Fine-Tuning Large Language Models for Effective Nutrition Support in Residential Aged Care: A Domain Expertise Approach
Abstract
1. Introduction
1.1. Electronic Health Records
1.2. Natural Language Processing
1.3. Large Language Models
1.4. RoBERTa
1.5. Objective
1.6. Organisation of the Paper
2. Methodology
2.1. Dataset
2.2. Data Cleaning
2.3. Overview of the Methodology
2.4. Path 1: Pre-Training Domain-Specific Embedding Model
2.4.1. Dataset Construction
2.4.2. Model Pre-Training
2.5. Path 2: Downstream Task 1: Fine-Tuning a Malnutrition Note Identification Model
2.5.1. Dataset Construction
2.5.2. Model Fine-Tuning
2.6. Path 3: Downstream Task 2: Fine-Tuning a Malnutrition Prediction Model
2.6.1. Dataset Organisation
2.6.2. Model Fine-Tuning
2.6.3. Addressing the 512 Maximum Length Challenge
2.7. Downstream Task Evaluation
2.8. Statistical Analysis
3. Result
4. Discussion
Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dent, E.; Wright, O.R.L.; Woo, J.; Hoogendijk, E.O. Malnutrition in older adults. Lancet 2023, 401, 951–966. [Google Scholar] [CrossRef]
- Correia, M.I.T.D.; Waitzberg, D.L. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin. Nutr. 2003, 22, 235–239. [Google Scholar] [CrossRef]
- Edington, J.; Boorman, J.; Durrant, E.R.; Perkins, A.; Giffin, C.V.; James, R.; Thomson, J.M.; Oldroyd, J.C.; Smith, J.C.; Torrance, A.D.; et al. Prevalence of malnutrition on admission to four hospitals in England. Clin. Nutr. 2000, 19, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Stratton, R.J.; King, C.L.; Stroud, M.A.; Jackson, A.A.; Elia, M. ‘Malnutrition Universal Screening Tool’ predicts mortality and length of hospital stay in acutely ill elderly. Br. J. Nutr. 2006, 95, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Aged care-Australian Institute of Health and Welfare. Available online: https://www.aihw.gov.au/reports/older-people/older-australians/contents/aged-care (accessed on 10 March 2019).
- Dent, E.; Hoogendijk, E.O.; Visvanathan, R.; Wright, O.R.L. Malnutrition Screening and Assessment in Hospitalised Older People: A Review. J. Nutr. Health Aging 2019, 23, 431–441. [Google Scholar] [CrossRef]
- Kellett, J.; Kyle, G.; Itsiopoulos, C.; Naunton, M. Nutrition screening practices amongst australian Residential Aged Care Facilities. J. Nutr. Health Aging 2016, 20, 1040–1044. [Google Scholar] [CrossRef]
- Amarantos, E.; Martinez, A.; Dwyer, J. Nutrition and quality of life in older adults. J. Gerontol. Ser. A 2001, 56 (Suppl. S2), 54–64. [Google Scholar] [CrossRef]
- Yu, P.; Qian, S. Developing a theoretical model and questionnaire survey instrument to measure the success of electronic health records in residential aged care. PLoS ONE 2018, 13, e0190749. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Yu, P.; Hailey, D. The quality of paper-based versus electronic nursing care plan in Australian aged care homes: A documentation audit study. Int. J. Med. Inform. 2015, 84, 561–569. [Google Scholar] [CrossRef]
- Xiong, X.; Sweet, S.M.; Liu, M.; Hong, C.; Bonzel, C.L.; Panickan, V.A.; Zhou, D.; Wang, L.; Costa, L.; Ho, Y.L.; et al. Knowledge-driven online multimodal automated phenotyping system. medRxiv 2023. [Google Scholar] [CrossRef]
- Graham, S.; Depp, C.; Lee, E.E.; Nebeker, C.; Tu, X.; Kim, H.C.; Jeste, D.V. Artificial Intelligence for Mental Health and Mental Illnesses: An Overview. Curr. Psychiatry Rep. 2019, 21, 116. [Google Scholar] [CrossRef]
- Iqbal, E.; Mallah, R.; Rhodes, D.; Wu, H.; Romero, A.; Chang, N.; Dzahini, O.; Pandey, C.; Broadbent, M.; Stewart, R.; et al. ADEPt, a semantically-enriched pipeline for extracting adverse drug events from free-text electronic health records. PLoS ONE 2017, 12, e0187121. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Sohn, S.; Therneau, T.M.; Liu, H.; Knopman, D.S. Automatic extraction and assessment of lifestyle exposures for Alzheimer’s disease using natural language processing. Int. J. Med. Inform. 2019, 130, 103943. [Google Scholar] [CrossRef]
- Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. [Google Scholar] [CrossRef]
- Tao, C.; Filannino, M.; Uzuner, Ö. Prescription extraction using CRFs and word embeddings. J. Biomed. Inform. 2017, 72, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhong, B.; Medjdoub, B.; Xing, X.; Jiao, L. An Ontological Metro Accident Case Retrieval Using CBR and NLP. Appl. Sci. 2020, 10, 5298. [Google Scholar] [CrossRef]
- Gupta, P.; Malhotra, P.; Narwariya, J.; Vig, L.; Shroff, G. Transfer Learning for Clinical Time Series Analysis Using Deep Neural Networks. J. Healthc. Inform. Res. 2020, 4, 112–137. [Google Scholar] [CrossRef] [PubMed]
- Alsentzer, E.; Murphy, J.R.; Boag, W.; Wang, W.-H.; Jin, D.; Naumann, T.; McDermott, M.B.A. Publicly Available Clinical BERT Embeddings. arXiv 2019, arXiv:1904.03323. [Google Scholar] [CrossRef]
- Chen, T.L.; Emerling, M.; Chaudhari, G.R.; Chillakuru, Y.R.; Seo, Y.; Vu, T.H.; Sohn, J.H. Domain specific word embeddings for natural language processing in radiology. J. Biomed. Inform. 2021, 113, 103665. [Google Scholar] [CrossRef]
- Chiang, C.C.; Luo, M.; Dumkrieger, G.; Trivedi, S.; Chen, Y.C.; Chao, C.J.; Schwedt, T.J.; Sarker, A.; Banerjee, I. A large language model-based generative natural language processing framework finetuned on clinical notes accurately extracts headache frequency from electronic health records. medRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Li, M.; Delk, M.B.; Lai, J.C. A comparison of large language model versus manual chart review for extraction of data elements from the electronic health record. medRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Wornow, M.; Xu, Y.; Thapa, R.; Patel, B.; Steinberg, E.; Fleming, S.; Pfeffer, M.A.; Fries, J.; Shah, N.H. The shaky foundations of large language models and foundation models for electronic health records. NPJ Digit. Med. 2023, 6, 135. [Google Scholar] [CrossRef]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa- A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692. [Google Scholar] [CrossRef]
- Zhong, Q.; Ding, L.; Liu, J.; Du, B.; Tao, D. Can ChatGPT Understand Too? A Comparative Study on ChatGPT and Fine-tuned BERT. arXiv 2023, arXiv:2302.10198. [Google Scholar] [CrossRef]
- Amin, M.M.; Cambria, E.; Schuller, B.W. Will Affective Computing Emerge From Foundation Models and General Artificial Intelligence? A First Evaluation of ChatGPT. IEEE Intell. Syst. 2023, 38, 15–23. [Google Scholar] [CrossRef]
- Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv 2023, arXiv:2307.09288. [Google Scholar] [CrossRef]
- Naveed, H.; Ullah Khan, A.; Qiu, S.; Saqib, M.; Anwar, S.; Usman, M.; Akhtar, N.; Barnes, N.; Mian, A. A Comprehensive Overview of Large Language Models. arXiv 2023, arXiv:2307.06435. [Google Scholar] [CrossRef]
- Savage, T.; Wang, J.; Shieh, L. A large language model screening tool to target patients for best practice alerts: Development and validation. JMIR Med. Inform. 2023, 11, e49886. [Google Scholar] [CrossRef]
- Li, F.; Jin, Y.; Liu, W.; Rawat, B.P.S.; Cai, P.; Yu, H. Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)–Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study. JMIR Med. Inform. 2019, 7, e14830. [Google Scholar] [CrossRef]
- Wolfe, T.; Debut, L.; Sanh, V.; Chaumond, J.; Rush, A. Transformers: State-of-the-Art Natural Language Processing. In Proceedings of the EMNLP (Systems Demonstrations), Online, 16–18 November 2020. [Google Scholar]
