From Mobile Media to Generative AI: The Evolutionary Logic of Computational Social Science Across Data, Methods, and Theory
Abstract
1. Introduction
2. Emergence and Development of Computational Social Science
2.1. Institutional Landscape and Academic Programs
2.2. Canonical Works and Publication Outlets
2.3. Interdisciplinary Integration and Knowledge Network
2.4. A Decade of Consolidation
3. Data Collection and Measurement
3.1. Sources and Scope of Big Data
3.2. The “V” Dimensions of Big Data and Accessibility
3.3. Digital Traces and the Transformation to Measurement
- useful attributes for research: large-scale, continuously generated, and nonreactive
- problematic attributes for research: incomplete, difficult to access, unrepresentative, nonstationary, influenced by platform algorithms, noisy, and sensitive [5] (p. 17).
4. Analytical Methods
4.1. Text Analysis with LLM Support
4.2. Experimental Methods: Online Randomized Trials and At-Scale Interventions
4.3. Surveys Integrated with Digital Traces
4.4. Agent-Based Modeling and Generative Agents
4.5. Computer Vision and Multimodal Analysis
5. Method or Theory?
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABM | Agent-based Modeling |
AI | Artificial intelligence |
API | Application Programming Interface |
CC BY | Creative Commons Attribution |
CSS | Computational Social Science |
EMNLP | Conference on Empirical Methods in Natural Language Processing |
EPJ | European Physical Journal |
GPT | Generative Pre-trained Transformer |
IC2S2 | International Conference on Computational Social Science |
LLM | Large Language Model |
NLP | Natural Language Processing |
SICSS | The Summer Institutes in Computational Social Science |
SSAs | Smart speaker assistants |
TMD | Theory-Model-Data |
References
- Lazer, D.; Pentland, A.; Adamic, L.; Aral, S.; Barabási, A.-L.; Brewer, D.; Christakis, N.; Contractor, N.; Fowler, J.; Gutmann, M.; et al. Computational Social Science. Science 2009, 323, 721–723. [Google Scholar] [CrossRef]
- 11th International Conference on Computational Social Science (IC2S2 2025). Available online: https://www.ic2s2-2025.org/ (accessed on 15 September 2025).
- The Summer Institutes in Computational Social Science. Available online: https://sicss.io/about (accessed on 15 September 2025).
- Cioffi-Revilla, C. Introduction to Computational Social Science: Principles and Applications; Springer: London, UK, 2014; ISBN 978-1-4471-5661-1. [Google Scholar]
- Salganik, M.J. Bit by Bit: Social Research in the Digital Age; Princeton University Press: Princeton, NJ, USA, 2017; ISBN 978-0-691-15864-8. [Google Scholar]
- Engel, U.; Quan-Haase, A.; Liu, S.X.; Lyberg, L. (Eds.) Handbook of Computational Social Science; Routledge: London, UK, 2022; ISBN 978-1-032-11143-8. [Google Scholar]
- Journal of Computational Social Science—Aims and Scope. Available online: https://link.springer.com/journal/42001/aims-and-scope (accessed on 15 September 2025).
- EPJ Data Science Topical Collection: The Past, Present, and Future of Computational Social Science. Available online: https://epjdatascience.springeropen.com/ppfcss (accessed on 15 September 2025).
