Abstract
This study investigates bit error rate (BER)-constrained power allocation for uplink non-orthogonal multiple access (NOMA) systems in which a base station employs one-bit analog-to-digital converters. Although one-bit quantization significantly reduces hardware costs and receiver power consumption, it also introduces severe nonlinear distortions that degrade detection performance. To address this challenge, a pairwise error probability expression is first derived for the one-bit quantized uplink NOMA model, from which an analytical upper bound on the BER is obtained. Based on this characterization, a fairness-driven max–min power allocation strategy is formulated to minimize the BER of the worst-performing user. A closed-form solution for the optimal power allocation is obtained under binary phase-shift keying (BPSK) signaling. Simulation results verify the tightness of the analytical BER bound and demonstrate that the proposed power allocation scheme provides noticeable BER improvements that compensate for the performance degradation caused by one-bit quantization.