The Casual Association Inference for the Chain of Falls Risk Factors-Falls-Falls Outcomes: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. GWAS Summary Statistics
2.2. Selection of Instrumental Variables
2.3. Statistical Analysis for Mendelian Randomization
2.4. Mediation Analysis to Explore the Mediation Effect of Falls in the Path from Exposure to Outcome
2.5. Pleiotropy and Sensitivity Analysis
3. Results
3.1. Causal Effect of Risk Factors on Falls
3.2. Causality between Falls and Outcomes
3.3. Multivariable MR Analyses
3.4. Results of the Mediation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grivna, M.; Eid, H.O.; Abu-Zidan, F.M. Epidemiology, morbidity and mortality from fall-related injuries in the United Arab Emirates. Scand. J. Trauma Resusc. Emerg. Med. 2014, 22, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ghamdi, S.; Alosaimi, A.M.; Shihah, A.O.B.; Alhadlaq, A.I.; Alotaibi, M.A.; Alnefaie, A.Z.; Alsaleh, F.M.; Alotaibi, S.F.; Alotaibi, S.F. The interventions and outcomes associated with fall-related injuries at tertiary hospitals in the Kingdom of Saudi Arabia: A cross sectional study. Pan Afr. Med. J. 2020, 36, 314. [Google Scholar] [CrossRef] [PubMed]
- Lederle, L.I.; Widera, E. I Am Worried About Falling: What Do I Need to Know? JAMA Intern. Med. 2021, 181, 1684. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tang, Y.; Allen, V.; DeVivo, M.J. Fall-induced spinal cord injury: External causes and implications for prevention. J. Spinal Cord Med. 2016, 39, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Mizukami, S.; Arima, K.; Abe, Y.; Kanagae, M.; Kusano, Y.; Niino, N.; Aoyagi, K. Falls are associated with stroke, arthritis and multiple medications among community-dwelling elderly persons in Japan. Tohoku J. Exp. Med. 2013, 231, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Jayasinghe, N.; Sparks, M.A.; Kato, K.; Wyka, K.; Wilbur, K.; Chiaramonte, G.; Barie, P.S.; Lachs, M.S.; O’Dell, M.; Evans, A.; et al. Posttraumatic stress symptoms in older adults hospitalized for fall injury. Gen. Hosp. Psychiatry 2014, 36, 669–673. [Google Scholar] [CrossRef] [Green Version]
- Grisso, J.A. Prevention of falls in patients with osteoporosis. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskelet. Dis. 1997, 3, 62–64. [Google Scholar] [CrossRef]
- Suttanon, P.; Hill, K.D.; Said, C.M.; Logiudice, D.; Lautenschlager, N.T.; Dodd, K.J. Balance and mobility dysfunction and falls risk in older people with mild to moderate Alzheimer disease. Am. J. Phys. Med. Rehabil. 2012, 91, 12–23. [Google Scholar] [CrossRef]
- Nevitt, M.C.; Cummings, S.R.; Kidd, S.; Black, D. Risk factors for recurrent nonsyncopal falls. A prospective study. JAMA 1989, 261, 2663–2668. [Google Scholar] [CrossRef]
- Dai, W.; Tham, Y.C.; Chee, M.L.; Tan, N.Y.Q.; Wong, K.H.; Majithia, S.; Sabanayagam, C.; Lamoureux, E.; Wong, T.Y.; Cheng, C.Y. Falls and Recurrent Falls among Adults in A Multi-ethnic Asian Population: The Singapore Epidemiology of Eye Diseases Study. Sci. Rep. 2018, 8, 7575. [Google Scholar] [CrossRef]
- Wallander, M.; Axelsson, K.F.; Nilsson, A.G.; Lundh, D.; Lorentzon, M. Type 2 Diabetes and Risk of Hip Fractures and Non-Skeletal Fall Injuries in the Elderly: A Study From the Fractures and Fall Injuries in the Elderly Cohort (FRAILCO). J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2017, 32, 449–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hita-Contreras, F.; Martínez-Amat, A.; Lomas-Vega, R.; Álvarez, P.; Mendoza, N.; Romero-Franco, N.; Aránega, A. Relationship of body mass index and body fat distribution with postural balance and risk of falls in Spanish