You are currently viewing a new version of our website. To view the old version click .
Healthcare
  • Review
  • Open Access

11 October 2022

IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review

,
,
,
,
,
and
1
Faculty of Electrical & Electronic Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Malaysia
2
Faculty of Engineering and Computing, University of Science & Technology, Aden 8916162, Yemen
3
School of Engineering and the Built Environment, Birmingham City University, Birmingham B4 7XG, UK
4
Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
This article belongs to the Special Issue Smart Technology Applications for Supporting Medicine and Healthcare after the COVID-19 Pandemic

Abstract

The Internet of Things (IoT) is essential in innovative applications such as smart cities, smart homes, education, healthcare, transportation, and defense operations. IoT applications are particularly beneficial for providing healthcare because they enable secure and real-time remote patient monitoring to improve the quality of people’s lives. This review paper explores the latest trends in healthcare-monitoring systems by implementing the role of the IoT. The work discusses the benefits of IoT-based healthcare systems with regard to their significance, and the benefits of IoT healthcare. We provide a systematic review on recent studies of IoT-based healthcare-monitoring systems through literature review. The literature review compares various systems’ effectiveness, efficiency, data protection, privacy, security, and monitoring. The paper also explores wireless- and wearable-sensor-based IoT monitoring systems and provides a classification of healthcare-monitoring sensors. We also elaborate, in detail, on the challenges and open issues regarding healthcare security and privacy, and QoS. Finally, suggestions and recommendations for IoT healthcare applications are laid down at the end of the study along with future directions related to various recent technology trends.

1. Introduction

The term Internet of Things (IoT) was invented by Kevin Ashton in 1999 and refers to data on the Internet that are connected to evolving global service architecture [,]. IoT is the product of advanced research on information and communications technology. It can potentially enhance urban residents’ quality of life. Since the global population is increasing at an astonishing rate, and the prevalence of chronic diseases is also on the rise, there is growing demand for designing cost-effective healthcare systems that can efficiently manage and provide a wide range of medical services while reducing overall expenses [,,,]. The IoT has become a key development area recently, enabling healthcare-monitoring system advancement. The IoT healthcare-monitoring system aims to accurately track people and connect various services and things in the world through the Internet to collect, share, monitor, store, and analyze the data generated by these things []. However, the IoT is a new paradigm where all connected physical objects in any intelligent application, such as smart city, smart home, and smart healthcare, are addressed and controlled remotely. Diagnosing disorders and monitoring patients is essential to providing medical care, and applying sensor networks to the human body will significantly assist in this endeavor. In addition, the information is readily accessible from any location in the world at any given time [].
Patients with severe injuries or from certain areas may have difficulty reaching the hospital. Therefore, they can use video conferencing to communicate with their doctors to improve their health while saving money and time. Patients can use this technology to record their health conditions on their phones []. It is anticipated that the benefits of the IoT will be improved and result in individualized treatment, improving patient outcomes while saving healthcare management costs. IoT systems allow physicians to keep an eye on their patients remotely and schedule their appointments more efficiently. Patients also can improve their home healthcare to reduce their need for doctor visits and the likelihood of receiving unnecessary or inappropriate medical treatments in hospitals or clinics. For this reason, the quality of medical care and the overall safety of patients may improve, while the overall cost of care may decrease. The IoT holds significant potential in healthcare [,]. It will not be long before we have access to a health-monitoring system that can be used from the comfort of our homes and streamline hospital processes. IoT sensors should be densely deployed to monitor the body and environment continuously. This effort will enable the tracking of chronic-disease management and rehabilitation progress. In the future of virtual consultations for remote medical care, the IoT will be able to provide efficient data connections from multiple locations [].
Most of the current implementations of the IoT and research on it are undeveloped and focus on deploying and configuring technology in various contexts and conditions. However, these practices are not widely used today. Therefore, this paper aims to evaluate related research on designing and implementing an IoT-based healthcare-monitoring system that improves quality of life. These systems rely heavily on IoT devices and sensors to connect patients with the healthcare providers best suited for their care.
The main contribution of this research paper is to highlight IoT-based healthcare-monitoring systems in detail so that future researchers, academicians, and scientists can easily find a roadmap to understand the current healthcare-monitoring systems and can easily provide solutions and enhancements for such critical applications. In this research paper, we provide a general idea of IoT-based healthcare-monitoring systems in a systematic way, along with their benefits and significance, and a literature review. Moreover, we discuss the concepts of wearable things in healthcare systems from an IoT perspective. The paper also provides a classification of healthcare-monitoring sensors, addresses security and protocols for IoT healthcare-monitoring systems, and details challenges and open issues. We also suggest solutions to overcome these challenges and issues in the future.
The paper is divided into eight sections as follows: Section 2 discusses the IoT-based healthcare system and its applications and the significance of using the IoT in the healthcare domain, followed by a review of the recent related studies in Section 3. Section 4 describes the Internet of wearable things and wearable sensors in the healthcare-monitoring system; this section also provides a classification of heath-monitoring sensors. Section 5 emphasizes security and protocols for IoT healthcare-monitoring systems. Section 6 describes IoT healthcare challenges and open issues. Suggestions and recommendations are described in Section 7, and Section 8 provides the conclusion of the overall review. Figure 1 shows the overall paper structure.
Figure 1. Research overview.

2. IoT-Based Healthcare Systems and Their Applications

IoT-based healthcare systems and their applications facilitates people’s lives in different ways, such as:
  • Remote healthcare: Wireless IoT-driven solutions bring healthcare to patients rather than the patient to healthcare. Data are collected securely through IoT-based sensors, and the data are analyzed by a small algorithm before being shared with health professionals for appropriate recommendations.
  • Real-time monitoring: IoT-driven non-invasive-monitoring sensors collect comprehensive psychological information. Gateways and cloud-based analysis manage the storage of data.
  • Preventive care: IoT healthcare systems use sensor data, which help with the early detection of emergencies and alerts family members. Machine learning for health-trend tracking and early anomaly detection is achieved through the IoT approach [].

2.1. The Significance of IoT-Based Healthcare-Monitoring Systems

The development of monitoring systems for healthcare is receiving a great deal of attention from researchers and leaders in the medical field. Several successful research projects have been conducted in this area, and many more are currently underway []. The number of gaps in care provided by healthcare providers is increasing significantly, directly resulting from the rapidly growing number of older adults and patients with chronic illnesses. The major shortcoming is that healthcare is only provided in hospitals; therefore, it is unsuitable for seniors and people with disabilities and cannot always meet their needs []. The IoT, with the help of sensor values and telecommunications, provides an effective and practical solution to the issue of real-time monitoring of the health status of the elderly. It has been shown that the IoT, in conjunction with smart technologies, can provide various improved and enhanced services. Using sensors, researchers have developed various emergency systems using technologies that enable intelligent and remote wireless communication. These technologies have been used for various medical purposes, particularly in monitoring the health of the elderly. This way, data can be collected on general health and dangerous situations by capturing important vital signs [].

2.2. Benefits of Using IoT in Healthcare

The IoT will reshape healthcare as we know it, with profound implications. In terms of how apps, devices, and people communicate with each other to deliver healthcare solutions, we have reached a whole new level of evolution. The IoT has given us a new perspective and tools for an integrated healthcare network, greatly improving healthcare quality.
The IoT has made it possible to automate healthcare procedures that previously required a significant amount of time and left room for error due to human involvement. For example, to control airflow and temperature in operating rooms, many hospitals now use networked devices.
There are almost endless ways the IoT can improve medical care; however, the following are some of the key benefits:
  • Reduced cost of care.
  • Human errors are reduced.
  • Elimination of the limitations of distance.
  • Reduced amounts of paperwork and record keeping.
  • Chronic diseases are detected early.
  • Improvements in medication management.
  • The need for prompt medical care.
  • Better treatment outcomes.