- Engel, U.; Quan-Haase, A.; Liu, S.X.; Lyberg, L. (Eds.) Handbook of Computational Social Science, Volume 1: Theory, Case Studies and Ethics; Routledge: London, UK, 2021; ISBN 978-1-003-02458-3. [Google Scholar] [CrossRef]
- Geise, S.; Waldherr, A. Computational Communication Science: Lessons from Working Group Sessions with Experts of an Emerging Research Field. In Handbook of Computational Social Science. Volume 1: Theory, Case Studies and Ethics; Routledge: London, UK, 2021. [Google Scholar] [CrossRef]
- Bail, C.A.; Argyle, L.P.; Brown, T.W.; Bumpus, J.P.; Chen, H.; Hunzaker, M.B.F.; Lee, J.; Mann, M.; Merhout, F.; Volfovsky, A. Exposure to Opposing Views on Social Media Can Increase Political Polarization. Proc. Natl. Acad. Sci. USA 2018, 115, 9216–9221. [Google Scholar] [CrossRef]
- Ellison, N.B.; Gray, R.; Lampe, C.; Fiore, A.T. Social Capital and Resource Requests on Facebook. New Media Soc. 2014, 16, 1104–1121. [Google Scholar] [CrossRef]
- Edelmann, A.; Wolff, T.; Montagne, D.; Bail, C.A. Computational Social Science and Sociology. Annu. Rev. Sociol. 2020, 46, 61–81. [Google Scholar] [CrossRef]
- Lazer, D.M.J.; Pentland, A.; Watts, D.J.; Aral, S.; Athey, S.; Contractor, N.; Freelon, D.; Gonzalez-Bailon, S.; King, G.; Margetts, H.; et al. Computational Social Science: Obstacles and Opportunities. Science 2020, 369, 1060–1062. [Google Scholar] [CrossRef]
- Monroe, B.L. The Five Vs of Big Data Political Science: Introduction to the Virtual Issue on Big Data in Political Science. Political Anal. 2013, 21, 1–9. [Google Scholar] [CrossRef]
- Bartley, K. How Much Data Is in the World? [2024/2025 Big Data Statistics]. Available online: https://rivery.io/blog/big-data-statistics-how-much-data-is-there-in-the-world/ (accessed on 15 September 2025).
- Lazer, D.; Radford, J. Data Ex Machina: Introduction to Big Data. Annu. Rev. Sociol. 2017, 43, 19–39. [Google Scholar] [CrossRef]
- Peng, T.-Q.; Yang, X. Recalibrating the Compass: Integrating Large Language Models into Classical Research Methods. arXiv 2025, arXiv:2505.19402. [Google Scholar] [CrossRef]
- Brause, S.R.; Blank, G. Externalized Domestication: Smart Speaker Assistants, Networks and Domestication Theory. Inf. Commun. Soc. 2020, 23, 751–763. [Google Scholar] [CrossRef]
- IBM What Is Big Data? Available online: https://www.ibm.com/think/topics/big-data (accessed on 15 September 2025).
- Sloan, L.; Quan-Haase, A. The SAGE Handbook of Social Media Research Methods; SAGE Publications: Thousand Oaks, CA, USA, 2016; ISBN 978-1-4739-8384-7. [Google Scholar] [CrossRef]
- Acharjya, D.P.; Ahmed, P.K. A Survey on Big Data Analytics: Challenges, Open Research Issues and Tools. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 511–518. [Google Scholar] [CrossRef]
- Welles, B.F.; González-Bailón, S. (Eds.) The Oxford Handbook of Networked Communication; Oxford University Press: New York, NY, USA, 2020; ISBN 978-0-19-046051-8. [Google Scholar] [CrossRef]
- Lazer, D.; Hargittai, E.; Freelon, D.; Gonzalez-Bailon, S.; Munger, K.; Ognyanova, K.; Radford, J. Meaningful Measures of Human Society in the Twenty-First Century. Nature 2021, 595, 189–196. [Google Scholar] [CrossRef]
- Elmer, T. Computational Social Science Is Growing up: Why Puberty Consists of Embracing Measurement Validation, Theory Development, and Open Science Practices. EPJ Data Sci. 2023, 12, 58. [Google Scholar] [CrossRef]
- Evans, J.A.; Aceves, P. Machine Translation: Mining Text for Social Theory. Annu. Rev. Sociol. 2016, 42, 21–50. [Google Scholar] [CrossRef]
- Molina, M.; Garip, F. Machine Learning for Sociology. Annu. Rev. Sociol. 2019, 45, 27–45. [Google Scholar] [CrossRef]
- Ziems, C.; Held, W.; Shaikh, O.; Chen, J.; Zhang, Z.; Yang, D. Can Large Language Models Transform Computational Social Science? Comput. Linguist. 2024, 50, 237–291. [Google Scholar] [CrossRef]
