Robust Estimation of L1-Modal Regression Under Functional Single-Index Models for Practical Applications
Abstract
:1. Introduction
1.1. Contribution
1.2. Organization of the Paper
2. Robust Estimator of Modal Regression in the FSI Structure
3. Main Results
- (CO1)
- , where as .
- (CO2)
- The function belongs to the class , and satisfies the following Lipschitz condition:
- (CO3)
- is a function supported on , and there exist constants and C such that .
- (CO4)
- The smoothing parameters and satisfy .
4. Computational Study
4.1. Simulation Results
4.2. Real Data Application
5. Conclusions and Prospects
6. The Mathematical Developments
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Györfi, L.; Härdle, W.; Sarda, P.; Vieu, P. Nonparametric Curve Estimation from Time Series; Lecture Notes in Statistics; Springer: Berlin, Germany, 1989; Volume 60, pp. viii+153. [Google Scholar] [CrossRef]
- Nadaraya, E.A. Nonparametric Estimation of Probability Densities and Regression Curves; Mathematics and its Applications (Soviet Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1989; Volume 20, pp. x+213. [Google Scholar] [CrossRef]
- Wahba, G. Spline Models for Observational Data; CBMS-NSF Regional Conference Series in Applied Mathematics; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1990; Volume 59, pp. xii+169. [Google Scholar] [CrossRef]
- Wand, M.P.; Jones, M.C. Kernel Smoothing; Monographs on Statistics and Applied Probability; Chapman and Hall, Ltd.: London, UK, 1995; Volume 60, pp. xii+212. [Google Scholar] [CrossRef]
- McQuarrie, A.D.R.; Tsai, C.L. Regression and Time Series Model Selection; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1998; pp. xxii+455. [Google Scholar] [CrossRef]
- Eubank, R.L. Nonparametric Regression and Spline Smoothing, 2nd ed.; Statistics: Textbooks and Monographs; Marcel Dekker, Inc.: New York, NY, USA, 1999; Volume 157, pp. xii+338. [Google Scholar]
- Kedem, B.; Fokianos, K. Regression Models for Time Series Analysis; Wiley Series in Probability and Statistics; Wiley-Interscience John Wiley & Sons: Hoboken, NJ, USA, 2002; pp. xiv+337. [Google Scholar] [CrossRef]
- Bouzebda, S.; Taachouche, N. Oracle inequalities and upper bounds for kernel conditional U-statistics estimators on manifolds and more general metric spaces associated with operators. Stochastics 2024, 96, 2135–2198. [Google Scholar] [CrossRef]
- Tarter, M.E.; Lock, M.D. Model-Free Curve Estimation; Monographs on Statistics and Applied Probability; Chapman & Hall: New York, NY, USA, 1993; Volume 56, pp. x+290. [Google Scholar]
- Chen, Y.C.; Genovese, C.R.; Tibshirani, R.J.; Wasserman, L. Nonparametric modal regression. Ann. Stat. 2016, 44, 489–514. [Google Scholar] [CrossRef]
- Chen, Y.C. Modal regression using kernel density estimation: A review. Wiley Interdiscip. Rev. Comput. Stat. 2018, 10, e1431. [Google Scholar] [CrossRef]
- Bouzebda, S.; Didi, S. Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes. Rev. Mat. Complut. 2021, 34, 811–852. [Google Scholar] [CrossRef] [PubMed]
- Collomb, G.; Härdle, W.; Hassani, S. A note on prediction via estimation of the conditional mode function. J. Stat. Plan. Inference 1987, 15, 227–236. [Google Scholar] [CrossRef]
- Härdle, W.; Hall, P.; Ichimura, H. Optimal smoothing in single-index models. Ann. Stat. 1993, 21, 157–178. [Google Scholar] [CrossRef]
- Stute, W.; Zhu, L.X. Nonparametric checks for single-index models. Ann. Stat. 2005, 33, 1048–1083. [Google Scholar] [CrossRef]
- Tang, Q.; Kong, L.; Rupper, D.; Karunamuni, R.J. Partial functional partially linear single-index models. Stat. Sin. 2021, 31, 107–133. [Google Scholar] [CrossRef]
