Association Between Chewing Status and Steatotic Liver Disease in Japanese People Aged ≥50 Years: A Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Assessment of SLD
2.4. Assessment of Body Composition
2.5. Assessment of the Serum Hemoglobin A1c (HbA1c) Level, Triglyceride Level, and High-Density Lipoprotein (HDL) Cholesterol Level
2.6. Assessment of Blood Pressure Levels
2.7. Assessment of Chewing Status and Other Items by a Self-Administered Questionnaire
2.8. Statistical Analysis
2.9. Research Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Israelsen, M.; Francque, S.; Tsochatzis, E.; Krag, A. Steatotic liver disease. Lancet 2024, 404, 1761–1778. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, P.; Hellerbrand, C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 637–653. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, Y.; Hyogo, H.; Ono, M.; Mizuta, T.; Ono, N.; Fujimoto, K.; Chayama, K.; Saibara, T. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: A multicenter large retrospective study. J. Gastroenterol. 2012, 47, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Sasamori, N. Nationwide results of the 2008 Ningen Dock. Ningen Dokku 2009, 24, 901–948. [Google Scholar]
- Taniai, M. Epidemiology of NAFLD/NASH. Jpn. Soc. Intern. Med. 2020, 109, 11–18. [Google Scholar] [CrossRef]
- Fujii, H.; Suzuki, Y.; Sawada, K.; Tatsuta, M.; Maeshiro, T.; Tobita, H.; Tsutsumi, T.; Akahane, T.; Hasebe, C.; Kawanaka, M.; et al. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2014 to 2018 in Japan: A large-scale multicenter retrospective study. Hepatol. Res. 2023, 53, 1059–1072. [Google Scholar] [CrossRef]
- Fusillo, S.; Rudolph, B. Nonalcoholic fatty liver disease. Pediatr. Rev. 2015, 36, 198–205. [Google Scholar] [CrossRef]
- Roeb, E. NASH (non-alcoholic steatohepatitis): Fatty liver or fatal liver disease? Zentralbl. Chir. 2014, 139, 168–174. [Google Scholar]
- Wang, Y.; Wang, F.; Bu, Y.; Targher, G.; Byrne, C.; Sun, D.; Zheng, M. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat. Rev. Nephrol. 2022, 18, 259–268. [Google Scholar] [CrossRef]
- Marengo, A.; Rosso, C.; Elisabetta, B. Liver cancer: Connections with obesity, fatty liver, and cirrhosis. Annu. Rev. Med. 2016, 67, 103–117. [Google Scholar] [CrossRef]
- Butera, A.; Gallo, S.; Maiorani, C.; Molino, D.; Chiesa, A.; Preda, C.; Esposito, F.; Scribante, A. Probiotic alternative to chlorhexidine in periodontal therapy: Evaluation of clinical and microbiological parameters. Microorganisms 2020, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Souto-Souza, D.; Soares, M.; Primo-Miranda, E.; Pereira, L.; Ramos-Jorge, M.; Ramos-Jorge, J. The influence of malocclusion, sucking habits and dental caries in the masticatory function of preschool children. Braz. Oral Res. 2020, 34, e059. [Google Scholar] [CrossRef] [PubMed]
- Iwai, K.; Azuma, T.; Yonenaga, T.; Ekuni, D.; Watanabe, K.; Obora, A.; Deguchi, F.; Kojima, T.; Morita, M.; Tomofuji, T. Association between self-reported chewing status and glycemic control in Japanese adults. Int. J. Environ. Res. Public Health 2021, 18, 9548. [Google Scholar] [CrossRef]
- Motokawa, K.; Mikami, Y.; Shirobe, M.; Edahiro, A.; Ohara, Y.; Iwasaki, M.; Watanabe, Y.; Kawai, H.; Kera, T.; Obuchi, S.; et al. Relationship between chewing ability and nutritional status in Japanese older adults: A cross-sectional study. Int. J. Environ. Res. Public Health 2021, 18, 1216. [Google Scholar] [CrossRef]
- Iwai, K.; Azuma, T.; Yonenaga, T.; Sasai, Y.; Watanabe, K.; Deguchi, F.; Obora, A.; Kojima, T.; Tomofuji, T. Relationship between chewing status and fatty liver diagnosed by liver/spleen attenuation ratio: A cross-sectional study. Int. J. Environ. Res. Public Health 2022, 20, 307. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. Standard Health Examination and Health Guidance Program for Fiscal Year 2008. Available online: https://www.mhlw.go.jp/bunya/shakaihosho/iryouseido01/pdf/info02_66.pdf (accessed on 13 March 2025).