- Bollen, J.; Mao, H.; Zeng, X. Twitter Mood Predicts the Stock Market. J. Comput. Sci. 2011, 2, 1–8. [Google Scholar] [CrossRef]
- Hopkins, D.J.; King, G. A Method of Automated Nonparametric Content Analysis for Social Science. Am. J. Political Sci. 2010, 54, 229–247. [Google Scholar] [CrossRef]
- Barari, M.; Eisend, M. Computational Content Analysis in Advertising Research. J. Advert. 2024, 53, 681–699. [Google Scholar] [CrossRef]
- Gilardi, F.; Alizadeh, M.; Kubli, M. ChatGPT Outperforms Crowd-Workers for Text-Annotation Tasks. Proc. Natl. Acad. Sci. USA 2023, 120, e2305016120. [Google Scholar] [CrossRef]
- Le Mens, G.; Gallego, A. Positioning Political Texts with Large Language Models by Asking and Averaging. Political Anal. 2025, 33, 274–282. [Google Scholar] [CrossRef]
- Bail, C.A. Can Generative AI Improve Social Science? Proc. Natl. Acad. Sci. USA 2024, 121, e2314021121. [Google Scholar] [CrossRef]
- Bond, R.M.; Fariss, C.J.; Jones, J.J.; Kramer, A.D.; Marlow, C.; Settle, J.E.; Fowler, J.H. A 61-Million-Person Experiment in Social Influence and Political Mobilization. Nature 2012, 489, 295–298. [Google Scholar] [CrossRef]
- Kramer, A.D.; Guillory, J.E.; Hancock, J.T. Experimental Evidence of Massive-Scale Emotional Contagion through Social Networks. Proc. Natl. Acad. Sci. USA 2014, 111, 8788–8790. [Google Scholar] [CrossRef]
- Matz, S.C.; Kosinski, M.; Nave, G.; Stillwell, D.J. Psychological Targeting as an Effective Approach to Digital Mass Persuasion. Proc. Natl. Acad. Sci. USA 2017, 114, 12714–12719. [Google Scholar] [CrossRef]
- Zhang, W.J.; Yi, J.; Liang, H. I Cue You Liking Me: Causal and Spillover Effects of Technological Engagement Bait. Comput. Hum. Behav. 2023, 148, 107864. [Google Scholar] [CrossRef]
- Horton, J.J. Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus? National Bureau of Economic Research: Cambridge, MA, USA, 2023. [Google Scholar] [CrossRef]
- Aher, G.; Arriaga, R.I.; Kalai, A.T. Using Large Language Models to Simulate Multiple Humans and Replicate Human Subject Studies. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023. [Google Scholar]
- Costello, T.H.; Pennycook, G.; Rand, D.G. Durably Reducing Conspiracy Beliefs through Dialogues with AI. Science 2024, 385, eadq1814. [Google Scholar] [CrossRef]
- Argyle, L.P.; Bail, C.A.; Busby, E.C.; Gubler, J.R.; Howe, T.; Rytting, C.; Sorensen, T.; Wingate, D. Leveraging AI for Democratic Discourse: Chat Interventions Can Improve Online Political Conversations at Scale. Proc. Natl. Acad. Sci. USA 2023, 120, e2311627120. [Google Scholar] [CrossRef]
- Hackenburg, K.; Margetts, H. Evaluating the Persuasive Influence of Political Microtargeting with Large Language Models. Proc. Natl. Acad. Sci. USA 2024, 121, e2403116121. [Google Scholar] [CrossRef]
- Ju, H.; Aral, S. Collaborating with AI Agents: Field Experiments on Teamwork, Productivity, and Performance. arXiv 2025, arXiv:2503.18238. [Google Scholar] [CrossRef]
- Stier, S.; Breuer, J.; Siegers, P.; Thorson, K. Integrating Survey Data and Digital Trace Data: Key Issues in Developing an Emerging Field. Soc. Sci. Comput. Rev. 2019, 38, 503–516. [Google Scholar] [CrossRef]
- Guess, A.; Munger, K.; Nagler, J.; Tucker, J. How Accurate Are Survey Responses on Social Media and Politics? Political Commun. 2019, 36, 241–258. [Google Scholar] [CrossRef]
- Shin, J. How Do Partisans Consume News on Social Media? A Comparison of Self-Reports with Digital Trace Measures Among Twitter Users. Soc. Media Soc. 2020, 6, 2056305120981039. [Google Scholar] [CrossRef]
- Argyle, L.P.; Busby, E.C.; Fulda, N.; Gubler, J.R.; Rytting, C.; Wingate, D. Out of One, Many: Using Language Models to Simulate Human Samples. Political Anal. 2023, 31, 337–351. [Google Scholar] [CrossRef]
