Abstract
In this paper, we prove that is the largest Fibonacci number whose decimal expansion is of the form . The proof uses lower bounds for linear forms in three logarithms of algebraic numbers and some tools from Diophantine approximation.
MSC:
primary 11A63, 11B39; secondary 11J86
1. Introduction
Let be the Fibonacci sequence given by second-order recurrence , for , with initial conditions and . A few terms of this sequence are
In the last decades, many results on Diophantine properties of Fibonacci numbers have been proved with the use of refined tools in number theory. For instance, Bugeaud, Mignotte, and Siksek [] settled the problem of Fibonacci perfect power numbers (i.e., the equation , for ) by combing the powerful Baker’s theory with the Modular method (used by Wiles in the proof of the Fermat Last Theorem). See a generalization of their result in [].
We remark that digital problems involving Fibonacci numbers have received much attention in the literature. A first result in this direction was proved, in 2000, by F. Luca [] who showed that the largest Fibonacci number with only one distinct digit is . After this, many authors worked on repdigits (i.e., integers having only one distinct digit in its decimal expansion) as expressions related to sum, product of terms of binary recurrences (see [,,,,,,,,,] and references therein). However, the related problem of finding all Fibonacci numbers with only two distinct digits remains open.
The aim of this paper is to continue this program. In fact, our main result searches for all Fibonacci numbers of the form , which provides a generalization for Luca’s result (). More precisely, our main result is the following:
Theorem 1.
Let and . The largest solution of the Diophantine equation
in positive integers , and ℓ, with , is . Explicitly, .
Our proof combines two deep techniques in number theory, namely, the Baker’s theory on linear forms in logarithms and some tools from Diophantine approximation (a reduction method due to Baker and Davenport).
2. Auxiliary Results
In this section, we shall present some results which will be useful in the proofs.
Let and . The Binet’s formula asserts that . From this formula, it is possible to deduce that the estimates
hold for all . In addition, this Binet’s formula allows us to manipulate our Diophantine equation to obtain upper bounds for some linear forms in three logarithms. Thus, in order to obtain lower bounds for these forms, we shall use the celebrated Baker’s theory. Among these lower bounds, we decided to use one which was proved in ([], Theorem 9.4).
Lemma 1.
Let be real algebraic numbers and let be nonzero rational integer numbers. Let D be the degree of the number field over and let be a positive real number satisfying
where . Assume that
If , then
Here, the logarithmic height of an n-degree algebraic number is defined as
where a is the leading coefficient of the minimal primitive polynomial of (over ) and are the (algebraic) conjugates of .
With these lower and upper bounds, we shall obtain an upper bound for n which is, in general, very large and then the next step is to reduce it. For that, we shall use a reduction method which is originated from Diophantine approximation. Here, we shall use a result due to Dujella and Pethö [] (which is a variant of a famous method due to Baker–Davenport). For a real number x we use for the distance from x to the nearest integer (the so-called Nint function).
Lemma 2.
Let be an integer and let be real numbers, such that . Let be a convergent of the continued fraction expansion of γ such that and > 0. Then there is no solution to the Diophantine inequality
in positive integers with
After presetting these tools, we can now prove our main result.
3. The Proof of The Theorem
3.1. Finding a Bound on N
By the Binet’s formula and the identity in Equation (1), we have
Thus,
On dividing through by , we obtain
where we used the fact that . Now, we are in a position to apply Lemma 1, but first we must prove that . Indeed, in the contrary case, we would get that which is an absurd. Thus, let us take
Note that and then . The conjugates of , and are , respectively. Surely, and are algebraic integers, while the minimal polynomial of is which is a divisor of . Therefore,
(A more relaxed upper bound for could be found by using the well-known property that ). In addition, and . Let us take , and . Of course, we can assume that . Thus,
where
By combining the estimates in Equations (4) and (5), we get
Now, we have that has digits and so
Since and , we have
so . Thus, we can take , which yields to
and therefore .
3.2. Reducing the Bound
Now, let us write . We know that , for all . By supposing that (the other case is completely similar, where we used the fact that , if ), we can rewrite Equation (4) as
Since (because ), we can divide the previous inequality by , to obtain
where and .