postmenopausal women. Menopause 2013, 20, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Rao, W.W.; Zeng, L.N.; Zhang, J.W.; Zong, Q.Q.; An, F.R.; Ng, C.H.; Ungvari, G.S.; Yang, F.Y.; Zhang, J.; Peng, K.Z.; et al. Worldwide prevalence of falls in older adults with psychiatric disorders: A meta-analysis of observational studies. Psychiatry Res. 2019, 273, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.O.; Clarke, C.; Dainty, J.R.; Watts, L.; Yates, M.; Pomeroy, V.M.; Stanmore, E.; O’Neill, T.W.; Macgregor, A.J. Clinical and biomechanical factors associated with falls and rheumatoid arthritis: Baseline cohort with longitudinal nested case-control study. Rheumatology 2022, 61, 679–687. [Google Scholar] [CrossRef]
- Min, Y.; Slattum, P.W. Poor Sleep and Risk of Falls in Community-Dwelling Older Adults: A Systematic Review. J. Appl. Gerontol. Off. J. South. Gerontol. Soc. 2018, 37, 1059–1084. [Google Scholar] [CrossRef]
- Peraza-Delgado, A.; Sánchez-Gómez, M.B.; Gómez-Salgado, J.; Romero-Martín, M.; Novo-Muñoz, M.; Duarte-Clíments, G. Non-Pharmacological Interventions towards Preventing the Triad Osteoporosis-Falls Risk-Hip Fracture, in Population Older than 65. Scoping Review. J. Clin. Med. 2020, 9, 2329. [Google Scholar] [CrossRef]
- Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ 2018, 362, k601. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.D.; Ebrahim, S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003, 32, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Thanassoulis, G.; O’Donnell, C.J. Mendelian randomization: Nature’s randomized trial in the post-genome era. JAMA 2009, 301, 2386–2388. [Google Scholar] [CrossRef] [Green Version]
- Kerse, N.; Parag, V.; Feigin, V.L.; McNaughton, H.; Hackett, M.L.; Bennett, D.A.; Anderson, C.S. Falls after stroke: Results from the Auckland Regional Community Stroke (ARCOS) Study, 2002 to 2003. Stroke 2008, 39, 1890–1893. [Google Scholar] [CrossRef] [Green Version]
- Stuart, A.L.; Pasco, J.A.; Berk, M.; Quirk, S.E.; Koivumaa-Honkanen, H.; Honkanen, R.; Mohebbi, M.; Williams, L.J. Falls in community-dwelling women with bipolar disorder: A case-control study. BMC Psychiatry 2022, 22, 620. [Google Scholar] [CrossRef] [PubMed]
- Randall, J.C.; Winkler, T.W.; Kutalik, Z.; Berndt, S.I.; Jackson, A.U.; Monda, K.L.; Kilpeläinen, T.O.; Esko, T.; Mägi, R.; Li, S.; et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 2013, 9, e1003500. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.R.; Esko, T.; Yang, J.; Vedantam, S.; Pers, T.H.; Gustafsson, S.; Chu, A.Y.; Estrada, K.; Luan, J.; Kutalik, Z.; et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 2014, 46, 1173–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Xue, A.; Wu, Y.; Zhu, Z.; Zhang, F.; Kemper, K.E.; Zheng, Z.; Yengo, L.; Lloyd-Jones, L.R.; Sidorenko, J.; Wu, Y.; et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun. 2018, 9, 2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, R.; Chauhan, G.; Traylor, M.; Sargurupremraj, M.; Okada, Y.; Mishra, A.; Rutten-Jacobs, L.; Giese, A.K.; van der Laan, S.W.; Gretarsdottir, S.; et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 2018, 50, 524–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, B.L.; Burgess, S. Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol. 2013, 178, 1177–1184. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, F.P.; Davies, N.M.; Hemani, G.; Davey Smith, G. Two-sample Mendelian randomization: Avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int. J. Epidemiol. 2016, 45, 1717–1726. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Thompson, S.G. Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 2015, 181, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, E.; Davey Smith, G.; Windmeijer, F.; Bowden, J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol. 2019, 48, 713–727. [Google Scholar] [CrossRef] [Green Version]