- Lee, S.; Peng, T.Q.; Goldberg, M.H.; Rosenthal, S.A.; Kotcher, J.E.; Maibach, E.W.; Leiserowitz, A. Can Large Language Models Estimate Public Opinion about Global Warming? An Empirical Assessment of Algorithmic Fidelity and Bias. PLoS Clim. 2024, 3, e0000429. [Google Scholar] [CrossRef]
- Yang, K.; Li, H.; Wen, H.; Peng, T.Q.; Tang, J.; Liu, H. Are Large Language Models (LLMs) Good Social Predictors? In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, FL, USA, 12–16 November 2024; Association for Computational Linguistics: Stroudsburg, PA, USA, 2024; pp. 2718–2730. [Google Scholar] [CrossRef]
- Epstein, J.M.; Axtell, R. Growing Artificial Societies: Social Science from the Bottom Up; MIT Press: Cambridge, MA, USA, 1996; ISBN 978-0-262-27236-0. [Google Scholar] [CrossRef]
- Schelling, T.C. Dynamic Models of Segregation. J. Math. Sociol. 1971, 1, 143–186. [Google Scholar] [CrossRef]
- Bruch, E.E. How Population Structure Shapes Neighborhood Segregation. Am. J. Sociol. 2014, 119, 1221–1278. [Google Scholar] [CrossRef]
- Stadtfeld, C. The Micro–Macro Link in Social Networks. In Emerging Trends in the Social and Behavioral Sciences; Wiley: Hoboken, NJ, USA, 2018; pp. 1–15. [Google Scholar] [CrossRef]
- Park, J.S.; O’Brien, J.C.; Cai, C.J.; Morris, M.R.; Liang, P.; Bernstein, M.S. Generative Agents: Interactive Simulacra of Human Behavior. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology (UIST ’23), San Francisco, CA, USA, 29 October–1 November 2023; ACM: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Mou, X.; Wei, Z.; Huang, X. Unveiling the Truth and Facilitating Change: Towards Agent-Based Large-Scale Social Movement Simulation. arXiv 2024, arXiv:2402.16333. [Google Scholar] [CrossRef]
- Geise, S.; Maubach, K.; Boettcher Eli, A. Picture Me in Person: Personalization and Emotionalization as Political Campaign Strategies on Social Media in the German Federal Election Period 2021. New Media Soc. 2024, 27, 3745–3769. [Google Scholar] [CrossRef]
- Sharma, M.; Peng, Y. How Visual Aesthetics and Calorie Density Predict Food Image Popularity on Instagram: A Computer Vision Analysis. Health Commun. 2023, 39, 577–591. [Google Scholar] [CrossRef]
- Karpenka, L.; Rudienė, E.; Morkunas, M.; Volkov, A. The Influence of a Brand’s Visual Content on Consumer Trust in Social Media Community Groups. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2424–2441. [Google Scholar] [CrossRef]
- Peng, Y.; Lock, I.; Ali Salah, A. Automated Visual Analysis for the Study of Social Media Effects: Opportunities, Approaches, and Challenges. Commun. Methods Meas. 2024, 18, 163–185. [Google Scholar] [CrossRef]
- Engel, U.; Quan-Haase, A.; Liu, S.X.; Lyberg, L. (Eds.) Handbook of Computational Social Science, Volume 2: Data Science, Statistical Modelling, and Machine Learning Methods; Routledge: London, UK, 2021; ISBN 978-1-003-02524-5. [Google Scholar] [CrossRef]
- Wenz, A.; Keusch, F.; Bach, R.L. Measuring Smartphone Use: Survey Versus Digital Behavioral Data. Soc. Sci. Comput. Rev. 2025, 43, 1030–1049. [Google Scholar] [CrossRef]
- Cernat, A.; Keusch, F.; Bach, R.L.; Pankowska, P.K. Estimating Measurement Quality in Digital Trace Data and Surveys Using the MultiTrait MultiMethod Model. Soc. Sci. Comput. Rev. 2025, 43, 1013–1029. [Google Scholar] [CrossRef]
- Collins, A.J.; Koehler, M.; Lynch, C.J. Methods That Support the Validation of Agent-Based Models: An Overview and Discussion. J. Artif. Soc. Soc. Simul. 2024, 27, 11. [Google Scholar] [CrossRef]
- Grimm, V.; Berger, U.; Meyer, M.; Lorscheid, I. Theory for and from Agent-Based Modelling: Insights from a Virtual Special Issue and a Vision. Environ. Model. Softw. 2024, 178, 106088. [Google Scholar] [CrossRef]
- Dyer, J.S.; Cannon, P.; Farmer, J.D.; Schmon, S.M. Black-Box Bayesian Inference for Agent-Based Models. J. Econ. Dyn. Control 2024, 161, 104827. [Google Scholar] [CrossRef]