4. Internet of Wearable Things

The Internet of Wearable Things (IoWT) aims to improve people’s quality of daily life. It involves sensors fitted into wearable devices, monitoring the individual’s activity, health factors, and other things. The data collected from the IoWT can be fed into medical infrastructure, giving clinicians remote access to their patients’ data as they go about their daily lives. Building on the IoT architecture, a novel integrative framework for IoWT is currently being developed. The IoWT is a revolutionary technology that has the potential to change the healthcare industry by creating an ecosystem for automated telehealth treatments [].
As shown in Figure 2, the architecture of the IoWT and its connections consists of three elements: the WBAN, the gateway connected to the Internet, and the cloud. The WBAN is a front-end component of IoWT that wraps around the body to collect health-related data unnoticed. The WBAN collects data from sensors in direct contact with the body or from sensors in the environment that can collect indirect data about a person’s behavior. The WBAN can either analyze the data or transmit them for remote analysis. In addition, mobile computing devices such as smartphones, tablets, and laptops must be connected to the Internet to send data to powerful computing resources [].
Figure 2. Architectural elements of IoWT [].

4.1. Wireless Network Technologies for IoT Healthcare

Healthcare systems can be monitored remotely using various wireless network technologies. The existence and operation of IoT emerging technologies, such as RFID, wireless network technologies (BLE, Wi-Fi, Zigbee), and low-power wireless area network (LPWAN) technologies (such as LoRa and SigFox) are engaging in terms of the IoT’s long-term development and deployment. They enhance device connectivity to the Internet, and the efficiency of IoT application operation [].
BLE, LoRa, and Zigbee are wireless sensor network technologies; meanwhile, to identify and trace products, RFID is used. BLE can transfer data between different mobile devices []. Communication methods can be long in their range (LoRa, SigFox, and Wi-Fi) or short-range (Bluetooth, RFID, and Zigbee) []. Due to new communication protocols being created exclusively for IoT devices, such as LoraWAN, NB-IoT, and Sigfox, it is anticipated that the popularity of these applications will increase, enabling a far-reaching remote monitoring system [,].
An essential component of the IoT is the WSN. The IoT, which has already been established, can connect things to the Internet, allowing humans to interact with computers and for computers to interact with other computers. Thus, the combination of the IoT and WSN facilitates machine-to-machine communication. Figure 3 illustrates the architecture of IoT with the WSN. It shows sensor nodes communicating with a gateway in a separate network. Many devices are linked to the gateway via Wi-Fi or the Internet, ensuring interoperability [].
Figure 3. Relationship of WSN to IoT [].
The researchers in [] counted the existing wireless applications in connected healthcare facilities to study operational wireless methods for transmitting data across short distances. The system design and implementation of family mobile medical care are presented in this study. The Android mobile client, data transmission, and a system server are part of the system. Wireless data transfer is potentially possible, at least in theory. An example of the mobile healthcare system’s success is shown here. In the first place, family members’ sign characteristics might be collected via sensors on medical equipment. ECG, BP, SpO2, respiration, and sleep are parameters of interest. The mobile terminal uploads data to a back-end Web server with a wireless network, Bluetooth, and Wi-Fi. Data storage, computation, and analysis are all handled by the MySQL database server []. A family member’s smartphone or tablet may be used to show data icons or text, making it easy for them to monitor their loved one’s health at any time and location. Family members may prevent significant health issues through early intervention, encouragement, and healthcare maintenance.

4.2. Wearable Sensors in Healthcare-Monitoring Systems

In real-time, the healthcare sector may use wearable devices to monitor and save patients’ activity and physiological functions. Such devices have one or more sensor nodes, but each sensor node typically has a radio transceiver, a low-speed processing unit, and small memory. The sensors can measure various physiological parameters and activity, including SpO2, BP and temperature, electrodermal activity (EDA), ECG, electromyography, HR, and RR [,].
Bluetooth, infrared, near-field communication (NFC), RFID, Wi-Fi, and Zigbee wireless transceiver technologies can support wearable devices communicating with smartphones and other devices. The technology promotes care by facilitating remote diagnosis and monitoring []. An important issue of discussion in this period revolves around the IoT in healthcare. One of the essential parts of healthcare is identifying and treating illness. In order to achieve this, the body sensor network will be valuable. Additionally, the data may be accessible from any location in the world [].
A wearable sensor gadget created by Vedaei can monitor and analyze the actions of patients. An IoT technology that measures social distance might help prevent a COVID-19 sufferer from becoming sick. Three layers of IoT sensors, machine learning algorithms, and smartphone apps are used to monitor BP, SpO2, cough rate, and temperature daily. The frameworks outlined by the authors helped the users keep a safe distance between themselves and the transmission of the virus and update their information often. A distance-monitoring system based on Radio Frequency (RF) was also presented in the research, which may be used in both indoor and outdoor contexts. In order to compare the findings under environmental restrictions, the authors looked at two alternative situations. Those who wrote the article claim to have helped expose COVID-19 [].
Another study [] demonstrated an IoT-connected wearable sensor network system for industrial outdoor workplace health and safety applications. Wearable sensors worn by the worker collect physiological and environmental data, which are transferred to the system operator and employees for monitoring and analysis. Data harvested from multiple workers wearing wearable sensors can be transferred through a LoRa network to a gateway. The LoRa network combines a Bluetooth-based medical signal-detecting network with a heterogeneous IoT platform. The authors describe the sensor node hardware and design, the gateway, and the cloud application. A heterogeneous wearable IoT device sensor network system for health and safety usage is shown in Figure 4.
Figure 4. Healthcare-monitoring system using wearable sensor [].

4.2.1. Use Cases of Health-Monitoring Sensors

Medical science research is currently dominated by medical healthcare, which mostly relies on how it integrates with the IoT. This integration is receiving a lot of attention due to its crucial role in utilizing technological paradigms to save human lives. These integrated systems contain three crucial phases, namely, the modules for data collection, data processing, and data evaluation. Healthcare monitoring plays a significant role in the data collection module due to its active involvement in gathering data from various sources and specimens. Most healthcare-monitoring systems use sensors to obtain the necessary input data. The more concise and timely the data, the more accurate the results.
Sensors are employed for more than just data collection; they can also be used for various ongoing and post-monitoring tasks in IoT-based healthcare systems. Blood pressure, body temperature, pulse oximetry, and blood glucose are a few examples of heterogeneous wearable sensing devices developed to collect patients’ biomedical data [] in the era of fast-growing IoT. The proper quality and development of these IoT-based healthcare-monitoring systems are directly related to reliable data from sensors or sensor networks, which necessitates using advanced signal-processing techniques, sensor data fusion, and data analytics. In medical science, sensors that measure heart rate, body temperature, and other things are used to find and diagnose diseases at the earliest stage.
It has been observed that health-monitoring sensors are utilized in various use cases of medical science for healthcare purposes, such as the monitoring of hemoglobin concentration, molecular diagnostics, clinical diagnosis of albumin-related diseases, heart-rate detection, blood-oxygen-saturation detection, respiratory-rate detection, anemia detection, Alzheimer’s disease, and many more.
There are many applications for wearable sensors. IoT-assisted wearables are widely used these days. The friendliness of such devices has created a boom in their application in all fields. With the healthcare field being no exception, the IoT’s exploits in healthcare are enormous. Various technologies are linked to existing technology that helps generate data for monitoring and analysis.
We have seen a lot of use cases for IoT-based sensors in real-time environments, which are mentioned below:

