int. J. Environ. Res. Public Health 2025, 22, 1502. [Google Scholar] [CrossRef]
- Kuck, M.J.; Hogervorst, E. Stress, depression, and anxiety: Psychological complaints across different menopausal stages. Front. Psychiatry 2024, 15, 1323743. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Chen, Y.; Wang, H.; Liu, Q.; Zhao, Y.; Kim, H.; Lee, S. Association between perceived life stress and subjective well-being among perimenopausal women: A nationwide study of middle-aged menopausal women in Korea. PeerJ 2022, 10, e12787. [Google Scholar] [CrossRef]
- Roa-Díaz, Z.M.; Raguindin, P.F.; Bano, A.; Laine, J.E.; Muka, T.; Glisic, M. Menopause and cardiometabolic diseases: What we (don’t) know and why it matters. Maturitas 2021, 152, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Hedgeman, E.; Hasson, R.E.; Karvonen-Gutierrez, C.A.; Herman, W.H.; Harlow, S.D. Perceived stress across the midlife: Longitudinal changes among a diverse sample of women, the Study of Women’s Health Across the Nation (SWAN). Women’s Midlife Health 2018, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Gubbi, S.; Quinn, D.; Goncalves, E.; Higashi, Y.; Clark, R.V.; Reisin, E. Glucocorticoids and HPA axis regulation in the stress–obesity relationship: Mechanisms linking chronic stress to obesity and cardiometabolic disease. Clin. Obes. 2023, 13, 1–10. [Google Scholar]
- Lei, A.A.; Phang, V.W.X.; Lee, Y.Z.; Kow, A.S.F.; Tham, C.L.; Ho, Y.-C.; Lee, M.T. Chronic stress-associated depressive disorders: The impact of HPA axis dysregulation and neuroinflammation on the hippocampus—A mini review. Int. J. Mol. Sci. 2025, 26, 2940. [Google Scholar] [CrossRef]
- Schlaich, M.P.; Sobotka, P.A.; Krum, H.; Lambert, E.; Esler, M. Sympathetic overactivity, hypertension and cardiovascular disease. J. Hum. Hypertens. 2024, 38, 413–422. [Google Scholar]
- Grassi, G.; Seravalle, G.; Dell’Oro, R. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 1999, 34, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Geer, E.B.; Shen, W. Mechanisms of glucocorticoid-induced insulin resistance. Endocr. Metab. Clin. N. Am. 2014, 43, 75–102. [Google Scholar] [CrossRef] [PubMed]
- Cawthorn, W.P.; Sethi, J.K. TNF-α and adipocyte biology. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1282–E1293. [Google Scholar] [CrossRef]
- Zhu, B.T. Estrogen: The forgotten player in metaflammation. Front. Pharmacol. 2024, 15, 1478819. [Google Scholar] [CrossRef]
- Herrera, A.Y.; Nielsen, S.E.; Mather, M. Actions and interactions of estradiol and glucocorticoids in the brain and body. Neurosci. Biobehav. Rev. 2015, 58, 112–131. [Google Scholar]

| Variable | PERIM (n = 75) | Early PM (n = 75) | Late PM (n = 75) | Total (n = 225) | Test (Global) |
|---|---|---|---|---|---|
| Age (years) | 44 ± 5 | 52 ± 3 | 57 ± 5 | 51 ± 7 | F = 142.33, p < 0.001 |
| BMI (kg/m2) | 32.7 ± 4.6 | 29.6 ± 4.6 | 29.2 ± 4.4 | 30.5 ± 4.8 | F = 13.39, p < 0.001 |
| Waist/hip ratio | 0.91 ± 0.05 | 0.89 ± 0.06 | 0.87 ± 0.09 | 0.89 ± 0.07 | F = 6.34, p = 0.002 |
| No. (%) | No. (%) | No. (%) | No. (%) | ||
| Education level | χ2 = 11.08, p = 0.09 | ||||
| Illiterate | 3 (4.0) | 2 (2.7) | 8 (10.7) | 13 (5.8) | |
| Middle school | 34 (45.3) | 24 (32.0) | 30 (40.0) | 88 (39.1) | |
| High school | 14 (18.7) | 11 (14.7) | 9 (12.0) | 34 (15.1) | |
| Bachelor/Professional | 24 (32.0) | 38 (50.7) | 28 (37.3) | 90 (40.0) | |