- Li, H.; Zhang, N. Computer Vision Models for Image Analysis in Advertising Research. J. Advert. 2024, 53, 771–790. [Google Scholar] [CrossRef]
- Jungherr, A.; Theocharis, Y. The Empiricist’s Challenge: Asking Meaningful Questions in Political Science in the Age of Big Data. J. Inf. Technol. Politics 2017, 14, 97–109. [Google Scholar] [CrossRef]
- Borsboom, D.; Mellenbergh, G.J.; van Heerden, J. The Concept of Validity. Psychol. Rev. 2004, 111, 1061–1071. [Google Scholar] [CrossRef]
- Jungherr, A. Normalizing Digital Trace Data. In Digital Discussions: How Big Data Informs Political Communication; Stroud, N.J., McGregor, S.C., Eds.; Routledge: New York, NY, USA, 2018; pp. 9–35. [Google Scholar] [CrossRef]
- McFarland, D.A.; Lewis, K.; Goldberg, A. Sociology in the Era of Big Data: The Ascent of Forensic Social Science. Am. Sociol. 2016, 47, 12–35. [Google Scholar] [CrossRef]
- Contractor, N. How Can Computational Social Science Motivate the Development of Theories, Data, and Methods to Advance Our Understanding of Communication and Organizational Dynamics? In The Oxford Handbook of Networked Communication; Welles, B.F., González-Bailón, S., Eds.; Routledge: New York, NY, USA, 2020; pp. 113–129. [Google Scholar] [CrossRef]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard University Press: Cambridge, MA, USA, 1992; ISBN 978-0-674-84371-4. [Google Scholar] [CrossRef]
- Eagle, N.; Macy, M.; Claxton, R. Network Diversity and Economic Development. Science 2010, 328, 1029–1031. [Google Scholar] [CrossRef]
- Spiro, E.S. Online Communication by Emergency Responders during Crisis Events. In The Oxford Handbook of Networked Communication; Welles, B.F., González-Bailón, S., Eds.; Oxford University Press: New York, NY, USA, 2020; pp. 150–173. [Google Scholar] [CrossRef]
- Meng, F.; Xie, J.; Sun, J.; Xu, C.; Zeng, Y.; Wang, X.; Jia, T.; Huang, S.; Deng, Y.; Hu, Y. Spreading Dynamics of Information on Online Social Networks. Proc. Natl. Acad. Sci. USA 2025, 122, e2410227122. [Google Scholar] [CrossRef]
- Aral, S.; Nicolaides, C. Exercise Contagion in a Global Social Network. Nat. Commun. 2017, 8, 14753. [Google Scholar] [CrossRef]
- Festinger, L. A Theory of Social Comparison Processes. Hum. Relat. 1954, 7, 117–140. [Google Scholar] [CrossRef]
- Spaiser, V.; Chadefaux, T.; Donnay, K.; Russmann, F.; Helbing, D. Communication Power Struggles on Social Media: A Case Study of the 2011–12 Russian Protests. J. Inf. Technol. Politics 2017, 14, 132–153. [Google Scholar] [CrossRef]
- Schmälzle, R.; O’Donnell, M.B.; Garcia, J.O.; Cascio, C.N.; Bayer, J.; Bassett, D.S.; Vettel, J.M.; Falk, E.B. Brain Connectivity Dynamics during Social Interaction Reflect Social Network Structure. Proc. Natl. Acad. Sci. USA 2017, 114, 5153–5158. [Google Scholar] [CrossRef]
- González-Bailón, S. Decoding the Social World: Data Science and the Unintended Consequences of Communication; MIT Press: Cambridge, MA, USA, 2017; ISBN 978-0-262-03707-5. [Google Scholar] [CrossRef]
- Watts, D.J. Networks, Dynamics, and the Small-World Phenomenon. Am. J. Sociol. 1999, 105, 493–527. [Google Scholar] [CrossRef]
- Sun, H.; Chen, S.; Xie, J.; Hu, Y. Growth-Induced Percolation on Complex Networks. PNAS Nexus 2025, 4, pgaf192. [Google Scholar] [CrossRef]
- Shugars, S. Critical Computational Social Science. EPJ Data Sci. 2024, 13, 13. [Google Scholar] [CrossRef]
- Mattsson, C.E.S. Computational Social Science with Confidence. EPJ Data Sci. 2024, 13, 3. [Google Scholar] [CrossRef]
- Tsintsaris, D.; Tsompanoglou, M.; Ioannidis, E. Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business. Mathematics 2024, 12, 1141. [Google Scholar] [CrossRef]
