Stancu Type Baskakov—Durrmeyer Operators and Approximation Properties
Abstract
:1. Preliminaries and Introduction
2. Basic Results
3. Approximation Properties
4. Statistical Approximation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weierstrass, K. Über die analytische Darstellbarkeit sogennanter willkürlicher Functionen einer reellen Veränderlichen. Sitzungsber. Akad. Berlin 1885, 633–639, 789–805. [Google Scholar]
- Borel, E. Leçons sur les Fonctions de Variables Réelles et Les Développements en Séries de Polynômes; Gauthier-Villars: Paris, France, 1905. [Google Scholar]
- Bernstein, S.N. Démonstation du théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow 1912, 13, 1–2. [Google Scholar]
- Kantorovich, L.V. Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II. C. R. Acad. URSS 1930, 20, 563–568. [Google Scholar]
- Mirakjan, G.M. Approximation of continuous functions with the aid of polynomials (Russian). Dokl. Akad. Nauk. SSSR 1941, 31, 201–205. [Google Scholar]
- Szász, O. Generalizations of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 1950, 45, 239–245. [Google Scholar] [CrossRef]
- Durrmeyer, J.L. Une Formule D’inversion de la Transformee de Laplace, Applications a la Theorie des Moments, These de 3e Cycle; Faculte des Sciences de l’ Universite de Paris: Paris, France, 1967. [Google Scholar]
- Baskakov, V.A. A sequence of linear positive operators in the space of continuous functions. Dokl. Acad. Nauk. SSSR 1957, 113, 249–251. [Google Scholar]
- Eggenberger, F.; Pólya, G. Uber die statistik verkerter vorgänge. Z. Angew. Math. Mech. 1923, 1, 279–289. [Google Scholar] [CrossRef]
- Stancu, D.D. Approximation of functions by a new class of linear polynomial operators. Rev. Roumaine Math. Pures Appl. 1968, 13, 1173–1194. [Google Scholar]
- Stancu, D.D. Two classes of positive linear operators. Anal. Univ. Timişoara Ser. Matem. 1970, 8, 213–220. [Google Scholar]
- Neer, T.; Acu, A.M.; Agrawal, P.N. Bezier variant of genuine-Durrmeyer type operators based on Pólya distribution. Carpathian J. Math. 2017, 33, 73–86. [Google Scholar]
- Dhamija, M.; Deo, N. Jain-Durrmeyer operators associated with the inverse Pólya–Eggenberger distribution. Appl. Math. Comput. 2016, 286, 15–22. [Google Scholar] [CrossRef]
- Deo, N.; Dhamija, M.; Miclǎuş, D. Stancu-Kantorovich operators based on inverse Pólya–Eggenberger distribution. Appl. Math. Comput. 2016, 273, 281–289. [Google Scholar] [CrossRef]
- Gupta, V.; Acu, A.M.; Sofonea, D.F. Approximation of Baskakov type Pólya-Durrmeyer operators. Appl. Math. Comput. 2017, 294, 318–331. [Google Scholar] [CrossRef]
- Mursaleen, M.; Al-Abied, A.A.H.; Salman, M.A. Chlodowsky type (λ;q)-Bernstein-Stancu operators. Azerbaijan J. Math. 2020, 10, 75–101. [Google Scholar]
- Mursaleen, M.; Khan, F.; Khan, A.; Kilicman, A. Some approximation properties of bivariate q-Stancu-Beta operators. J. Function Spaces 2014, 2014, 270673. [Google Scholar]
- Rahman, S.; Mursaleen, M.; Khan, A. A Kantorovich variant of Lupas-Stancu operators based on Polya distribution with error estimation. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mater. RACSAM 2020, 114, 75. [Google Scholar] [CrossRef]
- Devore, R.A.; Lorentz, G.G. Constructive Approximation; Springer: Berlin, Germany, 1993. [Google Scholar]
- Gadjiev, A.D. On P. P. Korovkin type theorems. Mater. Zametki 1976, 20, 781–786. [Google Scholar]
- Fast, H. Sur la convergence statistique. Colloq. Math. 1951, 2, 241–244. [Google Scholar] [CrossRef]
- Khan, A.; Sharma, V. Statistical approximation by (p,q)-analogue of Bernstein-Stancu operators. Azerb. J. Math. 2018, 8, 100–121. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilicman, A.; Mursaleen, M.A.; Al-Abied, A.A.H.A. Stancu Type Baskakov—Durrmeyer Operators and Approximation Properties. Mathematics 2020, 8, 1164. https://doi.org/10.3390/math8071164
Kilicman A, Mursaleen MA, Al-Abied AAHA. Stancu Type Baskakov—Durrmeyer Operators and Approximation Properties. Mathematics. 2020; 8(7):1164. https://doi.org/10.3390/math8071164
Chicago/Turabian StyleKilicman, Adem, Mohammad Ayman Mursaleen, and Ahmed Ahmed Hussin Ali Al-Abied. 2020. "Stancu Type Baskakov—Durrmeyer Operators and Approximation Properties" Mathematics 8, no. 7: 1164. https://doi.org/10.3390/math8071164
APA StyleKilicman, A., Mursaleen, M. A., & Al-Abied, A. A. H. A. (2020). Stancu Type Baskakov—Durrmeyer Operators and Approximation Properties. Mathematics, 8(7), 1164. https://doi.org/10.3390/math8071164