Use Cases/Applications

  • Heart-rate detection/Cardiac monitoring systems/Stroke
The first application of health-monitoring sensors was through IoT-based healthcare-monitoring systems; these can gather and measure the necessary data, transmit these data through various stages reliably to the gateway and the cloud server, and perform some edge tasks to provide low-latency decision-making for cardiac-related diseases and prediction. Some of the pieces utilize sensors to determine heart rate []. Several projects involve using WSN technology to continuously monitor heart patients who need a real-time monitoring system []. This WSN has several medical-grade sensors and devices that can track blood pressure, body temperature, heart rate, and pulse. A critical patient’s real-time ECG is also preserved so that the patient is continuously watched [,,,,].
2.
Body-temperature measuring
During the pandemic, IoT-based smart health-monitoring devices with sensors for COVID-19 patients based on body temperature, pulse, and SpO2 were beneficial. Through a mobile application, these systems can measure a human’s body temperature, oxygen saturation, and pulse rate [].
3.
Activity recognition
One of the many uses for medical wearables now being used is activity recognition. Almost all fitness trackers perform this kind of recognition. Fitness trackers are now the most popular wearables for tracking a person’s activity. A lot of guesswork is being carried out in the background, but most of them include a highly sensitive 3D accelerometer that allows the sensor to determine the acceleration [].
4.
Blood-glucose monitoring and hemoglobin concentration
Heart-rate sensors, blood-glucose monitors, endoscopic capsules, and other devices make up the Internet of Medical Things (IoMT), which together, create the IoMT diabetic-based WBSN monitoring system [,].
5.
Respiration-rate detection and monitoring
We can keep an eye on the human body’s respiratory system in several ways. Some writers employed sophisticated sensors that keep track of breathing patterns. A bio-impedance sensor can be useful [,,].
6.
Sleep monitoring
This sleep-tracking app assists the user in adjusting their sleep patterns and maintaining a healthy life cycle. For this, various sensors are utilized. Wearables often track heart rate, pulse rate, SpO2 levels, and breathing patterns, and by taking these measurements into account, they may make an educated decision regarding the quality of sleep [].
7.
Alzheimer’s disease monitoring and Anemia detection
Monitoring for Alzheimer’s disease has several issues and needs to be handled carefully. When a patient is alone, diagnosing them with Alzheimer’s is impossible [,,,].
8.
Molecular diagnostics and Clinical diagnosis
Due to quick and affordable healthcare applications with reduced risk of infection, recent developments in biosensors for patient-friendly diagnosis and implantable devices for patient-friendly therapy have attracted a lot of attention. The rapid development of point-of-care (POC) sensor platforms and implantable devices with specialized functionality has been made possible by incorporating recently created materials into medical equipment [,]. A lot of work has been conducted on the clinical diagnosis of albumin-related diseases [,].
9.
Blood-oxygen-saturation detection
Along with precise, ongoing monitoring of intravascular oxygen levels, it is crucial to monitor patients’ cardiovascular health following cardiothoracic surgery []. There are new types of data, such as oxygen saturation, which are continuously collected using oxygen-saturation (SpO2) sensors and represent the percentage of oxygen-saturated hemoglobin compared to the total amount of hemoglobin in the blood; these are becoming available for market wearables. Other behavioral and physiological biometric types are already available in many market wearables [,,].
Thus, it has been shown that health-monitoring sensors are used in various applications and can be used in the future for various diseases, particularly those that focus more on sample or data collection, monitoring, or evaluation. We may assert that whenever a sensor is employed, there is a possibility to collect the necessary data and deliver the desired outcomes, depending on precision and accuracy. Additionally, incorporating the cloud, geographic information systems, and mobile devices has improved the process of sensor-based data gathering and monitoring while allowing for flexible remote sharing and communication.
Numerous case studies and applications are possible for health-monitoring sensors. They can be used to measure hemoglobin concentration; for molecular diagnostics; to provide clinical diagnoses of disorders associated with albumin; to measure heart rate, blood-oxygen saturation, respiration rate, and anemia; to diagnose Alzheimer’s; and for many other things.

4.2.2. Classification of Health-Monitoring Sensors

With advancements in wireless communications, medical sensor technology, and data-collection methods, it is now possible to remotely monitor a person’s health by putting wearable technology on them and analyzing the data collected. These sensors and wearable devices can be integrated into various accessories such as clothing, wristbands, glasses, socks, hats, and shoes, as well as other devices such as smartphones, headphones, and wristwatches.
Pawan Singh [] classified medical sensors into two categories: contact sensors (i.e., on-body or wearables) and non-contact sensors (i.e., peripherals). Contact sensors are further classified into two sub-categories: monitoring and therapeutic. Again, non-contact sensors are further classified into three sub-categories. All the sub-categories are further classified based on their use. Figure 5 illustrates the classification of health-monitoring sensors with examples of their use.
Figure 5. Classification of health-monitoring sensors [].
Primarily, health-monitoring sensors can be divided into contact (i.e., on-body) and non-contact (i.e., peripheral) sensors. Contact sensors are attached to the body to monitor physiological behaviors, chemical-level identification, and optical measurement-related monitoring. Contact sensors are also used in therapy-related monitoring such as medication, stimulation, and emergencies. Non-contact sensors are used for monitoring fitness- and wellness-related factors, behavior, and rehabilitation. An example of each type of monitoring is shown in Figure 5.
The following are some of the medical applications that could benefit from the use of medical sensors and wearable devices []:
  • Monitoring vital signs in hospitals.
  • Aging in place and in motion.
  • Assistance with motor and sensory impairments.
  • Large-scale medical and behavioral research in the field.
Based on the applications in which they are most frequently used, we have divided health-monitoring sensors into different groups for performance-wise evaluations. These sensors can be divided into many categories, which are covered in the subsections. Figure 6 is a collection of several wearable sensors applied in various research projects and employed in IoT systems in healthcare.
Figure 6. Various application of use cases and IoT sensors for healthcare monitoring [,,,,,,].

4.2.3. Performance Evaluation of IoT Sensors

Any healthcare-monitoring system’s sensors serve as its brain and heart. Thus, they must be reliable. Almost all types of sensors used should be small, quiet, accurate, have short data-transmission delays, use little power, and perform well overall. Wearable sensors must be both precise and compact, which presents a challenge. However, in case of wearable sensors, the more value is given to outputs, and they need to be reasonably accurate, too, so that the doctor can use these values to make decisions. Medical-grade sensors are large and difficult to transport and require specialized equipment and trained personnel [].
Additionally, various IoT sensor-based applications constantly require authentication, security, and privacy. Numerous protocols are readily available on the market to assist with security and help offer some solutions over an extended period. Nevertheless, these integrated and crucial data-based apps’ security measures are constantly vulnerable to intrusion.

5. Security and Protocols for IoT Healthcare-Monitoring Systems

Along with the utilization of the IoT, there has also been an increase in the risk of new security assaults and weaknesses in healthcare systems. Healthcare data are highly sensitive and contain personal identifying information such as social security numbers. This is because many medical devices collect and share critical and sensitive patient-related data on the Internet via various connected devices for further evaluations and decisions. IoT technology’s nature presents complexity and incompatibility difficulties in medical-related IoT devices []. As a result, security issues such as a lack of availability, confidentiality, and integrity arise. Some of the IoT healthcare solutions include software and hardware that monitor and regulate patients’ vital signs in the form of monitoring services, which are connected to the IoT for data processing. However, these solutions are always at a high risk of security threats such as authorization, privacy, and authentication breaches []. Cybersecurity in healthcare has emerged as a big problem. Device flaws could be exploited by hackers, resulting in IoT system operational disruption. More importantly, due to the limitations of medical equipment, such as their scalability, power consumption, and interoperability, standard security criteria for countermeasures for attacks are not relevant. Moreover, when it comes to criteria for security, privacy, and dependability, the medical IoT technology should be trusted too. Additionally, some physical and technical protections to prevent data leakage are available on the market. However, these measures have fallen short of what is needed; stronger and more modern security standards should be implemented, and a resilient strategy should be implemented to save the crucial data [,]. Therefore, to better understand and develop a secure IoT-based healthcare infrastructure, it is necessary to also determine security requirements [].
The available solutions could include more secure overlay networks such as the Onion Router (TOR) network, which might be used to transfer confidential data. Moreover, authentication and identity-verification methods such as signatures, voice patterns, finger-print scanning, passwords, and smart cards could be employed in application protocols. Existing security solutions, such as RSA, seed phrases, and DSS, may also be used at all connection endpoints. Technologies such as SDN, blockchain, and NFT tickets could be used to provide authentic and customized service. Last but not the least, artificial intelligence-based approaches that can be used to detect anomalies in IoT networks [,] could be implemented to overcome the issues and challenges of security in IoT-based healthcare-monitoring systems.
Eventually, with the advancements in the IoT’s common standards, many protocols have been created to evaluate the services that are used for IoT solutions, and their relevance, to connect a variety of devices to the Internet and various architectures. IoT protocols for a particular application are selected considering the application’s requirements [,]. Wearable technology, smart medical equipment, smart homes, and remote monitoring are some of the IoT’s most exciting healthcare applications. Some recent studies emphasized IoT interoperability, which includes the healthcare-domain aspects of the IoT, which should compulsorily include the standardization of dependable communication protocols for improved and enhanced mobile and wearable technology. In addition, low-cost, low-power embedded processors are useful solutions. The most popular emerging IoT communication protocols that are extensively used to develop smart IoT applications include CoAP, MQTT, XMPP, AMQP, DDS, LoWPAN, BLE, and Zigbee. The most promising IoT-based healthcare apps for patient monitoring, therapy, and diagnosis are dependent on these protocols. The main uses of these protocols are to enhance the performance of telehealth, medication management, chronic-disease detection, bio-physical parameter monitoring, home and eldercare, and chronic-disease monitoring [].