- Fuller, G.F. Falls in the elderly. Am. Fam. Physician 2000, 61, 2159–2168. [Google Scholar]
- Burgess, S.; Daniel, R.M.; Butterworth, A.S.; Thompson, S.G. Network Mendelian randomization: Using genetic variants as instrumental variables to investigate mediation in causal pathways. Int. J. Epidemiol. 2015, 44, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Ge, B.; Lu, S.Q.; Lei, S.F. The obesity indices mediate the relationships of blood lipids and bone mineral density in Chinese elders. Mol. Cell. Probes 2021, 56, 101705. [Google Scholar] [CrossRef] [PubMed]
- Clynes, M.A.; Jameson, K.; Prieto-Alhambra, D.; Harvey, N.C.; Cooper, C.; Dennison, E.M. Impact of Rheumatoid Arthritis and Its Management on Falls, Fracture and Bone Mineral Density in UK Biobank. Front. Endocrinol. 2019, 10, 817. [Google Scholar] [CrossRef] [Green Version]
- Sibley, K.M.; Voth, J.; Munce, S.E.; Straus, S.E.; Jaglal, S.B. Chronic disease and falls in community-dwelling Canadians over 65 years old: A population-based study exploring associations with number and pattern of chronic conditions. BMC Geriatr. 2014, 14, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, K.L.; Ancoli-Israel, S.; Blackwell, T.; Ensrud, K.E.; Cauley, J.A.; Redline, S.; Hillier, T.A.; Schneider, J.; Claman, D.; Cummings, S.R. Actigraphy-measured sleep characteristics and risk of falls in older women. Arch. Intern. Med. 2008, 168, 1768–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latimer Hill, E.; Cumming, R.G.; Lewis, R.; Carrington, S.; Le Couteur, D.G. Sleep disturbances and falls in older people. J. Gerontology. Ser. A Biol. Sci. Med. Sci. 2007, 62, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, M.S.; Sim, S.; Park, B.; Choi, H.G. Association Between Obesity and Falls Among Korean Adults: A Population-Based Cross-Sectional Study. Medicine 2016, 95, e3130. [Google Scholar] [CrossRef]
- Fjeldstad, C.; Fjeldstad, A.S.; Acree, L.S.; Nickel, K.J.; Gardner, A.W. The influence of obesity on falls and quality of life. Dyn. Med. DM 2008, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thapa, A.; Chandra, S.P.; Sinha, S.; Sreenivas, V.; Sharma, B.S.; Tripathi, M. Post-traumatic seizures-A prospective study from a tertiary level trauma center in a developing country. Seizure 2010, 19, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundstrom, A.C.; Guse, C.E.; Layde, P.M. Risk factors for falls and fall-related injuries in adults 85 years of age and older. Arch. Gerontol Geriatr 2012, 54, 421–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, A.V.; Nevitt, M.C.; Brown, B.W., Jr.; Kelsey, J.L. Increased falling as a risk factor for fracture among older women: The study of osteoporotic fractures. Am. J. Epidemiol. 2005, 161, 180–185. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef]
- Spyropoulos, P.; Pisciotta, J.C.; Pavlou, K.N.; Cairns, M.A.; Simon, S.R. Biomechanical gait analysis in obese men. Arch. Phys. Med. Rehabil. 1991, 72, 1065–1070. [Google Scholar]
- Anandacoomarasamy, A.; Caterson, I.; Sambrook, P.; Fransen, M.; March, L. The impact of obesity on the musculoskeletal system. Int. J. Obes. 2008, 32, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Handrigan, G.A.; Corbeil, P.; Simoneau, M.; Teasdale, N. Balance control is altered in obese individuals. J. Biomech. 2010, 43, 383–384. [Google Scholar] [CrossRef]