Clearly is an irrational number (because is irrational for any non-zero integer k). Let us denote as the nth convergent of its continued fraction.
In order to reduce our bound on m, we shall use Lemma 2. Now, since , we choose . Thus,
then . Furthermore, we have . On the other hand, by computing , for and , we have that the minimal value of this expression is obtained when and is . Hence,
We notice the all the hypotheses of the Lemma 2 are fulfilled, where and , so, by that lemma, there is no solution of the inequality in Equation (7) (and then for the Diophantine Equation (1)) for n in the range
Since , we get . By using Equation (6), we deduce that
and so . Since , it is seen that has at least 5 digits yielding . A simple search in the list of the Fibonacci numbers in the range (see Table A1 in Appendix A), returns only with the required properties. This completes the proof. □
4. Conclusions
In this paper we have been interested in finding all Fibonacci numbers which are special concatenation of digits. In particular, we show that is the largest Fibonacci number whose decimal expansion is of the form , where , and c are decimal digits. Our approach to the proof is based on the combination of lower bounds for linear forms in logarithms (due to Baker) with reduction methods (due to Dujella–Pethö).
Funding
The author was supported by Project of Excelence PrF UHK No. 2215/2020, University of Hradec Králové, Czech Republic.
Acknowledgments
The author is very grateful to the referees for their very constructive suggestions that helped to improve the quality of this paper.
Conflicts of Interest
The author declares no conflict of interest.
Appendix A
Table A1.
Values of for n from 21 to 280.
Table A1.
Values of for n from 21 to 280.
| n | n | ||
|---|---|---|---|
| 21 | 10946 | 280 | 14691098406862188148944207245954912110548093601382197697835 |
| 22 | 17711 | 279 | 9079598147510263717870894449029933369491131786514446266146 |
| 23 | 28657 | 278 | 5611500259351924431073312796924978741056961814867751431689 |
| 24 | 46368 | 277 | 3468097888158339286797581652104954628434169971646694834457 |
| 25 | 75025 | 276 | 2143402371193585144275731144820024112622791843221056597232 |
| 26 | 121393 | 275 | 1324695516964754142521850507284930515811378128425638237225 |
| 27 | 196418 | 274 | 818706854228831001753880637535093596811413714795418360007 |
| 28 | 317811 | 273 | 505988662735923140767969869749836918999964413630219877218 |
| 29 | 514229 | 272 | 312718191492907860985910767785256677811449301165198482789 |
| 30 | 832040 | 271 | 193270471243015279782059101964580241188515112465021394429 |
| 31 | 1346269 | 270 | 119447720249892581203851665820676436622934188700177088360 |
| 32 | 2178309 | 269 | 73822750993122698578207436143903804565580923764844306069 |
| 33 | 3524578 | 268 | 45624969256769882625644229676772632057353264935332782291 |
| 34 | 5702887 | 267 | 28197781736352815952563206467131172508227658829511523778 |
| 35 | 9227465 | 266 | 17427187520417066673081023209641459549125606105821258513 |
| 36 | 14930352 | 265 | 10770594215935749279482183257489712959102052723690265265 |
| 37 | 24157817 | 264 | 6656593304481317393598839952151746590023553382130993248 |
| 38 | 39088169 | 263 | 4114000911454431885883343305337966369078499341559272017 |
| 39 | 63245986 | 262 | 2542592393026885507715496646813780220945054040571721231 |
| 40 | 102334155 | 261 | 1571408518427546378167846658524186148133445300987550786 |
| 41 | 165580141 | 260 | 971183874599339129547649988289594072811608739584170445 |
| 42 | 267914296 | 259 | 600224643828207248620196670234592075321836561403380341 |
| 43 | 433494437 | 258 | 370959230771131880927453318055001997489772178180790104 |
