The Effects of Endurance Training and High-Intensity Resistance Training on Pulse Wave Velocity and QT Dispersion
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- La Gerche, A.; Wasfy, M.M.; Brosnan, M.J.; Claessen, G.; Fatkin, D.; Heidbuchel, H.; Baggish, A.L.; Kovacic, J.C. The Athlete’s Heart—Challenges and Controversies. J. Am. Coll. Cardiol. 2022, 80, 1346–1362. [Google Scholar] [CrossRef] [PubMed]
- Szabo, L.; Brunetti, G.; Cipriani, A.; Juhasz, V.; Graziano, F.; Hirschberg, K.; Dohy, Z.; Balla, D.; Drobni, Z.; Marra, M.P.; et al. Certainties and Uncertainties of Cardiac Magnetic Resonance Imaging in Athletes. J. Cardiovasc. Dev. Dis. 2022, 9, 361. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.W.; Kim, J.H.; Shah, A.B.; Phelan, D.; Emery, M.S.; Wasfy, M.M.; Fernandez, A.B.; Bunch, T.J.; Dean, P.; Danielian, A. Exercise-induced cardiovascular adaptations and approach to exercise and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2021, 78, 1453–1470. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, H.; Cooper, R.; George, K.P.; Augustine, D.X.; Malhotra, A.; Paton, M.F.; Robinson, S.; Oxborough, D. The athlete’s heart: Insights from echocardiography. Echo Res. Pract. 2023, 10, 15. [Google Scholar] [CrossRef]
- Nelson, K.; La Rocca, G. Left Ventricular Hypetrophy in Athletes: Elucidating the Gray Zone Through cMRI Tissue Characterization Beyond LGE; American College of Cardiology: Washington, DC, USA, 2024. [Google Scholar]
- Weberruß, H.; Baumgartner, L.; Mühlbauer, F.; Shehu, N.; Oberhoffer-Fritz, R. Training intensity influences left ventricular dimensions in young competitive athletes. Front. Cardiovasc. Med. 2022, 9, 961979. [Google Scholar] [CrossRef]
- Peterson, D.F.; Kucera, K.; Thomas, L.C.; Maleszewski, J.; Siebert, D.; Lopez-Anderson, M.; Zigman, M.; Schattenkerk, J.; Harmon, K.G.A.; Drezner, J. Aetiology and incidence of sudden cardiac arrest and death in young competitive athletes in the USA: A 4-year prospective study. Br. J. Sports Med. 2020, 55, 1196–1203. [Google Scholar] [CrossRef]
- Zorzi, A.; Vio, R.; Bettella, N.; Corrado, D. Criteria for interpretation of the athlete’s ECG: A critical appraisal. Pacing Clin. Electrophysiol. 2020, 43, 882–890. [Google Scholar] [CrossRef]
- Petek, B.J.; Churchill, T.W.; Moulson, N.; Kliethermes, S.A.; Baggish, A.L.; Drezner, J.A.; Patel, M.R.; Ackerman, M.J.; Kucera, K.L.; Siebert, D.M.; et al. Sudden Cardiac Death in National Collegiate Athletic Association Athletes: A 20-Year Study. Circulation 2024, 149, 80–90. [Google Scholar] [CrossRef]
- Haarala, A.; Kähönen, E.; Koivistoinen, T.; Pälve, K.; Hulkkonen, J.; Tikkakoski, A.; Sipilä, K.; Raitakari, O.T.; Lehtimäki, T.; Kähönen, M.; et al. Pulse wave velocity is related to exercise blood pressure response in young adults. The Cardiovascular Risk in Young Finns Study. Blood Press. 2020, 29, 256–263. [Google Scholar] [CrossRef]
- Möstl, S.; Hoffmann, F.; Hönemann, J.N.; Alvero-Cruz, J.R.; Rittweger, J.; Tank, J.; Jordan, J. Utility of estimated pulse wave velocity for assessing vascular stiffness: Comparison of methods. Elife 2022, 11, e73428. [Google Scholar] [CrossRef]
