Reversibility of Symmetric Linear Cellular Automata with Radius r = 3
Abstract
:1. Introduction and Preliminaries
2. The Symmetric Linear Cellular Automata with
3. The Reversibility Problem
- (a)
- (b)
- Suppose that (the coefficients of the first upper diagonal of ), then from Equations (16) and (18) we obtain
- (c)
- If (the coefficients of the first lower diagonal of ), then, using Equations (16) and (18), the following result holds.
- (d)
- Now we will compute the coefficients with and corresponding to the entries below the first lower diagonal. In this case
- (e)
- Finally consider the coefficients above the first upper diagonal, with and . A similar calculus shows that
4. A Potential Application to Image Encryption
- (a)
- If stands for the matrix associated to a gray-scale image, then the transformed image is defined by the matrix , is the decimal expression associated to , is the binary expression (one byte) associated to , and .
- (b)
- If is the array representing an RGB color digital image, then determines the transformed digital image, such that with
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Von Neumann, J.; Burks, A.W. Theory of Self-Reproducing Automata; University of Illinois Press: Urbana, IL, USA; London, UK, 1966. [Google Scholar]
- Gardner, M. Mathematical games—The fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. 1970, 223, 120–123. [Google Scholar] [CrossRef]
- Wolfram, S. Cellular Automata and Complexity: Collected Papers; Addison-Wesley: Reading, MA, USA, 1994. [Google Scholar]
- Ilachinski, A. Cellular Automata: A Discrete Universe; World Scientific: Singapore, 2001. [Google Scholar]
- Wolfram, S. A New Kind of Science; Wolfram Media Inc.: Champaign, IL, USA, 2002. [Google Scholar]
- Chopard, B.; Droz, M. Cellular Automata Modeling of Physical Systems; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Gutowitz, H. (Ed.) Cellular Automata: Theory and Experiment; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Sarkar, P. A brief history of cellular automata. ACM Comput. Surv. 2000, 32, 80–107. [Google Scholar] [CrossRef]
- Bhattacharjee, K.; Naskar, N.; Roy, S.; Das, S. A survey of cellular automata: Types, dynamics, non-uniformity and applications. Nat. Comput. 2018, 1–29. [Google Scholar] [CrossRef]
- Toffoli, M.; Margolus, N. Invertible cellular automata: A review. Phys. D 1990, 45, 229–253. [Google Scholar] [CrossRef]
- Morita, K. Reversible computing and cellular automata—A survey. Theor. Comput. Sci. 2008, 395, 101–131. [Google Scholar] [CrossRef]
- Seck-Tuoh-Mora, J.C.; Medina-Marin, J.; Hernandez-Romero, N.; Martinez, G.J.; Barragan-Vite, I. Welch sets for random generation and representation of reversible one-dimensional cellular automata. Inform. Sci. 2017, 382–383, 81–95. [Google Scholar] [CrossRef]
- Di Lena, P.; Margara, L. Nondeterministic Cellular Automata. Inform. Sci. 2014, 287, 13–25. [Google Scholar] [CrossRef]
- Gajardo, A.; Kari, J.; Moreira, A. On time-symmetry in cellular automata. J. Comput. Syst. Sci. 2012, 78, 1115–1126. [Google Scholar] [CrossRef] [Green Version]
- Kari, J. Reversible Cellular Automata: From Fundamental Classical Results to Recent Developments. New Gener. Comput. 2018, 36, 145–172. [Google Scholar] [CrossRef]
- MacLean, S.; Montalva-Medel, M.; Goles, E. Block invariance and reversibility of one dimensional cellular automata. Adv. Appl. Math. 2019, 105, 83–101. [Google Scholar] [CrossRef]
- Uguz, S.; Akin, H.; Siap, I.; Sahin, U. On the irreversibility of Moore cellular automata over the ternary field and image application. Appl. Math. Model. 2016, 17–18, 8017–8032. [Google Scholar] [CrossRef]
- Temiz, F.; Sah, F.; Akin, H. Reversibility of a Family of 2D Cellular Automata Hybridized by Diamond and Cross Rules Over Finite Fields and an Application to Visual Cryptography. J. Cell. Autom. 2019, 14, 241–262. [Google Scholar]
- Su, Y.R.; Wo, Y.; Han, G.Q. Reversible cellular automata image encryption for similarity search. Signal Process. Image Commun. 2019, 72, 134–147. [Google Scholar] [CrossRef]
- Martín del Rey, A. A multi-secret sharing scheme for 3D solid objects. Expert Syst. Appl. 2015, 42, 2114–2120. [Google Scholar]
- Chang, C.-H.; Chang, H. On the Bernoulli automorphism of reversible linear cellular automata. Inform. Sci. 2016, 345, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Cinkir, Z.; Akin, H.; Siap, I. Reversibility of 1D Cellular Automata with Periodic Boundary over Finite Fields . J. Stat. Phys. 2011, 143, 807–823. [Google Scholar] [CrossRef]
- Hernández Serrano, D.; Martín del Rey, A. A closed formula for the inverse of a reversible cellular automaton with (2R + 1)-cyclic rule. Appl. Math. Comput. 2019, 357, 23–34. [Google Scholar]
- Hernández Encinas, L.; Martín del Rey, A. Inverse rules of ECA with rule number 150. Appl. Math. Comput. 2007, 189, 1782–1786. [Google Scholar]
- Siap, I.; Akin, H.; Koroglu, M.E. The reversibility of (2r + 1)-cyclic rule cellular automata. TWMS J. Pure Appl. Math. 2013, 4, 215–225. [Google Scholar]
- Martín del Rey, A.; Rodríguez Sánchez, G. On the reversibility of 150 Wolfram cellular automata. Int. J. Mod. Phys. C 2006, 17, 975–984. [Google Scholar]
- Martín del Rey, A.; Rodríguez Sánchez, G. Reversibility of linear cellular automata. Appl. Math. Comput. 2011, 217, 8360–8366. [Google Scholar]
- Martín del Rey, A.; Rodríguez Sánchez, G. Reversibility of a symmetric linear cellular automata. Int. J. Mod. Phys. C 2009, 20, 1081–1086. [Google Scholar]
- Fridrich, J. Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 1998, 8, 1259–1284. [Google Scholar] [CrossRef]
- Kaur, M.; Kumar, V. A Comprehensive Review on Image Encryption Techniques. Arch. Comput. Methods Eng. 2018. [Google Scholar] [CrossRef]
- Ghadirli, H.M.; Nodehi, A.; Enayatifar, R. An overwiew of encryption algorithms in color images. Signal Process. 2019, 164, 163–185. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín del Rey, A.; Casado Vara, R.; Hernández Serrano, D. Reversibility of Symmetric Linear Cellular Automata with Radius r = 3. Mathematics 2019, 7, 816. https://doi.org/10.3390/math7090816
Martín del Rey A, Casado Vara R, Hernández Serrano D. Reversibility of Symmetric Linear Cellular Automata with Radius r = 3. Mathematics. 2019; 7(9):816. https://doi.org/10.3390/math7090816
Chicago/Turabian StyleMartín del Rey, A., R. Casado Vara, and D. Hernández Serrano. 2019. "Reversibility of Symmetric Linear Cellular Automata with Radius r = 3" Mathematics 7, no. 9: 816. https://doi.org/10.3390/math7090816
APA StyleMartín del Rey, A., Casado Vara, R., & Hernández Serrano, D. (2019). Reversibility of Symmetric Linear Cellular Automata with Radius r = 3. Mathematics, 7(9), 816. https://doi.org/10.3390/math7090816