- Hills, A.P.; Hennig, E.M.; Byrne, N.M.; Steele, J.R. The biomechanics of adiposity—Structural and functional limitations of obesity and implications for movement. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2002, 3, 35–43. [Google Scholar] [CrossRef]
- Sundh, D.; Rudäng, R.; Zoulakis, M.; Nilsson, A.G.; Darelid, A.; Lorentzon, M. A High Amount of Local Adipose Tissue Is Associated With High Cortical Porosity and Low Bone Material Strength in Older Women. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2016, 31, 749–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, W.L.; Chen, C.Y.; Tsauo, J.Y.; Yang, R.S. Balance control in elderly people with osteoporosis. J. Formos. Med. Assoc. Taiwan Yi Zhi 2014, 113, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Hayashibara, M.; Hagino, H.; Katagiri, H.; Okano, T.; Okada, J.; Teshima, R. Incidence and risk factors of falling in ambulatory patients with rheumatoid arthritis: A prospective 1-year study. Osteoporos. Int. 2010, 21, 1825–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oswald, A.E.; Pye, S.R.; O’Neill, T.W.; Bunn, D.; Gaffney, K.; Marshall, T.; Silman, A.J.; Symmons, D.P. Prevalence and associated factors for falls in women with established inflammatory polyarthritis. J. Rheumatol. 2006, 33, 690–694. [Google Scholar]
- Armstrong, C.; Swarbrick, C.M.; Pye, S.R.; O’Neill, T.W. Occurrence and risk factors for falls in rheumatoid arthritis. Ann. Rheum. Dis. 2005, 64, 1602–1604. [Google Scholar] [CrossRef] [Green Version]
- Huusko, T.M.; Korpela, M.; Karppi, P.; Avikainen, V.; Kautiainen, H.; Sulkava, R. Threefold increased risk of hip fractures with rheumatoid arthritis in Central Finland. Ann. Rheum. Dis. 2001, 60, 521–522. [Google Scholar] [CrossRef] [Green Version]
- Aydoğ, E.; Bal, A.; Aydoğ, S.T.; Cakci, A. Evaluation of dynamic postural balance using the Biodex Stability System in rheumatoid arthritis patients. Clin. Rheumatol. 2006, 25, 462–467. [Google Scholar] [CrossRef]
- Ekdahl, C.; Andersson, S.I. Standing balance in rheumatoid arthritis. A comparative study with healthy subjects. Scand. J. Rheumatol. 1989, 18, 33–42. [Google Scholar] [CrossRef]
- Kanda, A.; Matsui, T.; Ebihara, S.; Arai, H.; Sasaki, H. Periventricular white matter lesions and sleep alteration in older people. J. Am. Geriatr. Soc. 2003, 51, 432–433. [Google Scholar] [CrossRef]
- Srikanth, V.; Beare, R.; Blizzard, L.; Phan, T.; Stapleton, J.; Chen, J.; Callisaya, M.; Martin, K.; Reutens, D. Cerebral white matter lesions, gait, and the risk of incident falls: A prospective population-based study. Stroke 2009, 40, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.R.; Zhu, X.; Storfer-Isser, A.; Mehra, R.; Jenny, N.S.; Tracy, R.; Redline, S. Sleep duration and biomarkers of inflammation. Sleep 2009, 32, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Pijnappels, M.; Delbaere, K.; Sturnieks, D.L.; Lord, S.R. The association between choice stepping reaction time and falls in older adults--a path analysis model. Age Ageing 2010, 39, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Eshkoor, S.A.; Hamid, T.A.; Nudin, S.S.; Mun, C.Y. The effects of sleep quality, physical activity, and environmental quality on the risk of falls in dementia. Am. J. Alzheimer Dis. Other Dement. 2013, 28, 403–407. [Google Scholar] [CrossRef]
- Helbig, A.K.; Döring, A.; Heier, M.; Emeny, R.T.; Zimmermann, A.K.; Autenrieth, C.S.; Ladwig, K.H.; Grill, E.; Meisinger, C. Association between sleep disturbances and falls among the elderly: Results from the German Cooperative Health Research in the Region of Augsburg-Age study. Sleep Med. 2013, 14, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C. Sedative Hypnotics and the Risk of Falls and Fractures in the Elderly. J. Clin. Psychiatry 2018, 79, 19106. [Google Scholar] [CrossRef] [PubMed]