- Granero-Gallegos, A.; González-Quílez, A.; Plews, D.; Carrasco-Poyatos, M. HRV-Based Training for Improving VO2max in Endurance Athletes. A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 7999. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, S.; Vardar, S.A. Mesafe Koşularında Performansı Etkileyen Fizyolojik, Mekanik ve Genetik Farklılıklar. Uludağ Üniversitesi Tıp Fakültesi Derg. 2024, 50, 347–355. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Okamoto, T. Peripheral Arterial Stiffness is Associated with Maximal Oxygen Uptake in Athletes. Int. J. Sports Med. 2023, 44, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Persch, H.; Steinacker, J.M. Echocardiographic Criteria for Athlete’s Heart with Cut-off Parameters and Special Emphasis on the Right Ventricle. Ger. J. Sports Med. Dtsch. Z. Sportmed. 2020, 71, 151–158. [Google Scholar] [CrossRef]
- Lear, A.; Patel, N.; Mullen, C.; Simonson, M.; Leone, V.; Koshiaris, C.; Nunan, D. Incidence of Sudden Cardiac Arrest and Death in Young Athletes and Military Members: A Systematic Review and Meta-Analysis. J. Athl. Train. 2021, 57, 431–443. [Google Scholar] [CrossRef]
- Valizadeh, A.; Soltanabadi, S.; Koushafar, S.; Rezaee, M.; Jahankhah, R. Comparison of QT dispersion in patients with ST elevation acute myocardial infarction (STEMI) before and after treatment by streptokinase versus primary percutaneous coronary intervention (PCI). BMC Cardiovasc. Disord. 2020, 20, 493. [Google Scholar] [CrossRef]
- Akkuş, Y.; Dibeklioğlu, S.E.; Özdemir, R.; Baş, V.N.; Çiçek, M. Evaluation of the Effects of Adolescent Obesity on Electrocardiography and Pulmonary Function Tests. Guncel Pediatr. Curr. Pediatr. 2022, 20, 202–208. [Google Scholar] [CrossRef]
- Dahlberg, P.; Axelsson, K.-J.; Rydberg, A.; Lundahl, G.; Gransberg, L.; Bergfeldt, L. Spatiotemporal repolarization dispersion before and after exercise in patients with long QT syndrome type 1 versus controls: Probing into the arrhythmia substrate. Am. J. Physiol. Circ. Physiol. 2023, 325, H1279–H1289. [Google Scholar] [CrossRef]
- Coyle, E.F. Physiology of exercise: Effects of endurance training on aerobic capacity. Sports Med. 1995, 20, 5–22. [Google Scholar]
- Gençoğlu, C.; Gümüş, H. Direnç Antrenmanı Fizyolojik Yanıtları ve Kuvvet Gelişimi. Dokuz Eylül Üniversitesi Spor Bilim. Derg. 2024, 2, 62–80. [Google Scholar]
- Kazis, L.E.; Anderson, J.J.; Meenan, R.F. Effect Sizes for Interpreting Changes in Health Status. Med. Care 1989, 27, S178–S189. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for The Behavioral Sciences; Psychology Press: New York, NY, USA, 1988; p. 567. [Google Scholar]
- Özdamar, K. Paket Programlar ile İstatistiksel Veri Analizi (Çok Değişkenli Analizler) Kaan Kitabevi; Baskı: Eskişehir, Turkey, 2004. [Google Scholar]
- Harmon, K.G.; Asif, I.M.; Maleszewski, J.J.; Owens, D.S.; Prutkin, J.M.; Salerno, J.C.; Zigman, M.L.; Ellenbogen, R.; Rao, A.L.; Ackerman, M.J.; et al. Response to Letter Regarding Article, “Incidence, Cause, and Comparative Frequency of Sudden Cardiac Death in National Collegiate Athletic Association Athletes: A Decade in Review. Circulation 2016, 133, e447. [Google Scholar] [CrossRef] [PubMed]