| 44 | 701408733 | 257 | 229265413057075367692743352179590077832064383222590237 |
| 45 | 1134903170 | 256 | 141693817714056513234709965875411919657707794958199867 |
| 46 | 1836311903 | 255 | 87571595343018854458033386304178158174356588264390370 |
| 47 | 2971215073 | 254 | 54122222371037658776676579571233761483351206693809497 |
| 48 | 4807526976 | 253 | 33449372971981195681356806732944396691005381570580873 |
| 49 | 7778742049 | 252 | 20672849399056463095319772838289364792345825123228624 |
| 50 | 12586269025 | 251 | 12776523572924732586037033894655031898659556447352249 |
| 51 | 20365011074 | 250 | 7896325826131730509282738943634332893686268675876375 |
| 52 | 32951280099 | 249 | 4880197746793002076754294951020699004973287771475874 |
| 53 | 53316291173 | 248 | 3016128079338728432528443992613633888712980904400501 |
| 54 | 86267571272 | 247 | 1864069667454273644225850958407065116260306867075373 |
| 55 | 139583862445 | 246 | 1152058411884454788302593034206568772452674037325128 |
| 56 | 225851433717 | 245 | 712011255569818855923257924200496343807632829750245 |
| 57 | 365435296162 | 244 | 440047156314635932379335110006072428645041207574883 |
| 58 | 591286729879 | 243 | 271964099255182923543922814194423915162591622175362 |
| 59 | 956722026041 | 242 | 168083057059453008835412295811648513482449585399521 |
| 60 | 1548008755920 | 241 | 103881042195729914708510518382775401680142036775841 |
| 61 | 2504730781961 | 240 | 64202014863723094126901777428873111802307548623680 |
| 62 | 4052739537881 | 239 | 39679027332006820581608740953902289877834488152161 |
| 63 | 6557470319842 | 238 | 24522987531716273545293036474970821924473060471519 |
| 64 | 10610209857723 | 237 | 15156039800290547036315704478931467953361427680642 |
| 65 | 17167680177565 | 236 | 9366947731425726508977331996039353971111632790877 |
| 66 | 27777890035288 | 235 | 5789092068864820527338372482892113982249794889765 |
| 67 | 44945570212853 | 234 | 3577855662560905981638959513147239988861837901112 |
| 68 | 72723460248141 | 233 | 2211236406303914545699412969744873993387956988653 |
| 69 | 117669030460994 | 232 | 1366619256256991435939546543402365995473880912459 |
| 70 | 190392490709135 | 231 | 844617150046923109759866426342507997914076076194 |
| 71 | 308061521170129 | 230 | 522002106210068326179680117059857997559804836265 |
| 72 | 498454011879264 | 229 | 322615043836854783580186309282650000354271239929 |
| 73 | 806515533049393 | 228 | 199387062373213542599493807777207997205533596336 |
| 74 | 1304969544928657 | 227 | 123227981463641240980692501505442003148737643593 |
| 75 | 2111485077978050 | 226 | 76159080909572301618801306271765994056795952743 |
| 76 | 3416454622906707 | 225 | 47068900554068939361891195233676009091941690850 |
| 77 | 5527939700884757 | 224 | 29090180355503362256910111038089984964854261893 |
| 78 | 8944394323791464 | 223 | 17978720198565577104981084195586024127087428957 |
| 79 | 14472334024676221 | 222 | 11111460156937785151929026842503960837766832936 |
| 80 | 23416728348467685 | 221 | 6867260041627791953052057353082063289320596021 |
| 81 | 37889062373143906 | 220 | 4244200115309993198876969489421897548446236915 |
| 82 | 61305790721611591 | 219 | 2623059926317798754175087863660165740874359106 |
| 83 | 99194853094755497 | 218 | 1621140188992194444701881625761731807571877809 |
| 84 | 160500643816367088 | 217 | 1001919737325604309473206237898433933302481297 |
| 85 | 259695496911122585 | 216 | 619220451666590135228675387863297874269396512 |
| 86 | 420196140727489673 | 215 | 382699285659014174244530850035136059033084785 |
| 87 | 679891637638612258 | 214 | 236521166007575960984144537828161815236311727 |