- Kureshi, N.; Erdogan, M.; Thibault-Halman, G.; Fenerty, L.; Green, R.S.; Clarke, D.B. Long-Term Trends in the Epidemiology of Major Traumatic Brain Injury. J. Community Health 2021, 46, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.; Stewart, W.; Dams-O’Connor, K.; Diaz-Arrastia, R.; Horton, L.; Menon, D.K.; Polinder, S. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 2017, 16, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Thompson, S.G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 2011, 40, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, D.I.; Kuchenbaecker, K.B.; Shah, S.; Sofat, R.; Holmes, M.V.; White, J.; Mindell, J.S.; Kivimaki, M.; Brunner, E.J.; Whittaker, J.C.; et al. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies. Int. J. Epidemiol. 2016, 45, 1600–1616. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Dudbridge, F.; Thompson, S.G. Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods. Stat. Med. 2016, 35, 1880–1906. [Google Scholar] [CrossRef] [Green Version]
Exposure | Outcome | Sample Size | MR–IVW | MR–Weighted Median | MR–Egger | MR–Egger Intercept | Intercept p Value | |||
---|---|---|---|---|---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | |||||
Weight | Falls | 336,227 | 1.051 (1.042–1.061) | 0.579 | 1.041 (1.028–1.054) | 0.522 | 1.035 (1.010–1.061) | 0.468 | −0.0019 | 0.406 |
Height | Falls | 253,288 | 1.003 (0.997–1.008) | 0.362 | 1.004 (0.997–1.012) | 0.242 | 1.009 (0.994–1.023) | 0.253 | −0.0002 | 0.289 |
Sitting height | Falls | 336,172 | 0.997 (0.989–1.005) | 0.443 | 0.997 (0.986–1.007) | 0.536 | 0.995 (0.977–1.013) | 0.554 | 0.0001 | 0.765 |
Hip circumference | Falls | 336,601 | 1.047 (1.037–1.058) | <0.001 | 1.046 (1.033–1.059) | <0.001 | 1.040 (1.011–1.070) | 0.007 | 0.0001 | 0.607 |
Waist circumference | Falls | 336,639 | 1.061 (1.047–1.075) | <0.001 | 1.066 (1.048–1.084) | <0.001 | 1.041 (1.000–1.083) | 0.050 | 0.0003 | 0.320 |
Waist-hip ratio | Falls | 85,978 | 0.833 (0.637–1.091) | 0.185 | 0.672 (0.459–0.985) | 0.042 | 0.663 (0.349–1.261) | 0.225 | 0.0006 | 0.450 |
BMI | Falls | 236,781 | 1.021 (1.007–1.035) | 0.003 | 1.028 (1.010–1.047) | 0.003 | 1.017 (0.975–1.060) | 0.432 | 0.0001 | 0.857 |
Rheumatoid Arthritis | Falls | 463,010 | 4.452 (2.835–6.990) | 0.001 | 4.430 (1.672–11.737) | 0.003 | 3.855 (0.126–11.843) | 0.580 | 0.0003 | 0.946 |
Sleeplessness | Falls | 462,341 | 1.141 (1.100–1.184) | <0.001 | 1.117 (1.065–1.172) | <0.001 | 1.068 (0.946–1.206) | 0.293 | 0.0007 | 0.263 |
Osteoporosis | Falls | 337,159 | 1.664 (1.154–2.399) | 0.006 | 1.275 (0.764–2.127) | 0.353 | 2.943 (0.229–5.656) | 0.454 | −0.0012 | 0.686 |
Type 2 diabetes | Falls | 655,666 | 1.002 (0.998–1.007) | 0.32 | 0.999 (0.994–1.006) | 0.916 | 0.997 (0.987–1.007) | 0.600 | 0.0004 | 0.283 |
Cataract | Falls | 463,010 | 0.887 (0.539–1.459) | 0.636 | 0.899 (0.511–1.585) | 0.715 | 0.433 (0.111–1.687) | 0.267 | 0.0018 | 0.305 |
Alzheimer’s disease | Falls | 399,793 | 0.744 (0.519–1.065) | 0.106 | 0.681 (0.435–1.068) | 0.094 | 0.480 (0.106–2.184) | 0.413 | 0.0015 | 0.601 |
Parkinson’s disease | Falls | 482,730 | 0.997 (0.992–1.002) | 0.324 | 0.996 (0.991–1.002) | 0.224 | 0.991 (0.976–1.004) | 0.207 | 0.0010 | 0.332 |
Depression | Falls | 462,933 | 1.172 (0.784–1.752) | 0.439 | 0.928 (0.541–1.591) | 0.785 | 4.944 (0.706–34.645) | 0.206 | −0.0044 | 0.235 |
Atherosclerotic heart disease | Falls | 463,010 | 0.949 (0.784–1.150) | 0.595 | 0.995 (0.786–1.261) | 0.968 | 1.338 (0.860–2.080) | 0.206 | −0.0012 | 0.103 |