- Yalaki, U.C. Hipertrofik Kardiyomiyopati mi? Sporcu Kalbi mi? Turk. Klin. Sports Med. Spec. Top. 2024, 10, 34–40. [Google Scholar]
- Abibillaev, D.; Kocyigit, F. Athletic heart adaptation, pathological hypertrophy and sudden cardiac h death. Hearth Vessel. Transplant. 2020, 4, 55. [Google Scholar] [CrossRef]
- Alhumaid, W.; Small, S.D.; Kirkham, A.A.; Becher, H.; Pituskin, E.; Prado, C.M.; Thompson, R.B.; Haykowsky, M.J.; Paterson, D.I. A Contemporary Review of the Effects of Exercise Training on Cardiac Structure and Function and Cardiovascular Risk Profile: Insights From Imaging. Front. Cardiovasc. Med. 2022, 9, 753652. [Google Scholar] [CrossRef]
- Pinckard, K.; Baskin, K.K.; Stanford, K.I. Effects of Exercise to Improve Cardiovascular Health. Front. Cardiovasc. Med. 2019, 6, 69. [Google Scholar] [CrossRef]
- Han, J.; Lalario, A.; Merro, E.; Sinagra, G.; Sharma, S.; Papadakis, M.; Finocchiaro, G. Sudden Cardiac Death in Athletes: Facts and Fallacies. J. Cardiovasc. Dev. Dis. 2023, 10, 68. [Google Scholar] [CrossRef]
- Drezner, J.; Malhotra, A.; Prutkin, J.M.; Papadakis, M.; Harmon, K.G.; Asif, I.M.; Owens, D.S.; Marek, J.C.; Sharma, S. Return to play with hypertrophic cardiomyopathy: Are we moving too fast? A critical review. Br. J. Sports Med. 2021, 55, 1041–1048. [Google Scholar] [CrossRef]
- Sanghera, A.S.; Singh, N.; Popkave, A. Running Marathons with Blocked Coronary Arteries and Runners’ Risk of Sudden Cardiac Death—Case Report and Review. Optom. Vis. Sci. 2020, 19, 107–109. [Google Scholar] [CrossRef]
- Parry-Williams, G.; Sharma, S. The effects of endurance exercise on the heart: Panacea or poison? Nat. Rev. Cardiol. 2020, 17, 402–412. [Google Scholar] [CrossRef]
- Xiang, K.; Qin, Z.; Zhang, H.; Liu, X. Energy Metabolism in Exercise-Induced Physiologic Cardiac Hypertrophy. Front. Pharmacol. 2020, 11, 1133. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.B.; Esfahani, S.A.; Scalia, I.G.; Farina, J.M.; Pereyra, M.; Barry, T.; Lester, S.J.; Alsidawi, S.; Steidley, D.E.; Ayoub, C.; et al. The Role of Cardiovascular Imaging in the Diagnosis of Athlete’s Heart: Navigating the Shades of Grey. J. Imaging 2024, 10, 230. [Google Scholar] [CrossRef] [PubMed]
- McKinney, J.; Isserow, M.; Wong, J.; Isserow, S.; Moulson, N. New Insights and Recommendations for Athletes With Hypertrophic Cardiomyopathy. Can. J. Cardiol. 2024, 40, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Mantri, N.; Lu, M.; Zaroff, J.G.; Risch, N.; Hoffmann, T.; Oni-Orisan, A.; Lee, C.; Jorgenson, E.; Iribarren, C. QT Interval Dynamics and Cardiovascular Outcomes: A Cohort Study in an Integrated Health Care Delivery System. J. Am. Hearth Assoc. 2021, 10, e018513. [Google Scholar] [CrossRef] [PubMed]
- Hatem, E.; Aslan, O. Ailesel Hiperkolesterolemi Hastalarında Qt Dispersiyonun Değerlendirilmesi. Dicle Med. J. Dicle Tip Derg. 2022, 49, 504–512. [Google Scholar] [CrossRef]
- Takase, B.; Ikeda, T.; Shimizu, W.; Abe, H.; Aiba, T.; Chinushi, M.; Koba, S.; Kusano, K.; Niwano, S.; Takahashi, N.; et al. JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia. J. Arrhythmia 2024, 40, 655–752. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, Y.; Zhao, H.; Wang, A.-L.; Peng, J. Defective recovery of QT dispersion due to no-reflow following acute interventional therapy in patients with ST-segment elevation myocardial infarction. Cardiovasc. Diagn. Ther. 2024, 14, 388–401. [Google Scholar] [CrossRef]