| 88 | 1100087778366101931 | 213 | 146178119651438213260386312206974243796773058 |
| 89 | 1779979416004714189 | 212 | 90343046356137747723758225621187571439538669 |
| 90 | 2880067194370816120 | 211 | 55835073295300465536628086585786672357234389 |
| 91 | 4660046610375530309 | 210 | 34507973060837282187130139035400899082304280 |
| 92 | 7540113804746346429 | 209 | 21327100234463183349497947550385773274930109 |
| 93 | 12200160415121876738 | 208 | 13180872826374098837632191485015125807374171 |
| 94 | 19740274219868223167 | 207 | 8146227408089084511865756065370647467555938 |
| 95 | 31940434634990099905 | 206 | 5034645418285014325766435419644478339818233 |
| 96 | 51680708854858323072 | 205 | 3111581989804070186099320645726169127737705 |
| 97 | 83621143489848422977 | 204 | 1923063428480944139667114773918309212080528 |
| 98 | 135301852344706746049 | 203 | 1188518561323126046432205871807859915657177 |
| 99 | 218922995834555169026 | 202 | 734544867157818093234908902110449296423351 |
| 100 | 354224848179261915075 | 201 | 453973694165307953197296969697410619233826 |
| 101 | 573147844013817084101 | 200 | 280571172992510140037611932413038677189525 |
| 102 | 927372692193078999176 | 199 | 173402521172797813159685037284371942044301 |
| 103 | 1500520536206896083277 | 198 | 107168651819712326877926895128666735145224 |
| 104 | 2427893228399975082453 | 197 | 66233869353085486281758142155705206899077 |
| 105 | 3928413764606871165730 | 196 | 40934782466626840596168752972961528246147 |
| 106 | 6356306993006846248183 | 195 | 25299086886458645685589389182743678652930 |
| 107 | 10284720757613717413913 | 194 | 15635695580168194910579363790217849593217 |
| 108 | 16641027750620563662096 | 193 | 9663391306290450775010025392525829059713 |
| 109 | 26925748508234281076009 | 192 | 5972304273877744135569338397692020533504 |
| 110 | 43566776258854844738105 | 191 | 3691087032412706639440686994833808526209 |
| 111 | 70492524767089125814114 | 190 | 2281217241465037496128651402858212007295 |
| 112 | 114059301025943970552219 | 189 | 1409869790947669143312035591975596518914 |
| 113 | 184551825793033096366333 | 188 | 871347450517368352816615810882615488381 |
| 114 | 298611126818977066918552 | 187 | 538522340430300790495419781092981030533 |
| 115 | 483162952612010163284885 | 186 | 332825110087067562321196029789634457848 |
| 116 | 781774079430987230203437 | 185 | 205697230343233228174223751303346572685 |
| 117 | 1264937032042997393488322 | 184 | 127127879743834334146972278486287885163 |
| 118 | 2046711111473984623691759 | 183 | 78569350599398894027251472817058687522 |
| 119 | 3311648143516982017180081 | 182 | 48558529144435440119720805669229197641 |
| 120 | 5358359254990966640871840 | 181 | 30010821454963453907530667147829489881 |
| 121 | 8670007398507948658051921 | 180 | 18547707689471986212190138521399707760 |
| 122 | 14028366653498915298923761 | 179 | 11463113765491467695340528626429782121 |
| 123 | 22698374052006863956975682 | 178 | 7084593923980518516849609894969925639 |
| 124 | 36726740705505779255899443 | 177 | 4378519841510949178490918731459856482 |
| 125 | 59425114757512643212875125 | 176 | 2706074082469569338358691163510069157 |
| 126 | 96151855463018422468774568 | 175 | 1672445759041379840132227567949787325 |
| 127 | 155576970220531065681649693 | 174 | 1033628323428189498226463595560281832 |
| 128 | 251728825683549488150424261 | 173 | 638817435613190341905763972389505493 |
| 129 | 407305795904080553832073954 | 172 | 394810887814999156320699623170776339 |
| 130 | 659034621587630041982498215 | 171 | 244006547798191185585064349218729154 |
| 131 | 1066340417491710595814572169 | 170 | 150804340016807970735635273952047185 |