- Suzuki, S.; Sano, Y. Guidebook for Specified Health Examination and Specified Health Guidance Leading to Results; Chuohoki: Tokyo, Japan, 2014. [Google Scholar]
- Miyano, T.; Anada, T.; Furuta, M.; Yamashita, Y. Prefectural differences in chewing ability in questionnaire for specific health checkup and exploring related factors. J. Dent. Health 2023, 73, 103–111. [Google Scholar]
- Iyota, K.; Mizutani, S.; Oku, S.; Asao, M.; Futatsuki, T.; Inoue, R.; Imai, Y.; Kashiwazaki, H. A cross-sectional study of age-related changes in oral function in healthy Japanese individuals. Int. J. Environ. Res. Public Health 2020, 17, 1376. [Google Scholar] [CrossRef]
- Japan Society of Gastroenterology. Guidelines for NASH/NAFLD in 2020. Available online: https://www.jsge.or.jp/committees/guideline/guideline/pdf/nafldnash2020.pdf#page=58 (accessed on 29 March 2025).
- Japan Society for the Study of Obesity. Obesity Clinical Practice Guidelines in 2016. Available online: https://www.jstage.jst.go.jp/article/naika/107/2/107_262/_pdf/-char/ja (accessed on 18 March 2025).
- Kawahara, T.; Imawatari, R.; Kawahara, C.; Inazu, T.; Suzuki, G. Incidence of type 2 diabetes in pre-diabetic Japanese individuals categorized by HbA1c levels: A historical cohort study. PLoS ONE 2015, 10, e0122698. [Google Scholar] [CrossRef]
- The International Expert Committee. International expert committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009, 32, 1327–1334. [Google Scholar] [CrossRef]
- Sinha, S.; Das, S.; Vinayagamoorthy, V.; Malik, A.; Tripathy, S.; Nishi. Dyslipidemia among overweight and obese children in Jharkhand: A hospital-based study. Indian Pediatr. 2023, 60, 641–643. [Google Scholar] [CrossRef]
- Kim, J.; Crimmins, E. Blood pressure and mortality: Joint effect of blood pressure measures. J. Clin. Cardiol. Cardiovasc. Ther. 2020, 2, 1009. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Irie, K.; Watanabe, K.; Deguchi, F.; Kojima, T.; Obora, A.; Tomofuji, T. Association between chewing problems and sleep among Japanese adults. Int. J. Dent. 2019, 2019, 8196410. [Google Scholar] [CrossRef] [PubMed]
- Sultan, Q.; Shereen, A.; Estabraq, M.; Jood, S.; Abdelfattah, A.T.; Adil, A. Electronic cigarette among health science students in Saudi Arabia. Ann. Thorac. Med. 2019, 14, 56–62. [Google Scholar]
- Kudo, A.; Asahi, K.; Satoh, H.; Iseki, K.; Moriyama, T.; Yamagata, K.; Tsuruya, K.; Fujimoto, S.; Narita, I.; Konta, T.; et al. Fast eating is a strong risk factor for new-onset diabetes among the Japanese general population. Sci. Rep. 2019, 9, 8210. [Google Scholar] [CrossRef]
- Hamada, Y.; Kashima, H.; Hayashi, N. The number of chews and meal duration affect diet-induced thermogenesis and splanchnic circulation. Obesity 2014, 22, 62–69. [Google Scholar] [CrossRef]
- Morton, J.; Cummings, E.; Baskin, G.; Barsh, S.; Schwartz, W. Central nervous system control of food intake and body weight. Nature 2006, 443, 289–295. [Google Scholar] [CrossRef]
- Sakata, T.; Yoshimatsu, H.; Kurokawa, M. Hypothalamic neuronal histamine: Implications of its homeostatic control of energy metabolism. Nutrition 1997, 13, 403–411. [Google Scholar] [CrossRef]
- Tada, A.; Miura, H. Systematic review of the association of mastication with food and nutrient intake in the independent elderly. Arch. Gerontol. Geriatr. 2014, 59, 497–505. [Google Scholar] [CrossRef]
- Tsai, C.; Chang, L. Association of dental prosthetic condition with food consumption and the risk of malnutrition and follow-up 4-year mortality risk in elderly Taiwanese. J. Nutr. Health Aging 2011, 15, 265–270. [Google Scholar] [CrossRef]
- Yoshida, M.; Kikutani, T.; Yoshikawa, M.; Tsuga, K.; Kimura, M.; Akagawa, Y. Correlation between dental and nutritional status in community-dwelling elderly Japanese. Geriatr. Gerontol. Int. 2011, 11, 315–319. [Google Scholar] [CrossRef]
