Does Inspiratory Muscle Training Affect Static Balance in Soccer Players? A Pilot Randomized Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomization and Masking
2.4. Interventions
2.4.1. Experimental Group (EG)
2.4.2. Sham Group (SG)
2.5. Measurements
2.5.1. Static Balance
2.5.2. Respiratory Muscle Function
2.6. Data Analysis
3. Results
3.1. Selection Process
3.2. Characteristics of the Participants
3.3. Static Balance
3.4. Respiratory Muscle Function
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paillard, T.; Noe, F.; Riviere, T.; Marion, V.; Montoya, R.; Dupui, P. Postural performance and strategy in the unipedal stance of soccer players at different levels of competition. J. Athl. Train. 2006, 41, 172–176. [Google Scholar] [PubMed]
- Hamaoui, A.; Gonneau, E.; Le Bozec, S. Respiratory disturbance to posture varies according to the respiratory mode. Neurosci. Lett. 2010, 475, 141–144. [Google Scholar] [CrossRef]
- Hamaoui, A.; Hudson, A.L.; Laviolette, L.; Nierat, M.C.; Do, M.C.; Similowski, T. Postural disturbances resulting from unilateral and bilateral diaphragm contractions: A phrenic nerve stimulation study. J. Appl. Physiol. 2014, 117, 825–832. [Google Scholar] [CrossRef] [Green Version]
- Stephens, R.J.; Haas, M.; Moore, W.L.; Emmil, J.R.; Sipress, J.A.; Williams, A. Effects of Diaphragmatic Breathing Patterns on Balance: A Preliminary Clinical Trial. J. Manip. Physiol. Ther. 2017, 40, 169–175. [Google Scholar] [CrossRef]
- Caron, O.; Fontanari, P.; Cremieux, J.; Joulia, F. Effects of ventilation on body sway during human standing. Neurosci. Lett. 2004, 366, 6–9. [Google Scholar] [CrossRef]
- Malakhov, M.; Makarenkova, E.; Melnikov, A. The Influence of Different Modes of Ventilation on Standing Balance of Athletes. Asian J. Sports Med. 2014, 5, e22767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orchard, J. Is there a relationship between ground and climatic conditions and injuries in football? Sports Med. 2002, 32, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, G.P.; Griffin, E.D.; Zurakowski, D. Comparison of standing balance between female collegiate dancers and soccer players. Gait Posture 2007, 26, 501–507. [Google Scholar] [CrossRef]
- Lee, K.; Park, D.; Lee, G. Progressive Respiratory Muscle Training for Improving Trunk Stability in Chronic Stroke Survivors: A Pilot Randomized Controlled Trial. J. Stroke Cerebrovasc. Dis. 2019, 28, 1200–1211. [Google Scholar] [CrossRef]
- Janssens, L.; McConnell, A.K.; Pijnenburg, M.; Claeys, K.; Goossens, N.; Lysens, R.; Troosters, T.; Brumagne, S. Inspiratory muscle training affects proprioceptive use and low back pain. Med. Sci. Sports Exerc. 2015, 47, 12–19. [Google Scholar] [CrossRef]
- Tounsi, B.; Acheche, A.; Lelard, T.; Tabka, Z.; Trabelsi, Y.; Ahmaidi, S. Effects of specific inspiratory muscle training combined with whole-body endurance training program on balance in COPD patients: Randomized controlled trial. PLoS ONE 2021, 16, e0257595. [Google Scholar] [CrossRef]