| 132 | 1725375039079340637797070384 | 169 | 93202207781383214849429075266681969 |
| 133 | 2791715456571051233611642553 | 168 | 57602132235424755886206198685365216 |
| 134 | 4517090495650391871408712937 | 167 | 35600075545958458963222876581316753 |
| 135 | 7308805952221443105020355490 | 166 | 22002056689466296922983322104048463 |
| 136 | 11825896447871834976429068427 | 165 | 13598018856492162040239554477268290 |
| 137 | 19134702400093278081449423917 | 164 | 8404037832974134882743767626780173 |
| 138 | 30960598847965113057878492344 | 163 | 5193981023518027157495786850488117 |
| 139 | 50095301248058391139327916261 | 162 | 3210056809456107725247980776292056 |
| 140 | 81055900096023504197206408605 | 161 | 1983924214061919432247806074196061 |
| 141 | 131151201344081895336534324866 | 160 | 1226132595394188293000174702095995 |
| 142 | 212207101440105399533740733471 | 159 | 757791618667731139247631372100066 |
| 143 | 343358302784187294870275058337 | 158 | 468340976726457153752543329995929 |
| 144 | 555565404224292694404015791808 | 157 | 289450641941273985495088042104137 |
| 145 | 898923707008479989274290850145 | 156 | 178890334785183168257455287891792 |
| 146 | 1454489111232772683678306641953 | 155 | 110560307156090817237632754212345 |
| 147 | 2353412818241252672952597492098 | 154 | 68330027629092351019822533679447 |
| 148 | 3807901929474025356630904134051 | 153 | 42230279526998466217810220532898 |
| 149 | 6161314747715278029583501626149 | 152 | 26099748102093884802012313146549 |
| 150 | 9969216677189303386214405760200 | 151 | 16130531424904581415797907386349 |
References
- Bugeaud, Y.; Mignotte, M.; Siksek, S. Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers. Ann. Math. 2006, 163, 969–1018. [Google Scholar] [CrossRef]
- Marques, D.; Togbé, A. Perfect powers among Fibonomial coefficients. C. R. Acad. Sci. Paris 2010, 348, 717–720. [Google Scholar] [CrossRef]
- Luca, F. Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 2000, 57, 243–254. [Google Scholar]
- Adegbindin, C.; Luca, F.; Togbé, A. Lucas numbers as sums of two repdigits. Lith. Math. J. 2019, 59, 295–304. [Google Scholar] [CrossRef]
- Luca, F. Repdigits as sums of three Fibonacci numbers. Math. Commun. 2012, 17, 1–11. [Google Scholar]
- Marques, D.; Togbe, A. Fibonacci and Lucas numbers of the form 2a + 3b + 5c. Proc. Jpn. Acad. Ser. A Math. Sci. 2013, 89, 47–50. [Google Scholar] [CrossRef]
- Qu, Y.; Zeng, J.; Cao, Y. Fibonacci and Lucas Numbers of the Form 2a + 3b + 5c + 7d. Symmetry 2018, 10, 509. [Google Scholar] [CrossRef]
- Erduvan, F.; Keskin, R. Fibonacci and Lucas numbers as products of two repdigits. Turk. J. Math. 2019, 43, 2142–2153. [Google Scholar] [CrossRef]
- Alvarado, S.D.; Luca, F. Fibonacci numbers which are sums of two repdigits. In Proceedings of the XIVth International Conference on Fibonacci Numbers and Their Applications, Morelia, Mexico, 1–7 July 2011; pp. 97–108. [Google Scholar]
- Siar, Z.; Erduvan, F.; Keskin, R. Repdigits as product of two Pell or Pell-Lucas numbers. Acta Math. Univ. Comenian. 2019, 88, 247–256. [Google Scholar]
- Ddamulira, M. Repdigits as sums of three Padovan number. Boletín De La Soc. Matemática Mex. 2020, 26, 1–15. [Google Scholar] [CrossRef]
- Alahmadi, A.; Altassan, A.; Luca, F.; Shoaib, H. Fibonacci numbers which are concatenations of two repdigits. Quaest. Math. 2020, 43, 1–10. [Google Scholar] [CrossRef]
- Trojovský, P. On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes. Mathematics 2019, 7, 700. [Google Scholar] [CrossRef]
- Dujella, A.; Pethö, A. A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxf. Ser. 1998, 49, 291–306. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).