- Boutouyrie, P.; Chowienczyk, P.; Humphrey, J.D.; Mitchell, G.F. Arterial Stiffness and Cardiovascular Risk in Hypertension. Circ. Res. 2021, 128, 864–886. [Google Scholar] [CrossRef]
- Budoff, M.J.; Alpert, B.; Chirinos, J.; Fernhall, B.; Hamburg, N.; Kario, K.; Kullo, I.; Matsushita, K.; Miyoshi, T.; Tanaka, H.; et al. Clinical Applications Measuring Arterial Stiffness: An Expert Consensus for the Application of Cardio-Ankle Vascular Index. Am. J. Hypertens. 2021, 35, 441–453. [Google Scholar] [CrossRef]
- Kim, H.-L. Arterial stiffness and hypertension. Clin. Hypertens. 2023, 29, 31. [Google Scholar] [CrossRef]
- Stone, K.; Veerasingam, D.; Meyer, M.L.; Heffernan, K.S.; Higgins, S.; Bruno, R.M.; Bueno, C.A.; Döerr, M.; Schmidt-Trucksäss, A.; Terentes-Printzios, D.; et al. Reimagining the Value of Brachial-Ankle Pulse Wave Velocity as a Biomarker of Cardiovascular Disease Risk—A Call to Action on Behalf of VascAgeNet. Hypertension 2023, 80, 1980–1992. [Google Scholar] [CrossRef] [PubMed]
- Alpaslan, E.; Taş, S.; Taş, Ü.; Ozpelıt, E. Vazovagal Senkoplu Hastalarda Arteriel Sertlik ve Nabız Dalga Hızının Değerlendirilmesi. Celal Bayar Üniversitesi Sağlık Bilim. Enstitüsü Derg. 2023, 10, 261–264. [Google Scholar] [CrossRef]
- Benas, D.; Kornelakis, M.; Triantafyllidi, H.; Kostelli, G.; Pavlidis, G.; Varoudi, M.; Vlastos, D.; Lambadiari, V.; Parissis, J.; Ikonomidis, I. Pulse wave analysis using the Mobil-O-Graph, Arteriograph and Complior device: A comparative study. Blood Press. 2019, 28, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Tomschi, F.; Ottmann, H.; Bloch, W.; Grau, M.; Predel, H.-G. Brachial and central blood pressure and arterial stiffness in adult elite athletes. Eur. J. Appl. Physiol. 2021, 121, 1889–1898. [Google Scholar] [CrossRef]
- Pelliccia, A.; Borrazzo, C.; Maestrini, V.; D’ascenzi, F.; Caselli, S.; Lemme, E.; Squeo, M.R.; Di Giacinto, B. Determinants of LV mass in athletes: The impact of sport, constitutional traits and cardiovascular risk factors. Eur. J. Appl. Physiol. 2022, 123, 769–779. [Google Scholar] [CrossRef]
- Collier, S.R. Sex differences in the effects of aerobic and anaerobic exercise on blood pressure and arterial stiffness. Gend. Med. 2008, 5, 115–123. [Google Scholar] [CrossRef]
- Erb, E.K.; Humm, S.M.; Kearney, S.G.; Pinzone, A.G.; Kern, M.A.; Kingsley, J.D. Sex Differences in Measures of Wave Reflection and Aortic Arterial Stiffness in Response to Weight Machine Resistance Exercise. Int. J. Exerc. Sci. 2022, 15, 1190. [Google Scholar]
- Durgut, B.Ç.; Eskici, G. Yüksek Şiddetli İnterval Antrenmanin Metabolik Sendrom Üzerindeki Etkisi. Spormetre Beden Eğitimi Ve Spor Bilim. Derg. 2023, 21, 1–20. [Google Scholar]
- Chuprova, S.N.; Melnikova, I.Y. Long QT Syndrome in Young Athletes. Card. Arrhythm. 2023, 3, 41–48. [Google Scholar] [CrossRef]
- Christou, G.A.; Vlahos, A.P.; Christou, K.A.; Mantzoukas, S.; Drougias, C.A.; Christodoulou, D.K. Prolonged QT Interval in Athletes: Distinguishing between Pathology and Physiology. Cardiology 2022, 147, 578–586. [Google Scholar] [CrossRef]
