Certain Geometric Investigations of Three Normalized Bessel-Type Functions of a Complex Variable
Abstract
1. Introduction
- It is recognized that
- And the Struve function is a particular solution of
2. Results Regarding Lommel Functions
3. Results Regarding Struve Functions
4. Results Regarding Bessel Functions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, V.P.; Jain, P.K. Certain classes of univalent functions with negative coefficients. Bull. Austral. Math. Soc. 1976, 14, 409–416. [Google Scholar] [CrossRef]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Schild, A. On starlike function of order α. Am. J. Math. 1965, 87, 65–70. [Google Scholar] [CrossRef]
- MacGregor, T.H. The radius of convexity for starlike function of order α. Proc. Am. Math. Sec. 1963, 14, 71–76. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983; Volume 1–2. [Google Scholar]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Mocanu, S.S.; Miller, P.T. Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 1990, 110, 333–342. [Google Scholar] [CrossRef]
- Singh, S.; Ruscheweyh, V. On the order of starlikeness of hypergeometric functions. J. Math. Anal. Appl. 1986, 113, 1–11. [Google Scholar] [CrossRef]
- Brown, R.K. Univalence of Bessel functions. Proc. Am. Math. Soc. 1960, 11, 278–283. [Google Scholar] [CrossRef]
- Brown, R.K. Univalent solutions of W″ + pW = 0. Canad. J. Math. 1962, 14, 69–78. [Google Scholar] [CrossRef]
- Brown, R.K. Univalence of normalized solutions of W″(z) + p(z)W(z) = 0. Int. J. Math. Math. Sci. 1982, 5, 459–483. [Google Scholar] [CrossRef]
- Kreyszig, E.; Todd, J. The radius of univalence of Bessel functions. Ill. J. Math. 1960, 4, 143–149. [Google Scholar] [CrossRef]
- Wilf, H.S. The radius of univalence of certain entire functions. Ill. J. Math. 1962, 6, 242–244. [Google Scholar] [CrossRef]
- Aktaş, I.; Baricz, Á.; Yağmur, N. Bounds for the radii of univalence of some special functions. Math. Ineq. Appl. 2017, 20, 825–843. [Google Scholar]
- Baricz, Á. Geometric properties of generalized Bessel functions of complex order. Mathematica 2006, 48, 13–18. [Google Scholar]
- Baricz, Á. Geometric properties of generalized Bessel functions. Publ. Math. Debr. 2008, 73, 155–178. [Google Scholar] [CrossRef]
- Baricz, Á.; Kupán, P.A.; Szász, R. The radius of starlikeness of normalized Bessel functions of the first kind. Proc. Am. Math. Soc. 2014, 142, 2019–2025. [Google Scholar] [CrossRef]
- Baricz, Á.; Orhan, H.; Szász, R. The radius of α-convexity of normalized Bessel functions of the first kind. Comput. Methods Funct. Theory 2016, 16, 93–103. [Google Scholar] [CrossRef]
- Baricz, Á.; Ponnusamy, S. Starlikeness and convexity of generalized Bessel functions. Integral Transform. Spec. Funct. 2010, 21, 641–653. [Google Scholar] [CrossRef]
- Baricz, Á.; Szász, R. The radius of convexity of normalized Bessel functions of the first kind. Anal. Appl. 2014, 12, 485–509. [Google Scholar] [CrossRef]
- Baricz, Á.; Szász, R. Close-to-convexity of some special functions. Bull. Malay. Math. Sci. Soc. 2016, 39, 427–437. [Google Scholar] [CrossRef]
- Baricz, Á.; Yağmur, N. Geometric properties of some Lommel and Struve functions. Ramanujan J. 2017, 42, 325–346. [Google Scholar] [CrossRef]
- Szász, R. On starlikeness of Bessel functions of the first kind. In Proceedings of the 8th Joint Conference on Mathematics and Computer Science, Komárno, Slovakia, 14–17 July 2010; 9p. [Google Scholar]
- Szász, R.; Kupán, P.A. About the univalence of the Bessel functions. Stud. Univ. Babeş-Bolyai Math. 2009, 54, 127–132. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Watson, G.N. A Treatise of the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Ali, E.E.; El-Ashwah, R.M.; Kota, W.Y.; Albalahi, A.M. Geometric attributes of analytic functions generated by Mittag-Leffler function. Mathematics 2025, 13, 3284. [Google Scholar] [CrossRef]
- Ali, E.E.; El-Ashwah, R.M.; Albalahi, A.M.; Sidaoui, R. Fuzzy treatment for meromorphic classes of admissible functions connected to Hurwitz–Lerch zeta function. Axioms 2025, 14, 523. [Google Scholar] [CrossRef]
- Ali, E.E.; El-Ashwah, R.M.; Aouf, M.K. On sandwich theorems for some subclasses defined by generalized hypergeometric functions. Stud. Univ. Babeş-Bolyai Math. 2017, 62, 89–99. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyusof, R.; Alyusof, S.; El-Ashwah, R.M.; El-Qadeem, A.H. Certain Geometric Investigations of Three Normalized Bessel-Type Functions of a Complex Variable. Mathematics 2025, 13, 3888. https://doi.org/10.3390/math13233888
Alyusof R, Alyusof S, El-Ashwah RM, El-Qadeem AH. Certain Geometric Investigations of Three Normalized Bessel-Type Functions of a Complex Variable. Mathematics. 2025; 13(23):3888. https://doi.org/10.3390/math13233888
Chicago/Turabian StyleAlyusof, Rabab, Shams Alyusof, Rabha M. El-Ashwah, and Alaa H. El-Qadeem. 2025. "Certain Geometric Investigations of Three Normalized Bessel-Type Functions of a Complex Variable" Mathematics 13, no. 23: 3888. https://doi.org/10.3390/math13233888
APA StyleAlyusof, R., Alyusof, S., El-Ashwah, R. M., & El-Qadeem, A. H. (2025). Certain Geometric Investigations of Three Normalized Bessel-Type Functions of a Complex Variable. Mathematics, 13(23), 3888. https://doi.org/10.3390/math13233888