- Aydoğan-Arslan, S.; Uğurlu, K.; Sakizli-Erdal, E.; Keskin, E.D.; Demirgüç, A. Effects of Inspiratory Muscle Training on Respiratory Muscle Strength, Trunk Control, Balance and Functional Capacity in Stroke Patients: A single-blinded randomized controlled study. Top Stroke Rehabil. 2022, 29, 40–48. [Google Scholar] [CrossRef]
- Rodrigues, G.D.; Gurgel, J.L.; Galdino, I.D.S.; da Nóbrega, A.C.L.; Soares, P.P.D.S. Inspiratory muscle training improves cerebrovascular and postural control responses during orthostatic stress in older women. Eur. J. Appl. Physiol. 2020, 120, 2171–2181. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, F.V.; Gavin, J.P.; Wainwright, T.; McConnell, A. The effects of 8 weeks of inspiratory muscle training on the balance of healthy older adults: A randomized, double-blind, placebo-controlled study. Physiol. Rep. 2019, 7, e14076. [Google Scholar] [CrossRef] [Green Version]
- Hodges, P.W.; Butler, J.E.; McKenzie, D.K.; Gandevia, S.C. Contraction of the human diaphragm during rapid postural adjustments. J. Physiol. 1997, 505, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Gandevia, S.C. Activation of the human diaphragm during a repetitive postural task. J. Physiol. 2000, 522, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Kocjan, J.; Adamek, M.; Gzik-Zroska, B.; Czyżewski, D.; Rydel, M. Network of breathing. Multifunctional role of the diaphragm: A review. Adv. Respir. Med. 2017, 85, 224–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordoni, B.; Zanier, E. Anatomic connections of the diaphragm: Influence of respiration on the body system. J. Multidiscip. Healthc. 2013, 6, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Hodges, P.W.; Heijnen, I.; Gandevia, S.C. Postural activity of the diaphragm is reduced in humans when respiratory demand increases. J. Physiol. 2001, 537, 999–1008. [Google Scholar] [CrossRef]
- León-Morillas, F.; Lozano-Quijada, C.; Lérida-Ortega, M.A.; León-Garzón, M.C.; Ibáñez-Vera, A.J.; Oliveira-Sousa, S.L. Relationship between Respiratory Muscle Function and Postural Stability in Male Soccer Players: A Case-Control Study. Healthcare 2021, 9, 644. [Google Scholar] [CrossRef] [PubMed]
- HajGhanbari, B.; Yamabayashi, C.; Buna, T.R.; Coelho, J.D.; Freedman, K.D.; Morton, T.A.; Palmer, S.A.; Toy, M.A.; Walsh, C.; Sheel, A.W.; et al. Effects of respiratory muscle training on performance in athletes: A systematic review with meta-analyses. J. Strength Cond. Res. 2013, 27, 1643–1663. [Google Scholar] [CrossRef] [PubMed]
- Karsten, M.; Ribeiro, G.S.; Esquivel, M.S.; Matte, D.L. The effects of inspiratory muscle training with linear workload devices on the sports performance and cardiopulmonary function of athletes: A systematic review and meta-analysis. Phys. Ther. Sport 2018, 34, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Guy, J.H.; Edwards, A.M.; Deakin, G.B. Inspiratory muscle training improves exercise tolerance in recreational soccer players without concomitant gain in soccer-specific fitness. J. Strength Cond. Res. 2014, 28, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Najafi, A.; Ebrahim, K.; Ahmadizad, S.; Jahani Ghaeh Ghashlagh, G.R.; Javidi, M.; Hackett, D. Improvements in soccer-specific fitness and exercise tolerance following 8 weeks of inspiratory muscle training in adolescent males. J. Sports Med. Phys. Fitness 2019, 59, 1975–1984. [Google Scholar] [CrossRef]