6. IoT Healthcare Challenges and Open Issues

Although the IoT can provide personal health benefits, building data-collecting schemes that are efficient and secure to use in IoT healthcare-monitoring systems still presents numerous limiting issues. These various open research challenges, which include functionality, performance, data privacy, reliability, security, and stability, are considered in this section. We have divided the challenges and open issues into various categories: security-based, performance-based, computational-intelligence-based, integration-based, energy-based, and disease-prediction-based (see Figure 7).
Figure 7. IoT healthcare challenges and open issues.

6.1. Security-Based: Security and Privacy

There are ethical challenges to privacy and security. Hackers can easily access medical records, which are transformed into digital records (stored in electronic health records) and stored in the cloud. In a security breach of the cloud server, hackers can access patients’ medical data. This causes problems with user authentication, data ownership, data-protection policies, and misuse of health information [,,].
Security and privacy must be addressed in IoT system design and development to improve confidence in employing the IoT in healthcare. Each IoT layer and component must have security protocols to reduce security risks and protect privacy. Developers must ensure that IoT “things” and the systems they connect to are secure, so that users can rely on sensors, devices, gateways, and IoT services, and so that their identity, safety, and privacy are protected. Numerous commercial and personal technologies are built without ensuring these security and privacy factors []. Various health IoT-based remote monitoring applications are majorly influenced by the integrated security mechanisms with built in hardware and software components of sensors and transceivers for wireless communications. Applications that collect data from these sensors and devices are typically designed with privacy in mind, using strong authentication and encryption measures and other safeguards, during both storage and transmission. Commonly, these apps integrate with pre-existing healthcare information providers, whose own security measures and privacy policies are put into effect. It is still possible that they have not adopted the most recent measures to secure data [,].
Solutions aimed at protecting individuals’ privacy should give people the power to choose who can lawfully view and make changes to their data. Users of the IoT need to trust that their personal information will be handled securely and responsibly. Multiple laws and policies, such as HIPAA and the EU’s General Data Protection Regulation, have already addressed privacy concerns when creating IoT applications (GDPR). There is, nevertheless, a requirement to think about the secondary use of the data gathered via home IoT remote monitoring. Patients using these systems may provide their permission for their information to be used just for the home health-monitoring system [,].
Indeed, securing data and assuring privacy remains a key challenge to the health IoT. Data that are transmitted to the data-processing unit could be spied upon, or the data could be manipulated, leading to a flawed analysis of Big Data. Therefore, ensuring the data are transmitted securely from the nodes to the processing unit is critical. Furthermore, during data processing, the identity of the individual yielding the data must be protected. By adopting cryptographic methods, the algorithms that process the data do not need to map the data to the user [,,].

6.2. QoS-Based: Performance, Fuctional Stability and Reliability, and Cost

The priority of Quality of Service (QoS) is not consistent but varies depending upon needs; it safeguards a particular level of data-transmission performance. The primary challenge is maintaining the integrity of sensitive patient data while exchanging data from the end node to the server node. In the IoT, latency is the duration needed to send a packet of data between node devices [].
QoS indicators apply to all the IoT architecture sub-components, from the home of the individual to the healthcare cloud services. Memory consumption needs to be checked to ensure there is no leakage of memory or data being cached inappropriately. Delays and interruptions to data transfer due to wireless disruption result in unexpected disconnection or erratic connectivity, poor signal, and slow network speeds. Another performance metric is energy-consumption management, which can also lead to reduced functionality, reliability, performance, and stability. The process of continuously collecting data is energy expensive for the devices. Following a period of battery discharge, the battery needs a period in which to recharge, but during that period, the device is unable to monitor continuously. When the charge of the battery is low, the device can experience a symptom comparable to wireless interference []. Where there is insufficient power for the wireless sensor nodes to operate, a severe issue is presented. To enable the nodes to function at low power, more effort should be dedicated to devising energy-efficient solutions, renewable technology, and green energy [].
The IoT offers flexibility for monitoring patients who require ongoing medical evaluation, allowing the patient to live at home rather than being in the hospital. However, some patients find wearable devices to be uncomfortable. The data can become noisy as they are first transmitted from the sensor to the control device, and then, forwarded to the monitoring center. With superior architecture, data can be shared with minimal loss of integrity. Data signals can also be enhanced by applying noise-removal techniques. Most methods currently used to monitor ECGs require the signal to be analyzed in a supervised manner, which makes the process more expensive and can result in detection errors. To reduce costs and improve efficiency, machine learning can be used to analyze signals [].
Another parameter is the cost of medical services, and treatment equipment is more important than ever. Researchers need to discuss and put more effort into minimizing the costs associated with IoT healthcare systems. The high cost of monitoring equipment in the IoT healthcare system is a serious issue. IoT has not yet made treatment services accessible to the average individual at a reasonable price. The cost of medical equipment is increasing [,].
To improve users’ perceptions and experiences of such expensive devices, it is incumbent upon device developers, manufacturers, assessors and testers to address these issues without compromising on cost or quality []. If the challenges outlined above can be resolved, the future IoT in the healthcare sector will be improved.

6.3. Computational Intelligence-Based

Computational-intelligence technologies are still in their infancy. Advanced intelligent computational services are needed for IoT-based healthcare-monitoring systems since computational intelligence is always a backbone of healthcare; it is associated with Internet-related data collection, computations, and evaluation because computing in IoT-based healthcare-monitoring systems is performed on edge devices to optimize data, networks, and traffic accordingly. However, we cannot ignore the fact that edge devices have limited resources and processing power, so we cannot ignore their limitations [,].

6.4. Integration-Based

Integration refers to the connection of current devices or tools with external technology to ensure the accuracy and consistency of data over the course of their lifetime for future expansion. The integrity of the data is still plagued by unresolved problems. IoT-based monitoring systems, when extended and fused with other external device that have various advantages, will improve quality of life. The development of integrated tools will have a significant positive impact on the communications, processing, and services provided by integrated information systems. This means that the IoT healthcare-monitoring systems needs to be extended using various technologies or related technologies such as the cloud, SDN, etc. [,].

6.5. Energy-Based

Monitoring-based healthcare-related IoT devices have a limited battery life. These gadgets still use energy even when they are in energy-saving mode and are not expressly required to read sensors. Some functions must be performed even when the device is in energy-saving mode, but it has a power limitation. Many pieces of medical equipment always need batteries, especially wearables and equipment for patients who need continuous condition monitoring []. An ideal system that integrates low-power communications with a power-efficient hardware architecture is needed to allow prolonged monitoring. Reduced power consumption is an exciting area of study for activity-aware energy models. The performance can be changed from low to high by utilizing context-aware episodic sampling [,].

6.6. Disease-Prediction-Based

The IoT helps to diagnose and treat conditions including chronic diseases, helps with geriatric care, and is used in fitness programs, by accelerating early disease detection []. The projected healthcare system’s future scope will advance the development of medical care that can foretell a patient’s ailment at an early stage. This disease-prediction system will shorten the time it might take to diagnose a condition and assist clinicians in providing treatment as early as possible. This will improve medical services, improve outcomes for the medical healthcare business, and lower medical costs (such as lab tests, X-rays, and some other needless medical tests). Hence, for patients’ benefit, there is also a need to develop a low-cost, independent system that tracks key indicators, transmits information to the cloud or NLP, and notifies the patient early via the appropriate APP [,,].