Glaucoma | Falls | 462,933 | 0.952 (0.642–1.404) | 0.795 | 0.957 (0.563–1.625) | 0.869 | 0.615 (0.186–2.032) | 0.434 | 0.0007 | 0.459 |
Stroke | Falls | 446,696 | 1.009 (0.998–1.019) | 0.100 | 1.006 (0.993–1.019) | 0.374 | 0.997 (0.941–1.057) | 0.926 | 0.0007 | 0.700 |
Bipolar disorder | Falls | 337,159 | 0.234 (0.042–1.317) | 0.099 | 0.191 (0.024–1.487) | 0.114 | 0.338 (0.000–1.981) | 0.829 | −0.0011 | 0.940 |
Exposure | Outcome | Sample Size | MR–IVW | MR–Weighted Median | MR–Egger | MR–Egger Intercept | Intercept p Value | |||
---|---|---|---|---|---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | |||||
Falls | Fracture | 460,389 | 1.148 (1.093–1.205) | <0.001 | 1.174 (1.095–1.259) | <0.001 | 1.094 (0.830–1.441) | 0.535 | 0.0004 | 0.733 |
Falls | Epilepsy | 463,010 | 1.016 (1.004–1.028) | 0.009 | 1.019 (1.002–1.036) | 0.025 | 0.961 (0.863–1.071) | 0.485 | 0.0004 | 0.329 |
Falls | Stroke | 446,696 | 2.908 (1.452–5.826) | 0.003 | 2.826 (1.089–7.328) | 0.033 | 4.469 (0.387–8.551) | 0.088 | −0.0205 | 0.203 |
Falls | Severe stress | 337,199 | 1.000 (0.995–1.005) | 0.971 | 0.998 (0.991–1.004) | 0.478 | 1.005 (0.975–1.035) | 0.749 | −3.70 × 10−5 | 0.750 |
Falls | Anxiety disorder | 463,010 | 0.999 (0.985–1.012) | 0.844 | 0.998 (0.982–1.015) | 0.806 | 1.001 (0.736–1.362) | 0.993 | −1.90 × 10−5 | 0.986 |
Falls | Headache | 463,010 | 1.006(0.990–1.023) | 0.430 | 0.999 (0.978–1.022) | 0.962 | 0.932 (0.817–1.062) | 0.308 | 0.0006 | 0.265 |
Falls | Patient death | 462,235 | 1.005 (0.995–1.016) | 0.338 | 1.005 (0.992–1.019) | 0.452 | 1.046 (0.834–1.311) | 0.709 | −0.0003 | 0.741 |
Exposure | Mediator | Outcome | Total Effect OR (95% CI) | Direct Effect OR (95% CI) | Mediation Effect OR (95% CI) | Mediated p-Values | Proportion |
---|---|---|---|---|---|---|---|
Osteoporosis | Falls | Fracture | 1.706 (1.195–2.437) | 1.564 (1.286–1.901) | 1.091 (0.930–1.423) | 0.142 | - |
BMI | Falls | Stroke | 1.100 (1.005–1.204) | 1.095 (1.286–1.901) | 1.005 (0.957–1.055) | 0.472 | - |
Waist circumference | Falls | Stroke | 1.249 (1.148–1.358) | 1.215 (1.102–1.339) | 1.028 (0.979–1.077) | 0.134 | - |
Sleeplessness | Falls | Fracture | 1.033 (1.014–1.054) | 1.012 (0.988–1.037) | 1.021 (1.005–1.040) | 0.005 | 63.64% |
Waist circumference | Falls | Epilepsy | 1.001 (1.000–1.002) | 1.000 (0.999–1.002) | 1.001 (1.000–1.002) | <0.001 | 100% |
Hip circumference | Falls | Stroke | 1.117 (1.042–1.197) | 1.087 (1.004–1.176) | 1.028 (0.989–1.067) | 0.081 | - |
Hip circumference | Falls | Fracture | 1.007 (1.003–1.012) | 1.003 (0.998–1.008) | 1.004 (1.002–1.007) | <0.001 | 57.14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.-X.; Deng, F.-Y.; Lei, S.-F. The Casual Association Inference for the Chain of Falls Risk Factors-Falls-Falls Outcomes: A Mendelian Randomization Study. Healthcare 2023, 11, 1889. https://doi.org/10.3390/healthcare11131889
Wu J-X, Deng F-Y, Lei S-F. The Casual Association Inference for the Chain of Falls Risk Factors-Falls-Falls Outcomes: A Mendelian Randomization Study. Healthcare. 2023; 11(13):1889. https://doi.org/10.3390/healthcare11131889
Chicago/Turabian StyleWu, Jia-Xin, Fei-Yan Deng, and Shu-Feng Lei. 2023. "The Casual Association Inference for the Chain of Falls Risk Factors-Falls-Falls Outcomes: A Mendelian Randomization Study" Healthcare 11, no. 13: 1889. https://doi.org/10.3390/healthcare11131889
APA StyleWu, J.-X., Deng, F.-Y., & Lei, S.-F. (2023). The Casual Association Inference for the Chain of Falls Risk Factors-Falls-Falls Outcomes: A Mendelian Randomization Study. Healthcare, 11(13), 1889. https://doi.org/10.3390/healthcare11131889