- Lee, S.; Weyant, J.; Corby, P.; Kritchevsky, B.; Harris, B.; Rooks, R.; Rubin, M.; Newman, B. Edentulism and nutritional status in a biracial sample of well-functioning, community-dwelling elderly: The health, aging, and body composition study. Am. J. Clin. Nutr. 2004, 79, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hsu, W.; Hollis, J. Increasing the number of masticatory cycles is associated with reduced appetite and altered postprandial plasma concentrations of gut hormones, insulin and glucose. Br. J. Nutr. 2013, 110, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Farrell, G.; Schattenberg, J.; Leclercq, I.; Yeh, M.; Goldin, R.; Teoh, N.; Schuppan, D. Mouse models of nonalcoholic steatohepatitis: Toward optimization of their relevance to human nonalcoholic steatohepatitis. Hepatology 2019, 69, 2241–2257. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.; Jung, Y. Potential therapeutic application of estrogen in gender disparity of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Cells 2019, 8, 1259. [Google Scholar] [CrossRef]
- Tatullo, M.; Nor, J.; Orrù, G.; Piattelli, A.; Cascardi, E.; Spagnuolo, G. Oral-Gut-Estrobolome Axis may exert a selective impact on oral cancer. J. Dent. Res. 2024, 103, 461–466. [Google Scholar] [CrossRef]
- Sheng, Z.; Xia, B.; Wu, J.; Zhao, X.; He, X.; Wen, X.; Yuan, C.; Pang, T.; Xu, X. Associations between abdominal obesity, chewing difficulty and cognitive impairment in dementia-free Chinese elderly. Am. J. Alzheimers Dis. Other Demen. 2023, 38, 15333175231167118. [Google Scholar] [CrossRef]
- Pereira, A.; Araujo, D.; Scudine, K.; Prado, D.; Lima, D.; Castelo, P. Chewing in adolescents with overweight and obesity: An exploratory study with behavioral approach. Appetite 2016, 107, 527–533. [Google Scholar] [CrossRef]
- Henrikson, T.; Ekberg, E.; Nilner, M. Can orthodontic treatment improve mastication? A controlled, prospective and longitudinal study. Swed. Dent. J. 2009, 33, 59–65. [Google Scholar]
- Saito, A.; Hosaka, Y.; Kikuchi, M.; Akamatsu, M.; Fukaya, C.; Matsumoto, S.; Ueshima, F.; Hayakawa, H.; Fujinami, K.; Nakagawa, T. Effect of initial periodontal therapy on oral health-related quality of life in patients with periodontitis in Japan. J. Periodontol. 2010, 81, 1001–1009. [Google Scholar] [CrossRef]
- Yanagisawa, T.; Ueno, M.; Shinada, K.; Ohara, S.; Kawaguchi, Y. Validity of self-reported masticatory function in a Japanese population. J. Dent. Health 2010, 60, 214–223. [Google Scholar]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.; Abdelmalek, M.; Suzuki, A. Sex differences in nonalcoholic fatty liver disease: State of the art and identification of research gaps. Hepatology 2019, 70, 1457–1469. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, S.; Kawaguchi, T.; Nakano, D.; Tomiyasu, Y.; Yoshinaga, S.; Doi, Y.; Takahashi, H.; Anzai, K.; Eguchi, Y.; Torimura, T. Prevalence and independent factors for fatty liver and significant hepatic fibrosis using B-mode ultrasound imaging and two dimensional-shear wave elastography in health check-up examinees. Kurume Med. J. 2021, 66, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhu, Z.; Mao, Y.; Xu, Y.; Du, J.; Tang, X.; Cao, H. HbA1c may contribute to the development of non-alcoholic fatty liver disease even at normal-range levels. Biosci. Rep. 2020, 40, BSR20193996. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Nakamura, T.; Dohi, M.; Watanabe, M.; Goromaru, N.; Kanasaki, M.; Shirakashi, M.; Inagawa, M.; Masuda, T.; Takeda, T. Fatty liver has the same background characteristics in those under their ideal weight and the general population. J. Ningen Dock Prev. Med. Care 2024, 39, 440–446. [Google Scholar]
- Saleh, M.; Alfaddagh, A.; Elajami, T.; Ashfaque, H.; Haj, I.H.; Welty, F. Diastolic blood pressure predicts coronary plaque volume in patients with coronary artery disease. Atherosclerosis 2018, 277, 34–41. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, G.; Chen, Z.; She, Z.; Cai, J.; Li, H. Nonalcoholic fatty liver disease: An emerging driver of hypertension. Hypertension 2020, 75, 275–284. [Google Scholar] [CrossRef]
- Trovato, G. Non-alcoholic fatty liver disease and Atherosclerosis at a crossroad: The overlap of a theory of change and bioinformatics. World J. Gastrointest. Pathophysiol. 2020, 11, 57–63. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey Japan 2019. Available online: https://www.mhlw.go.jp/content/001066903.pdf (accessed on 13 March 2025).