7. Suggestions and Recommendations

Based on existing studies and their limitations, there is a need to enhance and integrate wearable healthcare devices to connect with other future technology trends, to solve the communication problems and drawbacks of previous studies. Researchers need to ensure that any proposed systems are user-friendly, adaptable, and secure if they want to retain satisfied customers. Disease management and healthcare can benefit from the new opportunities presented by integrating wearable sensors into healthcare systems. The IoT can provide a solution by connecting health-monitoring devices and sensors to the cloud for 24/7 monitoring. Health records are secured on the server and are available instantly.
In the future, a system could be created to diagnose patients’ conditions for chronic diseases and COVID-19; this could help doctors to make the right decision and optimize health conditions, which could improve the functionality of healthcare systems based on the IoT by combining different technological approaches.
Such integration approaches include artificial intelligence (AI), fog computing, Big Data and Nano-Things (IoNT), software-defined networks (SDNs), and the tactile Internet (TI). AI, when integrated with IoT-based healthcare-monitoring systems, can help to generate meaningful and accurate results from sensor data. The fog/edge paradigm can be used to bring computing power closer to where it is needed. Big Data computing can also be utilized in IoT healthcare-monitoring systems because Big Data can make it possible to manage extremely large amounts of data efficiently. In addition, the other most recent technologies of the future, such as the IoNT, software-defined networks (SDNs), and the tactile Internet (TI), have the potential to further enhance the functionality of IoT-based healthcare systems and expand their capabilities in the future.

8. Conclusions

There are endless ways in which the IoT can improve medical care. These include reduced cost, and increased efficiency, accuracy, and performance. The benefits of using the IoT have made it possible to automate healthcare systems in the best way. In this respect, this work aims to be an introductory guide for those who will work in this field in the future, providing them with a detailed reference document related to the IoT and healthcare-monitoring systems. In this work, recent research on IoT-based health-monitoring systems have been reviewed and analyzed in a systematic way. The paper provides in-depth information on their benefits and significance, and a literature review. We also discuss IoT wearable things in healthcare systems and provide a classification of health-monitoring sensors, including the challenges and open issues regarding security and privacy and Quality of Service (QoS). Suggestions for future work have also been included.
In the future, we plan to analyze and evaluate various types of disease-based classification and IoT-based healthcare-monitoring systems. We also plan, in our next phase, to stress the integration of various recent technology trends, such as SDN and AI, with IoT-based healthcare-monitoring systems.

Author Contributions

The authors of this article have contributed to this research paper as follows: Writing and preparation, S.A.; Review and visualization, A.N., W.A.J., M.A.M.A., A.K.B., M.A.-M.K. and S.-H.K.; Editing and revision, S.A., A.N. and A.K.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by University Malaysia Pahang under Product Development Grant Scheme No. PDU203229 and RDU No. 210317 as well as supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant21CTAP-C163815-01).