- Da Silva, H.P.; De Moura, T.S.; Dos Santos Silveira, F. Efeitos do treinamento muscular inspiratório em atletas de Futebol. Rev. Bras. Prescrição E. Fisiol. Exerc. 2018, 12, 616–623. [Google Scholar]
- Nicks, C.R.; Morgan, D.W.; Fuller, D.K.; Caputo, J.L. The influence of respiratory muscle training upon intermittent exercise performance. Int. J. Sports Med. 2009, 30, 16–21. [Google Scholar] [CrossRef]
- Lozano-Quijada, C.; Poveda-Pagán, E.J.; Segura-Heras, J.V.; Hernández-Sánchez, S.; Prieto-Castelló, M.J. Changes in Postural Sway after a Single Global Postural Reeducation Session in University Students: A Randomized Controlled Trial. J. Manipulative Physiol. Ther. 2017, 40, 467–476. [Google Scholar] [CrossRef]
- Morales, P.; Sanchis, J.; Cordero, P.J.; Díez, J.L. Maximum static respiratory pressures in adults. The reference values for a Mediterranean Caucasian population. Arch. Bronconeumol. 1997, 33, 213–219. [Google Scholar] [CrossRef]
- Giner, J.; Casan, P.; Berrojalbiz, M.A.; Burgos, F.; Macian, V.; Sanchis, J. Cumplimiento de las “recomendaciones SEPAR” sobre la espirometría. Arch. Bronconeumol. 1996, 32, 516–522. [Google Scholar] [CrossRef]
- Arnold, D.M.; Burns, K.E.; Adhikari, N.K.; Kho, M.E.; Meade, M.O.; Cook, D.J.; McMaster Critical Care Interest Group. The design and interpretation of pilot trials in clinical research in critical care. Crit. Care Med. 2009, 37, 69–74. [Google Scholar] [CrossRef]
- Thabane, L.; Ma, J.; Chu, R.; Cheng, J.; Ismaila, A.; Rios, L.P.; Robson, R.; Thabane, M.; Giangregorio, L.; Goldsmith, C.H. A tutorial on pilot studies: The what, why and how. BMC Med. Res. Methodol. 2010, 10, 1. [Google Scholar] [CrossRef]
- López-Martín, O.; Segura Fragoso, A.; Rodríguez Hernández, M.; Dimbwadyo Terrer, I.; Polonio-López, B. Efectividad de un programa de juego basado en realidad virtual para la mejora cognitiva en la esquizofrenia. Gac. Sanit. 2016, 30, 133–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Emmerik, R.E.A.; Van Wegen, E.E.H. On the functional aspects of variability in postural control. Exerc. Sport Sci. Rev. 2002, 30, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Haddad, J.M.; Ryu, J.H.; Seaman, J.M.; Ponto, K.C. Time-to-contact measures capture modulations in posture based on the precision demands of a manual task. Gait Posture 2010, 32, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Archiza, B.; Andaku, D.K.; Caruso, F.C.R.; Bonjorno, J.C.; De Oliveira, C.R.; Ricci, P.A.; Do Amaral, A.C.; Mattiello, S.M.; Libardi, C.A.; Phillips, S.A.; et al. Effects of inspiratory muscle training in professional women football players: A randomized sham-controlled trial. J. Sports Sci. 2018, 36, 771–780. [Google Scholar] [CrossRef]
- Ozmen, T.; Gunes, G.Y.; Ucar, I.; Dogan, H.; Gafuroglu, T.U. Effect of respiratory muscle training on pulmonary function and aerobic endurance in soccer players. J. Sports Med. Phys. Fitness 2017, 57, 507–513. [Google Scholar] [CrossRef]