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2000. [Google Scholar]
- Faienza, M.; Baima, J.; Cecere, V.; Monteduro, M.; Farella, I.; Vitale, R.; Antoniotti, V.; Urbano, F.; Tini, S.; Lenzi, F.; et al. Fructose intake and unhealthy eating habits are associated with MASLD in pediatric obesity: A cross-sectional pilot study. Nutrients 2025, 17, 631. [Google Scholar] [CrossRef]
Factor | Chewing Status | p-Value * | |
---|---|---|---|
Good (n = 3234) | Poor (n = 541) | ||
Sex a | 1345 (42%) | 275 (50%) | <0.001 * |
Age (years) | 57 (53, 62) | 56 (52, 62) | 0.024 * |
BMI (kg/m2) | 22.0 (20.1, 24.1) | 19.7 (21.6, 23.7) | <0.001 * |
HbA1c level (%) | 5.6 (5.5, 5.9) | 5.7 (5.5, 5.9) | 0.879 |
Triglyceride level (mg/dL) | 81.0 (60.0, 114.0) | 86.0 (64.8, 133.3) | <0.001 * |
HDL cholesterol level (mg/dL) | 72.0 (60.0, 86.0) | 69.0 (57.8, 83.0) | 0.655 |
Smoking habit b | 443 (14%) | 138 (25%) | <0.001 * |
Drinking habit b | 906 (28%) | 198 (37%) | <0.001 * |
Exercise habit b | 1069 (33%) | 171 (32%) | 0.507 |
Physical activity b | 823 (25%) | 124 (23%) | 0.209 |
Systolic blood pressure level (mmHg) | 120 (107, 133) | 114 (102, 128) | <0.001 * |
Diastolic blood pressure level (mmHg) | 75 (67, 84) | 72 (65, 80) | <0.001 * |
Sleep status | |||
Well | 2056 (64%) | 285 (53%) | <0.001 * |
Poor | 1178 (36%) | 256 (47%) | |
Eating speed | |||
Slowly | 275 (8%) | 61 (11%) | 0.098 |
Medium | 1925 (60%) | 318 (59%) | |
Quickly | 1034 (32%) | 162 (30%) | |
Snacking habit | |||
None | 591 (18%) | 93 (17%) | 0.686 |
Sometimes | 1657 (51%) | 274 (51%) | |
Daily | 986 (31%) | 174 (32%) | |
Skipping breakfast habit | |||
<3 times/week | 2939 (91%) | 467 (86%) | <0.001 * |
≥3 times/week | 295 (9%) | 74 (14%) | |
Dinner within 2 h before bedtime habit | |||
<3 times/week | 2496 (77%) | 367 (68%) | <0.001 * |
≥3 times/week | 738 (23%) | 174 (32%) |
Chewing Status at Baseline | p-Value * | |||
---|---|---|---|---|
Good (n = 3234) | Poor (n = 541) | |||
SLD at follow-up | Absence | 2980 (92%) | 477 (88%) | 0.002 * |
Presence | 254 (8%) | 64 (12%) |
Factor | ORs | 95% CIs | p-Value | |
---|---|---|---|---|
Sex | Female | 1 | (reference) | <0.001 |
Male | 2.165 | 1.712–2.738 | ||
Age (years) | 0.968 | 0.948–0.988 | 0.002 | |
BMI (kg/m2) | <25.0 | 1 | (reference) | <0.001 |
≥25.0 | 2.281 | 1.764–2.950 | ||
HbA1c level (%) | <6.5 | 1 | (reference) | 0.550 |
≥6.5 | 0.844 | 0.484–1.472 | ||
Triglyceride level (mg/dL) | <150 | 1 | (reference) | 0.026 |
≥150 | 2.499 | 1.118–5.583 | ||
HDL cholesterol level (mg/dL) | >40 | 1 | (reference) | <0.001 |
≤40 | 2.131 | 1.523–2.983 | ||
Smoking habits | Absence | 1 | (reference) | 0.006 |
Presence | 1.496 | 1.123–1.993 | ||