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank University Malaysia Pahang for providing financial support and laboratory facilities under Product Development Grant Scheme (PDU) No. PDU203229 and RDU No. 210317 as well as to thank the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant21CTAP-C163815-01).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Farhan, L.; Hameed, R.S.; Ahmed, A.S.; Fadel, A.H.; Gheth, W.; Alzubaidi, L.; Fadhel, M.A.; Al-Amidie, M. Energy Efficiency for Green Internet of Things (IoT) Networks: A Survey. Network 2021, 1, 279–314. [Google Scholar] [CrossRef]
  2. Alekya, R.; Boddeti, N.D.; Monica, K.S.; Prabha, R.; Venkatesh, V. IoT based smart healthcare monitoring systems: A literature review. Eur. J. Mol. Clin. Med. 2021, 7, 2020. [Google Scholar]
  3. Naveen; Sharma, R.K.; Nair, A.R. IoT-based Secure Healthcare Monitoring System. In Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 20–22 February 2019; pp. 1–6. [Google Scholar]
  4. Rathi, V.K.; Rajput, N.K.; Mishra, S.; Grover, B.A.; Tiwari, P.; Jaiswal, A.K.; Hossain, M.S. An edge AI-enabled IoT healthcare monitoring system for smart cities. Comput. Electr. Eng. 2021, 96, 107524. [Google Scholar] [CrossRef]
  5. Alshamrani, M. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 4687–4701. [Google Scholar] [CrossRef]
  6. Gera, S.; Mridul, M.; Sharma, S. IoT based Automated Health Care Monitoring System for Smart City. In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021; pp. 364–368. [Google Scholar]
  7. Bhatia, H.; Panda, S.N.; Nagpal, D. Internet of Things and its Applications in Healthcare—A Survey. In Proceedings of the 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 4–5 June 2020; pp. 305–310. [Google Scholar]
  8. Jain, U.; Gumber, A.; Ajitha, D.; Rajini, G.; Subramanian, B. A Review on a Secure IoT-Based Healthcare System. In Proceedings of the Advances in Automation, Signal Processing, Instrumentation, and Control: Select Proceedings of i-CASIC, India, 27–28 February 2020; pp. 3005–3016. [Google Scholar]
  9. Kumar, R.; Rajasekaran, M.P. An IoT based patient monitoring system using raspberry Pi. In Proceedings of the 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE’16), Kovilpatti, India, 7–9 January 2016; pp. 1–4. [Google Scholar]
  10. Meliá, S.; Nasabeh, S.; Luján-Mora, S.; Cachero, C. MoSIoT: Modeling and Simulating IoT Healthcare-Monitoring Systems for People with Disabilities. Int. J. Environ. Res. Public Health 2021, 18, 6357. [Google Scholar] [CrossRef]
  11. Philip, N.Y.; Rodrigues, J.J.P.C.; Wang, H.; Fong, S.J.; Chen, J. Internet of Things for In-Home Health Monitoring Systems: Current Advances, Challenges and Future Directions. IEEE J. Sel. Areas Commun. 2021, 39, 300–310. [Google Scholar] [CrossRef]
  12. Bhardwaj, R.; Gupta, S.N.; Gupta, M.; Tiwari, P. IoT based Healthware and Healthcare Monitoring System in India. In Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 4–5 March 2021; pp. 406–408. [Google Scholar]
  13. Patel, W.D.; Patel, C.; Valderrama, C. IoMT based Efficient Vital Signs Monitoring System for Elderly Healthcare Using Neural Network. Int. J. Res. 2019, VIII, 239. [Google Scholar]
  14. Li, C.; Hu, X.; Zhang, L. The IoT-based heart disease monitoring system for pervasive healthcare service. Procedia Comput. Sci. 2017, 112, 2328–2334. [Google Scholar] [CrossRef]
  15. Cao, H.-R.; Zhan, C. A Novel Emergency Healthcare System for Elderly Community in Outdoor Environment. Wirel. Commun. Mob. Comput. 2018, 2018, 7841026. [Google Scholar] [CrossRef]
  16. Wu, T.; Wu, F.; Qiu, C.; Redouté, J.M.; Yuce, M.R. A Rigid-Flex Wearable Health Monitoring Sensor Patch for IoT-Connected Healthcare Applications. IEEE Internet Things J. 2020, 7, 6932–6945. [Google Scholar] [CrossRef]
  17. Islam, M.M.; Rahaman, A.; Islam, M.R. Development of smart healthcare monitoring system in IoT environment. SN Comput. Sci. 2020, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
  18. Al-Sheikh, M.A.; Ameen, I.A. Design of mobile healthcare monitoring system using IoT technology and cloud computing. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Baghdad, Iraq, 15 April 2020; p. 012113. [Google Scholar]
  19. Hamim, M.; Paul, S.; Hoque, S.I.; Rahman, M.N.; Baqee, I. IoT Based Remote Health Monitoring System for Patients and Elderly People. In Proceedings of the 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 10–12 January 2019; pp. 533–538. [Google Scholar]
  20. Swaroop, K.N.; Chandu, K.; Gorrepotu, R.; Deb, S. A health monitoring system for vital signs using IoT. Internet Things 2019, 5, 116–129. [Google Scholar] [CrossRef]
  21. Gupta, D.; Parikh, A.; Swarnalatha, R. Integrated healthcare monitoring device for obese adults using internet of things (IoT). Int. J. Electr. Comput. Eng. 2020, 10, 1239–1247. [Google Scholar] [CrossRef]
  22. Alamsyah, M.S.; Ikhlayel, M.; Setijadi, E. Internet of things–based vital sign monitoring system. Int. J. Electr. Comput. Eng. 2020, 10, 5891–5898. [Google Scholar] [CrossRef]
  23. Manoj, A.S.; Hussain, M.A.; Teja, P.S. Patient health monitoring system using IoT. Mater. Today Proc. 2021, 2214–7853. Available online: https://reader.elsevier.com/reader/sd/pii/S2214785321045545?token=8754B71C6BCB0D29EE25147CAB93A0B1F81C57B14222BA15DC7F113D8FCF4283FA11801D93C5D41DE78990D489B38BE3&originRegion=eu-west-1&originCreation=20221008165401 (accessed on 5 October 2022). [CrossRef]
  24. Sahu, M.L.; Atulkar, M.; Ahirwal, M.K.; Ahamad, A. Vital Sign Monitoring System for Healthcare Through IoT Based Personal Service Application. Wirel. Pers. Commun. 2021, 122, 129–156. [Google Scholar] [CrossRef]
  25. Acharya, A.D.; Patil, S.N. IoT based Health Care Monitoring Kit. In Proceedings of the 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 March 2020; pp. 363–368. [Google Scholar]
  26. Raj, J.S. A novel information processing in IoT based real time health care monitoring system. J. Electron. 2020, 2, 188–196. [Google Scholar]
  27. Kishor, A.; Chakraborty, C. Artificial Intelligence and Internet of Things Based Healthcare 4.0 Monitoring System. Wirel. Pers. Commun. 2021, 1–17. Available online: https://link.springer.com/content/pdf/10.1007/s11277-021-08708-5.pdf (accessed on 5 October 2022). [CrossRef]
  28. Souri, A.; Ghafour, M.Y.; Ahmed, A.M.; Safara, F.; Yamini, A.; Hoseyninezhad, M. A new machine learning-based healthcare monitoring model for student’s condition diagnosis in Internet of Things environment. Soft Comput. 2020, 24, 17111–17121. [Google Scholar] [CrossRef]
  29. Kaur, P.; Kumar, R.; Kumar, M. A healthcare monitoring system using random forest and internet of things (IoT). Multimed. Tools Appl. 2019, 78, 19905–19916. [Google Scholar] [CrossRef]
  30. Jeong, S.; Shen, J.-H.; Ahn, B. A Study on Smart Healthcare Monitoring Using IoT Based on Blockchain. Wirel. Commun. Mob. Comput. 2021, 2021, 9932091. [Google Scholar] [CrossRef]
  31. Yadav, P.; Kumar, P.; Kishan, P.; Raj, P.; raj, U. Development of Pervasive IoT Based Healthcare Monitoring System for Alzheimer Patients. J. Phys. Conf. Ser. 2021, 2007, 012035. [Google Scholar] [CrossRef]
  32. Hashim, H.; Salihudin, S.F.B.; Saad, P.S.M. Development of IoT Based Healthcare Monitoring System. In Proceedings of the 2022 IEEE International Conference in Power Engineering Application (ICPEA), Selangor, Malaysia, 7–8 March 2022; pp. 1–5. [Google Scholar]
  33. Mostafa, S.M.G.; Zaki, M.; Islam, M.M.; Alam, M.S.; Ullah, M.A. Design and Implementation of an IoT-Based Healthcare Monitoring System. In Proceedings of the 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh, 26–27 February 2022; pp. 362–366. [Google Scholar]
  34. Jenifer, M.; Rinesh, S.; Thamaraiselvi, K. Internet of Things (IOT) based Patient health care Monitoring System using electronic gadget. In Proceedings of the 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 25–27 May 2022; pp. 487–490. [Google Scholar]
  35. Dhruba, A.R.; Alam, K.N.; Khan, M.S.; Bourouis, S.; Khan, M.M. Development of an IoT-Based Sleep Apnea Monitoring System for Healthcare Applications. Comput. Math. Methods Med. 2021, 2021, 7152576. [Google Scholar] [CrossRef]
