Abstract
Online reviews on platforms such as Google Maps strongly influence consumer decisions. However, aggregated ratings mask nuanced opinions about specific aspects such as food, drinks, service, lounge, and price. This study presents a multi-aspect sentiment analysis framework for Arabic café reviews. Specifically, we combine machine learning (Linear SVC, Naïve Bayes, Logistic Regression, Decision Tree, Random Forest) and a Convolutional Neural Network (CNN) to perform aspect identification and sentiment classification. A rigorous preprocessing and feature-engineering with TF-IDF and n-gram was implemented and statistically validated through bootstrap confidence intervals and Friedman–Nemenyi significance tests. Experimental results demonstrate that Linear SVC with optimized TF-IDF tri-grams achieved a macro-F1 of 0.89 for aspect identification and 0.71 for sentiment classification. Meanwhile, the CNN model yielded a comparable F1 of 0.89 for aspect identification and a higher 0.76 for sentiment classification. The findings highlight that effective feature representation and model selection can substantially improve Arabic opinion mining. The proposed framework provides a reliable foundation for analyzing Arabic user feedback on location-based platforms and supports more interpretable and data-driven business insights. These insights are essential to enhance personalized recommendations and business intelligence in the hospitality sector.