Drinking habit | Absence | 1 | (reference) | 0.072 |
Presence | 1.251 | 0.980–1.597 | ||
Exercise habit | Presence | 1 | (reference) | 0.054 |
Absence | 1.284 | 0.995–1.657 | ||
Physical activity | Presence | 1 | (reference) | 0.360 |
Absence | 1.136 | 0.865–1.481 | ||
Systolic blood pressure level (mmHg) | 1.007 | 1.001–1.013 | 0.020 | |
Diastolic blood pressure level (mmHg) | 1.019 | 1.010–1.029 | <0.001 | |
Sleep status | Well | 1 | (reference) | 0.038 |
Poor | 1.278 | 1.013–1.613 | ||
Chewing status | Good | 1 | (reference) | 0.002 |
Poor | 1.574 | 1.177–2.105 | ||
Eating speed | Not quickly | 1 | (reference) | 0.508 |
Quickly | 1.086 | 0.851–1.386 | ||
Snacking habit | Not daily | 1 | (reference) | 0.327 |
Daily | 0.881 | 0.683–1.136 | ||
Skipping breakfast habit | <3 times/week | 1 | (reference) | 0.006 |
≥3 times/week | 1.594 | 1.140–2.229 | ||
Dinner within 2 h before bedtime habit | <3 times/week | 1 | (reference) | <0.001 |
≥3 times/week | 1.671 | 1.307–2.136 |
Factor | ORs | 95% CIs | p-Value | |
---|---|---|---|---|
Sex | Female | 1 | (reference) | <0.001 |
Male | 1.806 | 1.399–2.351 | ||
Age (years) | 0.969 | 0.948–0.991 | 0.005 | |
BMI (kg/m2) | <25.0 | 1 | (reference) | <0.001 |
≥25.0 | 1.934 | 1.467–2.549 | ||
Diastolic blood pressure level (mmHg) | 1.017 | 1.002–1.032 | 0.029 | |
Chewing status | Good | 1 | (reference) | 0.012 |
Poor | 1.472 | 1.087–1.994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwai, K.; Ekuni, D.; Azuma, T.; Yonenaga, T.; Tabata, K.; Toyama, N.; Kataoka, K.; Maruyama, T.; Tomofuji, T. Association Between Chewing Status and Steatotic Liver Disease in Japanese People Aged ≥50 Years: A Cohort Study. Healthcare 2025, 13, 1399. https://doi.org/10.3390/healthcare13121399
Iwai K, Ekuni D, Azuma T, Yonenaga T, Tabata K, Toyama N, Kataoka K, Maruyama T, Tomofuji T. Association Between Chewing Status and Steatotic Liver Disease in Japanese People Aged ≥50 Years: A Cohort Study. Healthcare. 2025; 13(12):1399. https://doi.org/10.3390/healthcare13121399
Chicago/Turabian StyleIwai, Komei, Daisuke Ekuni, Tetsuji Azuma, Takatoshi Yonenaga, Koichiro Tabata, Naoki Toyama, Kota Kataoka, Takayuki Maruyama, and Takaaki Tomofuji. 2025. "Association Between Chewing Status and Steatotic Liver Disease in Japanese People Aged ≥50 Years: A Cohort Study" Healthcare 13, no. 12: 1399. https://doi.org/10.3390/healthcare13121399
APA StyleIwai, K., Ekuni, D., Azuma, T., Yonenaga, T., Tabata, K., Toyama, N., Kataoka, K., Maruyama, T., & Tomofuji, T. (2025). Association Between Chewing Status and Steatotic Liver Disease in Japanese People Aged ≥50 Years: A Cohort Study. Healthcare, 13(12), 1399. https://doi.org/10.3390/healthcare13121399