- Zhou, W.; Gao, J.; Harris, D.; Kew, H. Semi-parametric single-index predictive regression models with cointegrated regressors. J. Econ. 2024, 238, 105577. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, R.; Liu, Y.; Ding, H. Robust estimation for a general functional single index model via quantile regression. J. Korean Stat. Soc. 2022, 51, 1041–1070. [Google Scholar] [CrossRef]
- Ferraty, F.; Peuch, A.; Vieu, P. Modèle à indice fonctionnel simple. C. R. Math. 2003, 336, 1025–1028. [Google Scholar] [CrossRef]
- Ait-Saïdi, A.; Ferraty, F.; Kassa, R.; Vieu, P. Cross-validated estimations in the single-functional index model. Statistics 2008, 42, 475–494. [Google Scholar] [CrossRef]
- Jiang, Z.; Huang, Z.; Zhang, J. Functional single-index composite quantile regression. Metrika 2023, 86, 595–603. [Google Scholar] [CrossRef]
- Nie, Y.; Wang, L.; Cao, J. Estimating functional single index models with compact support. Environmetrics 2023, 34, e2784. [Google Scholar] [CrossRef]
- Chen, D.; Hall, P.; Müller, H.G. Single and multiple index functional regression models with nonparametric link. Ann. Stat. 2011, 39, 1720–1747. [Google Scholar] [CrossRef]
- Ling, N.; Xu, Q. Asymptotic normality of conditional density estimation in the single index model for functional time series data. Stat. Probab. Lett. 2012, 82, 2235–2243. [Google Scholar] [CrossRef]
- Attaoui, S. On the nonparametric conditional density and mode estimates in the single functional index model with strongly mixing data. Sankhya A 2014, 76, 356–378. [Google Scholar] [CrossRef]
- Ling, N.; Cheng, L.; Vieu, P.; Ding, H. Missing responses at random in functional single index model for time series data. Stat. Pap. 2022, 63, 665–692. [Google Scholar] [CrossRef]
- Ezzahrioui, M.; Ould Saïd, E. On the robust regression for a censored response data in the single functional index model. Commun. Stat. Theory Methods 2022, 51, 5162–5186. [Google Scholar] [CrossRef]
- Sun, Y.; Fang, X. Robust estimators of functional single index models for longitudinal data. Commun. Stat. Theory Methods 2024, 53, 6869–6890. [Google Scholar] [CrossRef]
- Han, Z.C.; Lin, J.G.; Zhao, Y.Y. Adaptive semiparametric estimation for single index models with jumps. Comput. Stat. Data Anal. 2020, 151, 107013. [Google Scholar] [CrossRef]
- Hao, M.; Liu, K.; Su, W.; Zhao, X. Semiparametric estimation for the functional additive hazards model. Can. J. Stat. 2024, 52, 755–782. [Google Scholar] [CrossRef]
- Kowal, D.R.; Canale, A. Semiparametric functional factor models with Bayesian rank selection. Bayesian Anal. 2023, 18, 1161–1189. [Google Scholar] [CrossRef]
- Elmezouar, Z.C.; Alshahrani, F.; Almanjahie, I.M.; Bouzebda, S.; Kaid, Z.; Laksaci, A. Strong consistency rate in functional single index expectile model for spatial data. AIMS Math. 2024, 9, 5550–5581. [Google Scholar] [CrossRef]
- Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2006; pp. xx+258. [Google Scholar]
- Azzedine, N.; Laksaci, A.; Ould-Saïd, E. On robust nonparametric regression estimation for a functional regressor. Stat. Probab. Lett. 2008, 78, 3216–3221. [Google Scholar] [CrossRef]
- Barrientos-Marin, J.; Ferraty, F.; Vieu, P. Locally modelled regression and functional data. J. Nonparametr. Stat. 2010, 22, 617–632. [Google Scholar] [CrossRef]
- Demongeot, J.; Hamie, A.; Laksaci, A.; Rachdi, M. Relative-error prediction in nonparametric functional statistics: Theory and practice. J. Multivar. Anal. 2016, 146, 261–268. [Google Scholar] [CrossRef]
- Ezzahrioui, M.; Ould-Saïd, E. Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data. J. Nonparametr. Stat. 2008, 20, 3–18. [Google Scholar] [CrossRef]