- Mackała, K.; Kurzaj, M.; Okrzymowska, P.; Stodółka, J.; Coh, M.; Rożek-Piechura, K. The Effect of Respiratory Muscle Training on the Pulmonary Function, Lung Ventilation, and Endurance Performance of Young Soccer Players. Int. J. Environ. Res. Public Health 2019, 17, 234. [Google Scholar] [CrossRef] [Green Version]
- In, J. Introduction of a pilot study. Korean J. Anesthesiol. 2017, 70, 601–605. [Google Scholar] [CrossRef] [Green Version]
- Harris, L.K.; Skou, S.T.; Juhl, C.B.; Jäger, M.; Bricca, A. Recruitment and retention rates in randomised controlled trials of exercise therapy in people with multimorbidity: A systematic review and meta-analysis. Trials 2021, 22, 396. [Google Scholar] [CrossRef]
- Walters, S.J.; Bonacho Dos Anjos Henriques-Cadby, I.; Bortolami, O.; Flight, L.; Hind, D.; Jacques, R.M.; Knox, C.; Nadin, B.; Rothwell, J.; Surtees, M.; et al. Recruitment and retention of participants in randomised controlled trials: A review of trials funded and published by the United Kingdom Health Technology Assessment Programme. BMJ Open 2017, 7, e015276. [Google Scholar] [CrossRef]
- Mezquita Raya, P.; Reyes García, R.; de Torres Sánchez, A. Patients’ retention strategies in clinical trials. Endocrinol. Nutr. 2015, 62, 475–477. [Google Scholar] [CrossRef] [PubMed]
Variables | IMT (n = 7) | Sham (n = 7) | p |
---|---|---|---|
Sociodemographic | |||
Age (years) | 20.00 ± 0.81 | 20.00 ± 0.57 | 1.000 |
Anthropometric | |||
Size (cm) | 177.57 ± 4.23 | 180.42 ± 5.79 | 0.313 |
Weight (kg) | 71.88 ± 3.79 | 77.45 ± 8.70 | 0.147 |
Respiratory muscle function | |||
MIP (cm H2O) | 161.57 ± 31.11 | 175.42 ± 30.27 | 0.415 |
MIP (% pred) | 104.80 ± 21.4 | 111.50 ± 20.80 | 0.169 |
MVV (liters) | 188.74 ± 30.06 | 201.78 ± 23.15 | 0.381 |
MVV (bpm) | 89.89 ± 15.30 | 86.04 ± 21.58 | 0.707 |
MVV (% pred) | 98.43 ± 14.00 | 103.39 ± 12.31 | 0.495 |
Static balance | |||
BOA_LS (mm) | 2904.81 ± 640.03 | 4358.13 ± 1863.14 | 0.075 |
BOA_SE (mm2) | 70.44 ± 42.04 | 123.14 ± 56.10 | 0.070 |
BOA_DX (mm) | 10.06 ± 3.16 | 12.05 ± 4.00 | 0.322 |
BOA_DY (mm) | 10.91 ± 3.47 | 14.75 ± 3.92 | 0.077 |
BOC_LS (mm) | 3166.22 ± 641.30 | 4290.61± 1453.5 | 0.086 |
BOC_SE (mm2) | 78.37 ± 63.52 | 127.21 ± 74.39 | 0.211 |
BOC_DX (mm) | 10.01 ± 5.72 | 12.60 ± 2.85 | 0.305 |
BOC_DY (mm) | 11.19 ± 4.41 | 17.43 ± 8.75 | 0.118 |
IMT (n = 7) | Sham (n = 7) | Differences within Interventions (Post-I–Pre-I) | Differences between Interventions (Post-I–Pre-I) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre-IN | Post-IN | p | η2 | Pre-IN | Post-IN | p | η2 | IMT | Sham | IMT-Sham | |
BOA_LS (mm) | 2904.8 ± 640.0 | 3522.4 ± 509.0 | 0.012 | 0.675 | 4358.1 ± 1863.1 | 3643.3 ± 596.7 | 0.286 | 0.186 | 617.6 ± 817.7 | −714.8 ± 1956.2 | 1332.4 (−787.5, 3452.3) |
BOA_SE (mm2) | 70.4 ± 42.0 | 177.5 ± 171.3 | 0.175 | 0.282 | 123.1 ± 56.1 | 162.8 ± 115.9 | 0.375 | 0.133 | 107.1 ± 176.3 | 39.7 ± 128.7 | 67.4 (−150.6, 285.6) |
BOA_DX (mm) | 10.0 ± 3.1 | 12.8 ± 5.3 | 0.220 | 0.238 | 12.0 ± 4.0 | 15.1 ± 7.7 | 0.329 | 0.159 | 2.8± 6.1 | 3.1 ± 8.6 | −0.3 (−10.9, 10.3) |