- Stoičkov, V.; Radovanović, D.; Deljanin-Ilić, M.; Perišić, Z.; Pavlović, M.; Tasić, I.; Stoičkov, I.; Golubović, M.; Scanlan, A.T.; Jakovljević, V.; et al. Sport-related differences in QT dispersion and echocardiographic parameters in male athletes. Sci. Rep. 2023, 13, 6770. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Maron, B.A. Revisiting Athlete’s Heart Versus Pathologic Hypertrophy. JACC Cardiovasc. Imaging 2016, 10, 394–397. [Google Scholar] [CrossRef]
- Nakamura, M.; Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 2018, 15, 387–407. [Google Scholar] [CrossRef] [PubMed]
- Schnell, F.; Behar, N.; Carré, F. Long-QT Syndrome and Competitive Sports. Arrhythmia Electrophysiol. Rev. 2018, 7, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lv, Y.; Su, Q.; You, Q.; Yu, L. The effect of aerobic exercise on pulse wave velocity in middle-aged and elderly people: A systematic review and meta-analysis of randomized controlled trials. Front. Cardiovasc. Med. 2022, 9, 960096. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Chen, X.; Li, L. Physical Activity and Arterial Stiffness: A Narrative Review. J. Clin. Hypertens. 2024. early view. [Google Scholar] [CrossRef]
- Saz-Lara, A.; Cavero-Redondo, I.; Á Flvarez-Bueno, C.; Notario-Pacheco, B.; Ruiz-Grao, M.C.; Martínez-Vizcaíno, V. The Acute Effect of Exercise on Arterial Stiffness in Healthy Subjects: A Meta-Analysis. J. Clin. Med. 2021, 10, 291. [Google Scholar] [CrossRef]
- Zaman, S.; Raj, I.S.; Yang, A.W.H.; Lindner, R.; Denham, J. Exercise training reduces arterial stiffness in women with high blood pressure: A systematic review and meta-analysis. J. Hypertens. 2023, 42, 197–204. [Google Scholar] [CrossRef]
Variable | Groups | p | ||
---|---|---|---|---|
Control X ± SD | Endurance X ± SD | Strength X ± SD | ||
Age (yr) | 21.07 ± 1.799 | 20.17 ± 1.913 | 20.75 ± 1.954 | 0.050 |
Height (m) | 1.77 ± 0.041 | 1.75 ± 0.066 | 1.79 ± 0.086 | 0.097 |
Weight (kg) | 78.43 ± 8.716 | 68.87 ± 6.601 | 72.25 ± 13.514 | 0.001 |
BMI (kg/m2) | 24.83 ± 2.229 | 22.47 ± 2.319 | 22.26 ± 3.273 | 0.001 |
Variable | X ± SD | p | Effect Size (d) |
---|---|---|---|
QT dispersion (msn) | 0.016 | ||
Control | 40.67 ± 5.208 | −0.425 | |
Endurance | 44.67 ± 6.288 | 0.205 | |
Strength | 45.5 ± 6.863 | 0.335 | |
QTc (msn) | 0.279 | ||
Control | 391.13 ± 16.334 | 0.123 | |
Endurance | 383.80 ± 17.393 | −0.268 | |
Strength | 392.90 ± 22.893 | 0.218 | |
QT (msn) | 0.404 | ||
Control | 368.10 ± 17.165 | 0.165 | |
Endurance | 360.80 ± 24.616 | −0.183 | |
Strength | 365.20 ± 20.255 | 0.027 |
Variable | X ± SD | p | Effect Size (d) |
---|---|---|---|
PWV (m/s) | 0.458 | ||
Control | 4.98 ± 0.302 | −0.181 | |
Endurance | 5.08 ± 0.381 | 0.120 | |
Strength | 5.06 ± 0.298 | 0.060 | |
Alx (%) | 0.861 | ||
Control | 14.13 ± 7.895 | 0.061 | |
Endurance | 13.70 ± 7.809 | 0.005 | |
Strength | 12.90 ± 7.650 | −0.098 |
Variable | X ± SD | p | Effect Size (d) |
---|---|---|---|
SBP (mmHg) | 121.19 ± 11.158 | 0.031 | |
Control | 117.20 ± 9.799 | −0.358 | |
Endurance | 123.53 ± 11.834 | 0.210 | |
Strength | 123.65 ± 10.825 | 0.220 | |
DBP (mmHg) | 71.15 ± 9.220 | 0.590 | |
Control | 71.30 ± 9.337 | 0.016 | |