- Dai, Y.; Li, L.; Zhou, C.; Feng, Z.; Zhao, E.; Qiu, X.; Li, P.; Tang, D. Is Whole Word Masking Always Better for Chinese BERT?”- Probing on Chinese Grammatical Error Correction. arXiv 2022, arXiv:2203.00286. [Google Scholar] [CrossRef]
- Alkhalaf, M.; Zhang, Z.; Chang, H.-C.R.; Wei, W.; Yin, M.; Deng, C.; Yu, P. Malnutrition and its contributing factors for older people living in residential aged care facilities: Insights from natural language processing of aged care records. Technol. Health Care 2023, 31, 2267–2278. [Google Scholar]
- Alkhalaf, M.; Zhang, Z.; Chang, H.-C.; Wei, W.; Yin, M.; Deng, C.; Yu, P. Malnutrition and its contributing factors for older people living in residential aged care facilities: Insights from natural language processing of aged care records. Technol. Health Care 2023, Preprint, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dodge, J.; Ilharco, G.; Schwartz, R.; Farhadi, A.; Hajishirzi, H.; Smith, N. Fine-Tuning Pretrained Language Models- Weight Initializations, Data Orders, and Early Stopping. arXiv 2020, arXiv:2002.06305. [Google Scholar] [CrossRef]
- Chen, T.; Dredze, M.; Weiner, J.P.; Hernandez, L.; Kimura, J.; Kharrazi, H. Extraction of Geriatric Syndromes From Electronic Health Record Clinical Notes: Assessment of Statistical Natural Language Processing Methods. JMIR Med. Inform. 2019, 7, e13039. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P.; Ott, M.; Du, J.; Stoyanov, V. Pretrained Language Models for Biomedical and Clinical Tasks-Understanding and Extending the State-of-the-Art. In Proceedings of the 3rd Clinical Natural Language Processing Workshop, Online, 13 September 2020; pp. 146–157. [Google Scholar]
- Lin, C.H.; Hsu, K.C.; Liang, C.K.; Lee, T.H.; Liou, C.W.; Lee, J.D.; Peng, T.I.; Shih, C.S.; Fann, Y.C. A disease-specific language representation model for cerebrovascular disease research. Comput. Methods Programs Biomed. 2021, 211, 106446. [Google Scholar] [CrossRef]
- Agarwal, E.; Miller, M.; Yaxley, A.; Isenring, E. Malnutrition in the elderly: A narrative review. Maturitas 2013, 76, 296–302. [Google Scholar] [CrossRef]
- Park, E.; Cavazos, J.; Alvarez, M.A. Using graph-based program characterization for predictive modeling. In Proceedings of the Tenth International Symposium on Code Generation and Optimization, San Jose, CA, USA, 31 March–2 April 2012; pp. 196–206. [Google Scholar]
Well-Nourished (n = 3204) | Malnourished (n = 1201) | |
---|---|---|
Age | Mean (SD) | Mean (SD) |
85.2 (8.9) | 85.1 (8.9) | |
Female | 2071 (74%) | 726 (26%) |
Male | 1133 (70%) | 475 (30%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhalaf, M.; Vithanage, D.; Shen, J.; Chang, H.C.; Deng, C.; Yu, P. Fine-Tuning Large Language Models for Effective Nutrition Support in Residential Aged Care: A Domain Expertise Approach. Healthcare 2025, 13, 2614. https://doi.org/10.3390/healthcare13202614
Alkhalaf M, Vithanage D, Shen J, Chang HC, Deng C, Yu P. Fine-Tuning Large Language Models for Effective Nutrition Support in Residential Aged Care: A Domain Expertise Approach. Healthcare. 2025; 13(20):2614. https://doi.org/10.3390/healthcare13202614
Chicago/Turabian StyleAlkhalaf, Mohammad, Dinithi Vithanage, Jun Shen, Hui Chen (Rita) Chang, Chao Deng, and Ping Yu. 2025. "Fine-Tuning Large Language Models for Effective Nutrition Support in Residential Aged Care: A Domain Expertise Approach" Healthcare 13, no. 20: 2614. https://doi.org/10.3390/healthcare13202614
APA StyleAlkhalaf, M., Vithanage, D., Shen, J., Chang, H. C., Deng, C., & Yu, P. (2025). Fine-Tuning Large Language Models for Effective Nutrition Support in Residential Aged Care: A Domain Expertise Approach. Healthcare, 13(20), 2614. https://doi.org/10.3390/healthcare13202614