BOA_DY (mm) | 10.9 ± 3.4 | 12.3 ± 3.4 | 0.090 | 0.405 | 14.7 ± 3.9 | 18.4 ± 8.1 | 0.223 | 0.235 | 1.4 ± 4.8 | 3.7 ± 8.9 | −2.3 (−12.4, 7.8) |
BOC_LS (mm) | 3166.2 ± 641.3 | 4173.3 ± 390.8 | 0.004 | 0.779 | 4290.6 ± 1453.5 | 4006.5 ± 787.1 | 0.554 | 0.062 | 1007.1 ± 750.7 | −284.0 ± 1650.4 | 1291.2 (−521.9, 3104.3) |
BOC_SE (mm2) | 78.3 ± 63.5 | 78.4 ± 51.2 | 0.998 | 0.000 | 127.2 ± 74.3 | 120.8 ± 127.7 | 0.888 | 0.004 | 0.1 ± 81.6 | −6.4 ± 147.7 | 6.5 (−162.2, 175.2) |
BOC_DX (mm) | 10.0 ± 5.7 | 12.8 ± 5.3 | 0.338 | 0.153 | 12.6 ± 2.8 | 15.1 ± 7.7 | 0.341 | 0.152 | 2.7 ± 7.8 | 2.5 ± 8.2 | 0.3 (−11.0, 11.6) |
BOC_DY (mm) | 11.1 ± 4.4 | 12.3 ± 3.4 | 0.370 | 0.135 | 17.4 ± 8.7 | 18.4 ± 8.1 | 0.808 | 0.011 | 1.2 ± 5.5 | 1.0 ± 11.9 | −2.2 (−15.4, 11.0) |
IMT (n = 7) | Sham (n = 7) | Differences within Interventions (Post-I–Pre-I) | Differences between Interventions (Post-I–Pre-I) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre-I | Post-I | p | η2 | Pre-I | Post-I | p | η2 | IMT | Sham | IMT-Sham | |
MIP (cm H2O) | 161.5 ± 31.1 | 184.4 ± 21.5 | 0.076 | 0.434 | 175.4 ± 30.2 | 176.0 ± 16.4 | 0.951 | 0.001 | 22.9 ± 37.8 | 0.6 ± 34.3 | 22.3 (−28.74, 73.34) |
MIP (% pred) | 104.8 ± 21.4 | 119.5 ± 14.5 | 0.076 | 0.432 | 111.5 ± 20.8 | 111.6 ± 10.5 | 0.981 | 0.000 | 14.7 ± 25.8 | 0.1 ± 23.3 | 14.6 (−20.1, 49.3) |
MVV (liters) | 188.7 ± 30.0 | 169.5 ± 37.9 | 0.180 | 0.278 | 201.7 ± 23.1 | 197.2 ± 26.6 | 0.579 | 0.054 | −19.2 ± 48.3 | −4.5 ± 35.2 | −14.7 (−74.4, 45.0) |
MVV (bpm) | 89.8 ± 15.3 | 143.2 ± 21.9 | 0.005 | 0.756 | 86.0 ± 21.5 | 147.8 ± 33.4 | 0.000 | 0.890 | 53.4 ± 26.7 | 61.8 ± 39.7 | −8.4 (−56.2, 39.4) |
MVV (% pred) | 98.4 ± 14.0 | 88.4 ± 19.0 | 0.187 | 0.270 | 103.3 ± 12.3 | 101.2 ± 15.6 | 0.611 | 0.046 | −10.0 ± 23.6 | −2.1 ± 19.8 | −7.9 (−38.7, 22.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira-Sousa, S.L.; León-Garzón, M.C.; Gacto-Sánchez, M.; Ibáñez-Vera, A.J.; Espejo-Antúnez, L.; León-Morillas, F. Does Inspiratory Muscle Training Affect Static Balance in Soccer Players? A Pilot Randomized Controlled Clinical Trial. Healthcare 2023, 11, 262. https://doi.org/10.3390/healthcare11020262
de Oliveira-Sousa SL, León-Garzón MC, Gacto-Sánchez M, Ibáñez-Vera AJ, Espejo-Antúnez L, León-Morillas F. Does Inspiratory Muscle Training Affect Static Balance in Soccer Players? A Pilot Randomized Controlled Clinical Trial. Healthcare. 2023; 11(2):262. https://doi.org/10.3390/healthcare11020262
Chicago/Turabian Stylede Oliveira-Sousa, Silvana Loana, Martha Cecilia León-Garzón, Mariano Gacto-Sánchez, Alfonso Javier Ibáñez-Vera, Luis Espejo-Antúnez, and Felipe León-Morillas. 2023. "Does Inspiratory Muscle Training Affect Static Balance in Soccer Players? A Pilot Randomized Controlled Clinical Trial" Healthcare 11, no. 2: 262. https://doi.org/10.3390/healthcare11020262
APA Stylede Oliveira-Sousa, S. L., León-Garzón, M. C., Gacto-Sánchez, M., Ibáñez-Vera, A. J., Espejo-Antúnez, L., & León-Morillas, F. (2023). Does Inspiratory Muscle Training Affect Static Balance in Soccer Players? A Pilot Randomized Controlled Clinical Trial. Healthcare, 11(2), 262. https://doi.org/10.3390/healthcare11020262