Endurance | 71.97 ± 9.122 | 0.089 | |
Strength | 69.70 ± 9.493 | −0.157 | |
MAP (mmHg) | 94 ± 8.251 | 0.308 | |
Control | 92.23 ± 7.546 | −0.215 | |
Endurance | 95.47 ± 8.788 | 0.178 | |
Strength | 94.45 ± 8.351 | 0.05 | |
PP (mmHg) | 50.27 ± 11.761 | 0.039 | |
Control | 46.10 ± 11.562 | −0.355 | |
Endurance | 51.97 ± 11.346 | 0.145 | |
Strength | 54.00 ± 11.314 | 0.317 | |
zSys (mmHg) | 119.45 ± 9.968 | 0.076 | |
Control | 116.43 ± 10.241 | −0.303 | |
Endurance | 122.23 ± 9.435 | 0.279 | |
Strength | 119.80 ± 9.512 | 0.035 | |
zDia (mmHg) | 73.12 ± 8.585 | 0.213 | |
Control | 73.70 ± 6.899 | 0.068 | |
Endurance | 74.47 ± 8.593 | 0.157 | |
Strength | 70.25 ± 10.442 | −0.334 | |
cPP (mmHg) | 46.89 ± 10.962 | 0.021 | |
Control | 42.67 ± 11.211 | −0.385 | |
Endurance | 48.57 ± 8.705 | 0.153 | |
Strength | 50.70 ± 12.014 | 0.348 | |
CO (L/min) | 5.49 ± 0.821 | 0.361 | |
Control | 5.37 ± 0.769 | −0.146 | |
Endurance | 5.47 ± 0.753 | −0.024 | |
Strength | 5.71 ± 0.980 | 0.268 | |
SV (mL) | 72.73 ± 15.545 | 0.327 | |
Control | 70.16 ± 14.597 | −0.165 | |
Endurance | 72.54 ± 14.557 | −0.012 | |
Strength | 76.84 ± 18.095 | 0.264 | |
TVR (s × mg/mL) | 1.05 ± 0.147 | 0.433 | |
Control | 1.05 ± 0.161 | 0.000 | |
Endurance | 1.06 ± 0.122 | 0.068 | |
Strength | 1.01 ± 0.159 | −0.272 |
Variable | Sdpooled | p | Effect Size (d) |
---|---|---|---|
QT dispersion (msn) | |||
Endurance group–Strength group | 1.917 | 0.692 | -0.43 |
Endurance group–Control group | 1.491 | 0.018 | −2.68 |
Strength group–Control group | 1.805 | 0.012 | −2.68 |
SBP (mmHg) | |||
Endurance group–Strength group | 3.304 | 0.814 | 0.00 |
Endurance group–Control group | 2.805 | 0.025 | −2.26 |
Strength group–Control group | 2.950 | 0.025 | −2.19 |
PP (mmHg) | |||
Endurance group–Strength group | 3.272 | 0.811 | −0.62 |
Endurance group–Control group | 2.958 | 0.122 | −1.98 |
Strength group–Control group | 3.310 | 0.049 | −2.39 |
cPP | |||
Endurance group–Strength group | 2.929 | 0.764 | −0.73 |
Endurance group–Control group | 2.591 | 0.084 | −2.28 |
Strength group–Control group | 3.330 | 0.027 | −2.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
İşler, S.; Çoksevim, M.; Akman, T.; Ünver, Ş.; Öner, B.; Bilgici, A. The Effects of Endurance Training and High-Intensity Resistance Training on Pulse Wave Velocity and QT Dispersion. Healthcare 2025, 13, 161. https://doi.org/10.3390/healthcare13020161
İşler S, Çoksevim M, Akman T, Ünver Ş, Öner B, Bilgici A. The Effects of Endurance Training and High-Intensity Resistance Training on Pulse Wave Velocity and QT Dispersion. Healthcare. 2025; 13(2):161. https://doi.org/10.3390/healthcare13020161
Chicago/Turabian Styleİşler, Selma, Metin Çoksevim, Tülin Akman, Şaban Ünver, Burçin Öner, and Ayhan Bilgici. 2025. "The Effects of Endurance Training and High-Intensity Resistance Training on Pulse Wave Velocity and QT Dispersion" Healthcare 13, no. 2: 161. https://doi.org/10.3390/healthcare13020161
APA Styleİşler, S., Çoksevim, M., Akman, T., Ünver, Ş., Öner, B., & Bilgici, A. (2025). The Effects of Endurance Training and High-Intensity Resistance Training on Pulse Wave Velocity and QT Dispersion. Healthcare, 13(2), 161. https://doi.org/10.3390/healthcare13020161