  36. Kshirsagar, P.; Pote, A.; Paliwal, K.K.; Hendre, V.; Chippalkatti, P.; Dhabekar, N. A Review on IOT Based Health Care Monitoring System. In Proceedings of the ICCCE 2019, Pune, India, February 2019; Springer: Singapore, 2019; pp. 95–100. [Google Scholar]
  37. Tiwari, A.; Parate, N.; Khamari, M.; Jaiswal, A.; Joshi, P.; Jadhav, P. IOT Based Health Care Monitoring and Facilitation. In Proceedings of the 2022 10th International Conference on Emerging Trends in Engineering and Technology—Signal and Information Processing (ICETET-SIP-22), Nagpur, India, 29–30 April 2022; pp. 1–6. [Google Scholar]
  38. Bhardwaj, V.; Joshi, R.; Gaur, A.M. IoT-Based Smart Health Monitoring System for COVID-19. SN Comput. Sci. 2022, 3, 137. [Google Scholar] [CrossRef] [PubMed]
  39. Khan, M.M.; Alanazi, T.M.; Albraikan, A.A.; Almalki, F.A. IoT-Based Health Monitoring System Development and Analysis. Secur. Commun. Netw. 2022, 2022, 9639195. [Google Scholar] [CrossRef]
  40. Rahman, M.; Mehedi Shamrat, F.; Kashem, M.A.; Akter, M.; Chakraborty, S.; Ahmed, M.; Mustary, S. Internet of things based electrocardiogram monitoring system using machine learning algorithm. Int. J. Electr. Comput. Eng. 2022, 12, 3739–3751. [Google Scholar]
  41. Seneviratne, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K.; Hassan, M.; Seneviratne, A. A survey of wearable devices and challenges. IEEE Commun. Surv. Tutor. 2017, 19, 2573–2620. [Google Scholar] [CrossRef]
  42. Hiremath, S.; Yang, G.; Mankodiya, K. Wearable Internet of Things: Concept, architectural components and promises for person-centered healthcare. In Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and Healthcare—Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Athens, Greece, 3–5 November 2014; pp. 304–307. [Google Scholar]
  43. Misran, N.; Islam, M.S.; Beng, G.K.; Amin, N.; Islam, M.T. IoT Based Health Monitoring System with LoRa Communication Technology. In Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI), Bandung, Indonesia, 9–10 July 2019; pp. 514–517. [Google Scholar]
  44. Dias, R.M.; Marques, G.; Bhoi, A.K. Internet of Things for Enhanced Food Safety and Quality Assurance: A Literature Review. Adv. Electron. Commun. Comput. 2021, 709, 653–663. [Google Scholar]
  45. Almuhaya, M.A.; Jabbar, W.A.; Sulaiman, N.; Abdulmalek, S. A survey on Lorawan technology: Recent trends, opportunities, simulation tools and future directions. Electronics 2022, 11, 164. [Google Scholar] [CrossRef]
  46. Desai, M.R.; Toravi, S. A Smart Sensor Interface for Smart Homes and Heart Beat Monitoring using WSN in IoT Environment. In Proceedings of the 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), Mysore, India, 8–9 September 2017; pp. 74–77. [Google Scholar]
  47. Malapane, T.J. A Cyber-Physical System for Smart Healthcare; University of Johannesburg: Johannesburg, South Africa, 2020. [Google Scholar]
  48. Vedaei, S.S.; Fotovvat, A.; Mohebbian, M.R.; Rahman, G.M.E.; Wahid, K.A.; Babyn, P.; Marateb, H.R.; Mansourian, M.; Sami, R. COVID-SAFE: An IoT-Based System for Automated Health Monitoring and Surveillance in Post-Pandemic Life. IEEE Access 2020, 8, 188538–188551. [Google Scholar] [CrossRef]
  49. Wu, F.; Wu, T.; Yuce, M.R. Design and Implementation of a Wearable Sensor Network System for IoT-Connected Safety and Health Applications. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 87–90. [Google Scholar]
  50. Wan, J.; AAH Al-awlaqi, M.; Li, M.; O’Grady, M.; Gu, X.; Wang, J.; Cao, N. Wearable IoT enabled real-time health monitoring system. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 298. [Google Scholar] [CrossRef]
  51. Mamdiwar, S.D.; Shakruwala, Z.; Chadha, U.; Srinivasan, K.; Chang, C.-Y. Recent advances on IoT-assisted wearable sensor systems for healthcare monitoring. Biosensors 2021, 11, 372. [Google Scholar] [CrossRef]
  52. Pal, A.; Visvanathan, A.; Choudhury, A.D.; Sinha, A. Improved heart rate detection using smart phone. In Proceedings of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Korea, 24–28 March 2014; pp. 8–13. [Google Scholar]
  53. Gogate, U.; Bakal, J. Healthcare monitoring system based on wireless sensor network for cardiac patients. Biomed. Pharmacol. J. 2018, 11, 1681. [Google Scholar] [CrossRef]
  54. Arun, U.; Natarajan, S.; Rajanna, R.R. A novel IoT cloud-based real-time cardiac monitoring approach using NI myRIO-1900 for telemedicine applications. In Proceedings of the 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), Bangalore, India, 3–5 October 2018; pp. 1–4. [Google Scholar]
  55. Pal, A.; Sinha, A.; Dutta Choudhury, A.; Chattopadyay, T.; Visvanathan, A. A robust heart rate detection using smart-phone video. In Proceedings of the 3rd ACM MobiHoc Workshop on Pervasive Wireless Healthcare, Bangalore, India, 29 July 2013; pp. 43–48. [Google Scholar]
  56. Gaoan, G.; Zhenmin, Z. Heart rate measurement via smart phone acceleration sensor. In Proceedings of the 2014 International Conference on Smart Computing, Hong Kong, China, 3–5 November 2014; pp. 295–300. [Google Scholar]
  57. Saha, R.; Biswas, S.; Sarmah, S.; Karmakar, S.; Das, P. A Working Prototype Using DS18B20 Temperature Sensor and Arduino for Health Monitoring. SN Comput. Sci. 2021, 2, 1–21. [Google Scholar]
  58. Adeniyi, E.A.; Ogundokun, R.O.; Awotunde, J.B. IoMT-based wearable body sensors network healthcare monitoring system. In IoT in Healthcare and Ambient Assisted Living; Springer: Berlin/Heidelberg, Germany, 2021; pp. 103–121. [Google Scholar]
  59. Fan, Z.; Zhou, Y.; Zhai, H.; Wang, Q.; He, H. A Smartphone-Based Biosensor for Non-Invasive Monitoring of Total Hemoglobin Concentration in Humans with High Accuracy. Biosensors 2022, 12, 781. [Google Scholar] [CrossRef]
  60. Charlton, P.H.; Birrenkott, D.A.; Bonnici, T.; Pimentel, M.A.; Johnson, A.E.; Alastruey, J.; Tarassenko, L.; Watkinson, P.J.; Beale, R.; Clifton, D.A. Breathing rate estimation from the electrocardiogram and photoplethysmogram: A review. IEEE Rev. Biomed. Eng. 2017, 11, 2–20. [Google Scholar] [CrossRef]
  61. Karlen, W.; Garde, A.; Myers, D.; Scheffer, C.; Ansermino, J.M.; Dumont, G.A. Estimation of respiratory rate from photoplethysmographic imaging videos compared to pulse oximetry. IEEE J. Biomed. Health Inform. 2015, 19, 1331–1338. [Google Scholar] [CrossRef]
  62. Haghi, M.; Neubert, S.; Geissler, A.; Fleischer, H.; Stoll, N.; Stoll, R.; Thurow, K. A flexible and pervasive IoT-based healthcare platform for physiological and environmental parameters monitoring. IEEE Internet Things J. 2020, 7, 5628–5647. [Google Scholar] [CrossRef]
  63. Pirani, E.Z.; Bulakiwala, F.; Kagalwala, M.; Kalolwala, M.; Raina, S. Android based assistive toolkit for alzheimer. Procedia Comput. Sci. 2016, 79, 143–151. [Google Scholar] [CrossRef]
  64. Batsis, J.A.; Boateng, G.G.; Seo, L.M.; Petersen, C.L.; Fortuna, K.L.; Wechsler, E.V.; Peterson, R.J.; Cook, S.B.; Pidgeon, D.; Dokko, R.S. Development and usability assessment of a connected resistance exercise band application for strength-monitoring. World Acad. Sci. Eng. Technol. 2019, 13, 340. [Google Scholar]
  65. Wang, R.; Aung, M.S.; Abdullah, S.; Brian, R.; Campbell, A.T.; Choudhury, T.; Hauser, M.; Kane, J.; Merrill, M.; Scherer, E.A. CrossCheck: Toward passive sensing and detection of mental health changes in people with schizophrenia. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 886–897. [Google Scholar]
  66. Ghatpande, N.S.; Apte, P.P.; Joshi, B.N.; Naik, S.S.; Bodas, D.; Sande, V.; Uttarwar, P.; Kulkarni, P.P. Development of a novel smartphone-based application for accurate and sensitive on-field hemoglobin measurement. RSC Adv. 2016, 6, 104067–104072. [Google Scholar] [CrossRef]
  67. Li, P.; Lee, G.-H.; Kim, S.Y.; Kwon, S.Y.; Kim, H.-R.; Park, S. From diagnosis to treatment: Recent advances in patient-friendly biosensors and implantable devices. ACS Nano 2021, 15, 1960–2004. [Google Scholar] [CrossRef]
  68. Song, J.; Pandian, V.; Mauk, M.G.; Bau, H.H.; Cherry, S.; Tisi, L.C.; Liu, C. Smartphone-based mobile detection platform for molecular diagnostics and spatiotemporal disease mapping. Anal. Chem. 2018, 90, 4823–4831. [Google Scholar] [CrossRef]
  69. Hussain, S.; Chen, X.; Wang, C.; Hao, Y.; Tian, X.; He, Y.; Li, J.; Shahid, M.; Iyer, P.K.; Gao, R. Aggregation and Binding-Directed FRET Modulation of Conjugated Polymer Materials for Selective and Point-of-Care Monitoring of Serum Albumins. Anal. Chem. 2022, 94, 10685–10694. [Google Scholar] [CrossRef]