- Ezzahrioui, M.; Ould Saïd, E. Some asymptotic results of a non-parametric conditional mode estimator for functional time-series data. Stat. Neerl. 2010, 64, 171–201. [Google Scholar] [CrossRef]
- Dabo-Niang, S.; Laksaci, A. Propriétés asymptotiques d’un estimateur à noyau du mode conditionnel pour variable explicative fonctionnelle. Ann. l’ISUP 2007, 51, 27–42. [Google Scholar]
- Dabo-Niang, S.; Kaid, Z.; Laksaci, A. Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional. AStA Adv. Stat. Anal. 2015, 99, 131–160. [Google Scholar] [CrossRef]
- Ling, N.; Liu, Y.; Vieu, P. Conditional mode estimation for functional stationary ergodic data with responses missing at random. Statistics 2016, 50, 991–1013. [Google Scholar] [CrossRef]
- Bouanani, O.; Rahmani, S.; Laksaci, A.; Rachdi, M. Asymptotic normality of conditional mode estimation for functional dependent data. Indian J. Pure Appl. Math. 2020, 51, 465–481. [Google Scholar] [CrossRef]
- Bouzebda, S.; Laksaci, A.; Mohammedi, M. Single index regression model for functional quasi-associated time series data. REVSTAT 2022, 20, 605–631. [Google Scholar]
- Mohammedi, M.; Bouzebda, S.; Laksaci, A.; Bouanani, O. Asymptotic normality of the k-NN single index regression estimator for functional weak dependence data. Commun. Stat. Theory Methods 2024, 53, 3143–3168. [Google Scholar] [CrossRef]
- Agua, B.M.; Bouzebda, S. Single index regression for locally stationary functional time series. AIMS Math. 2024, 9, 36202–36258. [Google Scholar] [CrossRef]
- Attaoui, S.; Bentata, B.; Bouzebda, S.; Laksaci, A. The strong consistency and asymptotic normality of the kernel estimator type in functional single index model in presence of censored data. AIMS Math. 2024, 9, 7340–7371. [Google Scholar] [CrossRef]
- Miquel Becker, E.; Christensen, J.; Frederiksen, C.; Haugaard, V. Front-Face Fluorescence Spectroscopy and Chemometrics in Analysis of Yogurt: Rapid Analysis of Riboflavin. J. Dairy Sci. 2003, 86, 2508–2515. [Google Scholar] [CrossRef]
- Christensen, J.; Becker, E.M.; Frederiksen, C. Fluorescence spectroscopy and PARAFAC in the analysis of yogurt. Chemom. Intell. Lab. Syst. 2005, 75, 201–208. [Google Scholar] [CrossRef]
- Didi, S.; Al Harby, A.; Bouzebda, S. Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time. Mathematics 2022, 10, 3433. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nezzal, A. Asymptotic properties of conditional U-statistics using delta sequences. Commun. Stat. Theory Methods 2024, 53, 4602–4657. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Wu, H.T. Local linear regression on manifolds and its geometric interpretation. J. Am. Stat. Assoc. 2013, 108, 1421–1434. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almulhim, F.A.; Alamari, M.B.; Bouzebda, S.; Kaid, Z.; Laksaci, A. Robust Estimation of L1-Modal Regression Under Functional Single-Index Models for Practical Applications. Mathematics 2025, 13, 602. https://doi.org/10.3390/math13040602
Almulhim FA, Alamari MB, Bouzebda S, Kaid Z, Laksaci A. Robust Estimation of L1-Modal Regression Under Functional Single-Index Models for Practical Applications. Mathematics. 2025; 13(4):602. https://doi.org/10.3390/math13040602
Chicago/Turabian StyleAlmulhim, Fatimah A., Mohammed B. Alamari, Salim Bouzebda, Zoulikha Kaid, and Ali Laksaci. 2025. "Robust Estimation of L1-Modal Regression Under Functional Single-Index Models for Practical Applications" Mathematics 13, no. 4: 602. https://doi.org/10.3390/math13040602
APA StyleAlmulhim, F. A., Alamari, M. B., Bouzebda, S., Kaid, Z., & Laksaci, A. (2025). Robust Estimation of L1-Modal Regression Under Functional Single-Index Models for Practical Applications. Mathematics, 13(4), 602. https://doi.org/10.3390/math13040602