| Occupation | χ2 = 2.72, p = 0.260 | ||||
| Housewife | 49 (65.3) | 47 (62.7) | 56 (74.7) | 152 (67.6) | |
| Worker | 26 (34.7) | 28 (37.3) | 19 (25.3) | 73 (32.4) |
| Variable | Category | PERIM (n = 75) | Early PM (n = 75) | Late PM (n = 75) | χ2, p-Value |
|---|---|---|---|---|---|
| Glucose (mg/dL) | Normal | 24 (32.0) | 40 (53.3) | 33 (44.0) | χ2 = 14.2, p = 0.001 |
| High | 38 (50.7) | 17 (22.7) | 17 (22.7) | ||
| Total Chlt (mg/dL) | Low | 36 (48.0) | 19 (25.3) | 24 (32.0) | χ2 = 9.62, p = 0.047 |
| Normal | 18 (24.0) | 22 (29.3) | 19 (25.3) | ||
| High | 21 (28.0) | 34 (45.3) | 32 (42.7) | ||
| HDL-Chlt (mg/dL) | Low | 10 (13.3) | 6 (8.0) | 10 (13.3) | χ2 = 14.0, p = 0.007 |
| Normal | 56 (74.7) | 41 (54.7) | 49 (65.3) | ||
| High | 9 (12.0) | 28 (37.3) | 16 (21.3) | ||
| Non-HDL Chlt (mg/dL) | Normal | 67 (89.3) | 56 (74.4) | 57 (76.0) | χ2 = 17.4, p = 0.008 |
| Borderline | 8 (10.7) | 16 (21.3) | 12 (16.0) | ||
| High risk | 0 (0.0) | 3 (4.0) | 1 (1.3) | ||
| Very high risk | 0 (0.0) | 0 (0.0) | 5 (6.7) | ||
| Triglycerides (mg/dL) | Normal | 27 (36.0) | 35 (46.7) | 27 (36.0) | χ2 = 7.33, p = 0.29 |
| High limit | 23 (30.7) | 25 (33.3) | 21 (28.0) | ||
| High | 24 (32.0) | 15 (20.0) | 27 (36.0) | ||
| Very high | 1 (1.3) | 0 (0.0) | 0 (0.0) | ||
| SHT | Negative | 34 (45.3) | 35 (46.7) | 24 (32.0) | χ2 = 4.07, p = 0.13 |
| Positive | 41 (54.7) | 40 (53.3) | 51 (68.0) | ||
| T2DM | Negative | 16 (21.3) | 19 (25.3) | 13 (17.3) | χ2 = 1.43, p = 0.49 |
| Positive | 59 (78.7) | 56 (74.7) | 62 (82.7) |
| Variable | PERIM (n = 75) | Early PM (n = 75) | Late PM (n = 75) | χ2, p-Value |
|---|---|---|---|---|
| Perceived stress (range 0–64) | χ2 = 10.68, p = 0.005 | |||
| Do not present stress | 49 (65.3) | 29 (38.7) | 39 (52.0) | |
| Present stress | 26 (34.7) | 46 (61.3) | 36 (48.0) | |
| Depressed mood (range 0–26) | χ2 = 3.02, p = 0.55 | |||
| Mild | 61 (81.3) | 63 (84.0) | 64 (85.3) | |
| Moderate | 14 (18.7) | 10 (13.3) | 10 (13.3) | |
| Severe | 0 (0.0) | 2 (2.7) | 1 (1.3) | |
| Anxiety (range 0–18) | χ2 = 2.55, p = 0.636 | |||
| Mild | 41 (54.7) | 34 (45.3) | 38 (50.7) | |
| Moderate | 21 (28.0) | 30 (40.0) | 24 (32.0) | |
| Severe | 13 (17.3) | 11 (14.7) | 13 (17.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Barajas, M.; García-Pérez, M.; Córdova-Fraga, T.; Huerta-Franco, M.-R. Clinical, Biochemical, and Psychological Predictors of Metabolic Syndrome in Climacteric Women. Healthcare 2025, 13, 3214. https://doi.org/10.3390/healthcare13243214
Sánchez-Barajas M, García-Pérez M, Córdova-Fraga T, Huerta-Franco M-R. Clinical, Biochemical, and Psychological Predictors of Metabolic Syndrome in Climacteric Women. Healthcare. 2025; 13(24):3214. https://doi.org/10.3390/healthcare13243214
Chicago/Turabian StyleSánchez-Barajas, Mauricio, Marysol García-Pérez, Teodoro Córdova-Fraga, and María-Raquel Huerta-Franco. 2025. "Clinical, Biochemical, and Psychological Predictors of Metabolic Syndrome in Climacteric Women" Healthcare 13, no. 24: 3214. https://doi.org/10.3390/healthcare13243214
APA StyleSánchez-Barajas, M., García-Pérez, M., Córdova-Fraga, T., & Huerta-Franco, M.-R. (2025). Clinical, Biochemical, and Psychological Predictors of Metabolic Syndrome in Climacteric Women. Healthcare, 13(24), 3214. https://doi.org/10.3390/healthcare13243214