  70. Muthuraj, B.; Hussain, S.; Iyer, P.K. A rapid and sensitive detection of ferritin at a nanomolar level and disruption of amyloid β fibrils using fluorescent conjugated polymer. Polym. Chem. 2013, 4, 5096–5107. [Google Scholar] [CrossRef]
  71. Lu, W.; Bai, W.; Zhang, H.; Xu, C.; Chiarelli, A.M.; Vázquez-Guardado, A.; Xie, Z.; Shen, H.; Nandoliya, K.; Zhao, H. Wireless, implantable catheter-type oximeter designed for cardiac oxygen saturation. Sci. Adv. 2021, 7, eabe0579. [Google Scholar] [CrossRef]
  72. Muratyan, A.; Cheung, W.; Dibbo, S.V.; Vhaduri, S. Opportunistic multi-modal user authentication for health-tracking IoT wearables. In Proceedings of the The Fifth International Conference on Safety and Security with IoT, Da Nang, Vietnam, 25 April 2021; pp. 1–18. [Google Scholar]
  73. Fang, D.; Hu, J.; Wei, X.; Shao, H.; Luo, Y. A smart phone healthcare monitoring system for oxygen saturation and heart rate. In Proceedings of the 2014 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Shanghai, China, 13–15 October 2014; pp. 245–247. [Google Scholar]
  74. Nemcova, A.; Jordanova, I.; Varecka, M.; Smisek, R.; Marsanova, L.; Smital, L.; Vitek, M. Monitoring of heart rate, blood oxygen saturation, and blood pressure using a smartphone. Biomed. Signal Process. Control 2020, 59, 101928. [Google Scholar] [CrossRef]
  75. Singh, P. Internet of things based health monitoring system: Opportunities and challenges. Int. J. Adv. Res. Comput. Sci. 2018, 9, 224–228. [Google Scholar] [CrossRef]
  76. Ko, J.; Lu, C.; Srivastava, M.B.; Stankovic, J.A.; Terzis, A.; Welsh, M. Wireless sensor networks for healthcare. Proc. IEEE 2010, 98, 1947–1960. [Google Scholar] [CrossRef]
  77. Rashmi, I.; Sahana, M.; Sangeetha, R.; Shruthi, K. IOT based Patient Health Monitoring System to Remote Doctors using Embedded Technology. Int. J. Eng. Res. Technol. 2020, 8, 230–233. [Google Scholar]
  78. Prakash, B.; Nagesh, M.; Mukunda, D.; Gowda, C. Arm Based Health Care Monitoring Services Using Wireless Network. Int. Res. J. Mod. Eng. Technol. Sci. 2020, 2. Available online: https://www.researchgate.net/profile/Mukunda-D-S/publication/341607121_ARM_BASED_HEALTH_CARE_MONITORING_SERVICES_USING_WIRELESS_NETWORK/links/5eca2d6792851c11a884f973/ARM-BASED-HEALTH-CARE-MONITORING-SERVICES-USING-WIRELESS-NETWORK.pdf (accessed on 5 October 2022).
  79. Misbahuddin, S.; Al-Ahdal, A.R.; Malik, M.A. Low-Cost MPI Cluster Based Distributed in-Ward Patients Monitoring System. In Proceedings of the 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), Aqaba, Jordan, 28 October–1 November 2018; pp. 1–6. [Google Scholar]
  80. Patil, H.; Manohare, S.; Magdum, S.; Gore, M.S. Smart Healthcare Monitoring and Patient Report Generation System Using IOT. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8. Available online: https://www.academia.edu/43408033/Smart_Healthcare_Monitoring_and_Patient_Report_Generation_System_using_IOT (accessed on 5 October 2022). [CrossRef]
  81. Mhatre, P.; Shaikh, A.; Khanvilkar, S. Non Invasive E-Health Care Monitoring System Using IOT. Int. J. Innov. Res. Technol. 2020, 6, 307–311. [Google Scholar]
  82. Zaman, F.; Lee, S.; Rahim, M.K.; Khan, S. Smart Antennas and Intelligent Sensors Based Systems: Enabling Technologies and Applications; Hindawi: London, UK, 2019; Volume 2019. [Google Scholar]
  83. El Zouka, H.A.; Hosni, M.M. Secure IoT communications for smart healthcare monitoring system. Internet Things 2021, 13, 100036. [Google Scholar] [CrossRef]
  84. Gholamhosseini, L.; Sadoughi, F.; Ahmadi, H.; Safaei, A. Health internet of things: Strengths, weakness, opportunity, and threats. In Proceedings of the 2019 5th International Conference on Web Research (ICWR), Tehran, Iran, 24–25 April 2019; pp. 287–296. [Google Scholar]
  85. Safavi, S.; Meer, A.M.; Melanie, E.K.J.; Shukur, Z. Cyber vulnerabilities on smart healthcare, review and solutions. In Proceedings of the 2018 Cyber Resilience Conference (CRC), Putrajaya, Malaysia, 13–15 November 2018; pp. 1–5. [Google Scholar]
  86. Pacheco, J.; Ibarra, D.; Vijay, A.; Hariri, S. IoT security framework for smart water system. In Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia, 30 October 2017–3 November 2017; pp. 1285–1292. [Google Scholar]
  87. Nasiri, S.; Sadoughi, F.; Tadayon, M.H.; Dehnad, A. Security requirements of internet of things-based healthcare system: A survey study. Acta Inform. Med. 2019, 27, 253. [Google Scholar] [CrossRef]
  88. Islam, M.; Nooruddin, S.; Karray, F.; Muhammad, G. Internet of Things Device Capabilities, Architectures, Protocols, and Smart Applications in Healthcare Domain: A Review. arXiv 2022, arXiv:2204.05921. [Google Scholar]
  89. Silva, J.d.C.; Rodrigues, J.J.; Al-Muhtadi, J.; Rabêlo, R.A.; Furtado, V. Management platforms and protocols for internet of things: A survey. Sensors 2019, 19, 676. [Google Scholar] [CrossRef]
  90. Kanakaris, V.; Papakostas, G.A. Internet of things protocols—A survey. Int. J. Humanit. Technol. 2020, 1, 101–117. [Google Scholar] [CrossRef]
  91. Bhuiyan, M.N.; Rahman, M.M.; Billah, M.M.; Saha, D. Internet of Things (IoT): A review of its enabling technologies in healthcare applications, standards protocols, security and market opportunities. IEEE Internet Things J. 2021, 8, 10474–10498. [Google Scholar] [CrossRef]
  92. El-Rashidy, N.; El-Sappagh, S.; Islam, S.M.R.; M. El-Bakry, H.; Abdelrazek, S. Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges. Diagnostics 2021, 11, 607. [Google Scholar] [CrossRef]
  93. Abdelmaboud, A.; Ahmed, A.I.A.; Abaker, M.; Eisa, T.A.E.; Albasheer, H.; Ghorashi, S.A.; Karim, F.K. Blockchain for IoT Applications: Taxonomy, Platforms, Recent Advances, Challenges and Future Research Directions. Electronics 2022, 11, 630. [Google Scholar] [CrossRef]
  94. Ali, Z.H.; Ali, H.A. Towards sustainable smart IoT applications architectural elements and design: Opportunities, challenges, and open directions. J. Supercomput. 2021, 77, 5668–5725. [Google Scholar] [CrossRef]
  95. Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The future of healthcare internet of things: A survey of emerging technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [Google Scholar] [CrossRef]
  96. Goyal, S.; Sharma, N.; Bhushan, B.; Shankar, A.; Sagayam, M. Iot enabled technology in secured healthcare: Applications, challenges and future directions. In Cognitive Internet of Medical Things for Smart Healthcare; Springer: Berlin/Heidelberg, Germany, 2021; pp. 25–48. [Google Scholar]
  97. Ullah, A.; Azeem, M.; Ashraf, H.; Alaboudi, A.A.; Humayun, M.; Jhanjhi, N. Secure healthcare data aggregation and transmission in IoT—A survey. IEEE Access 2021, 9, 16849–16865. [Google Scholar] [CrossRef]
  98. Selvaraj, S.; Sundaravaradhan, S. Challenges and opportunities in IoT healthcare systems: A systematic review. SN Appl. Sci. 2020, 2, 1–8. [Google Scholar] [CrossRef]
  99. Aghdam, Z.N.; Rahmani, A.M.; Hosseinzadeh, M. The role of the Internet of Things in healthcare: Future trends and challenges. Comput. Methods Programs Biomed. 2021, 199, 105903. [Google Scholar] [CrossRef]
  100. Raykar, S.S.; Shet, V.N. Design of healthcare system using IoT enabled application. Mater. Today Proc. 2020, 23, 62–67. [Google Scholar] [CrossRef]
  101. Birje, M.N.; Hanji, S.S. Internet of things based distributed healthcare systems: A review. J. Data Inf. Manag. 2020, 2, 149–165. [Google Scholar] [CrossRef]
  102. Lou, Z.; Wang, L.; Jiang, K.; Wei, Z.; Shen, G. Reviews of wearable healthcare systems: Materials, devices and system integration. Mater. Sci. Eng. R Rep. 2020, 140, 100523. [Google Scholar] [CrossRef]
  103. Majedi, N.; Naeem, M.; Anpalagan, A. Telecommunication integration in e-healthcare: Technologies, applications and challenges. Trans. Emerg. Telecommun. Technol. 2016, 27, 775–789. [Google Scholar] [CrossRef]
  104. Kim, S.; Kim, S. User preference for an IoT healthcare application for lifestyle disease management. Telecommun. Policy 2018, 42, 304–314. [Google Scholar] [CrossRef]
  105. Javaid, M.; Khan, I.H. Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 Pandemic. J. Oral Biol. Craniofacial Res. 2021, 11, 209–214. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.