- Engel, U. Causal and Predictive Modeling in Computational Social Science. In Handbook of Computational Social Science, Volume 1: Theory, Case Studies and Ethics; Engel, U., Quan-Haase, A., Liu, S.X., Lyberg, L., Eds.; Routledge: London, UK, 2022; pp. 131–149. ISBN 978-1-003-02458-3. [Google Scholar] [CrossRef]
- Hofman, J.M.; Watts, D.J.; Athey, S.; Garip, F.; Griffiths, T.L.; Kleinberg, J.; Margetts, H.; Mullainathan, S.; Salganik, M.J.; Vazire, S.; et al. Integrating Explanation and Prediction in Computational Social Science. Nature 2021, 595, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Liberini, F.; Redoano, M.; Russo, A.; Cuevas, A.; Cuevas, R. Politics in the Facebook Era: Evidence from the 2016 US Presidential Elections. Eur. J. Political Econ. 2025, 87, 102641. [Google Scholar] [CrossRef]
- Azzimonti, M.; Fernandes, M. Social Media Networks, Fake News, and Polarization. Eur. J. Political Econ. 2023, 76, 102256. [Google Scholar] [CrossRef]
Year | Milestone | Why It Matters | Cite |
---|---|---|---|
2009 | Science published ‘Computational Social Science’ | This marked the birth of computational social science | [1] |
2014–2022 | A series of landmark volumes, including Introduction to Computational Social Science (2014), Bit by Bit: Social Research in the Digital Age (2017), and the Handbook of Computational Social Science (2022), have been successively published. | These three volumes collectively document the emergence of computational social science, offering conceptual foundations, methodological guidance, and comprehensive overviews of the field. | [4,5,6] |
2015–2025 | In 2015, the International Conference on Computational Social Science (IC2S2) was established, and since its inception, eleven editions have subsequently been convened. | IC2S2 becomes a premier venue bridging social and computational sciences through large-scale data and computation. | [2] |
2017–2025 | In 2017, the Summer Institutes in Computational Social Science (SICSS) was established. Since then, it supported workshops at 53 locations worldwide. | It has fostered a scholarly community in computational social science, cultivating a large cohort of researchers and facilitating collaborative achievements. | [3] |
2020 | Science published ‘Computational social science: Obstacles and opportunities’ | Reviewing the achievements of computational social sciences over the past decade, the obstacles and solutions faced, as well as the opportunities available | [14] |
Method | Where It Excels | Where It Fails | Our Assessment |
---|---|---|---|
LLM-assisted text coding | Rapid, low-cost first-pass labels/explanations; can rival typical crowd work | May misportray minority identities; varies by domain; reproducibility hinges on model/prompt disclosure | Augment (do not replace) expert coders; use ask-and-average when appropriate [28,32,33,34]. |
Experiments | Clear identification; growing evidence of AI aids can improve conversation quality and reduce harmful beliefs | External validity; platform ecology changes; potential spillovers | Prioritize theory-linked outcomes; report artifacts; long-run effects [41,42]. |
Survey–trace | Links attitudes to behavior; well-suited for mechanism tests | Consent/coverage biases; construct mismatch | Integrate surveys with traces, foregrounding measurement diagnostics [62,63]. |
ABM | Explains macro from micro; transparent counterfactuals; integrates with traces via calibration | Calibration/identification hard; fragility under parameter change | Use when mechanisms matter; pair with empirical calibration and falsification tests [64,65,66]. |
Computer vision | Consistent visual features at scale; strong for ad/imagery audits | Dataset shift and construct validity; latent constructs require theory-driven codebooks; there may be social and cultural biases. | Valuable when paired with transparent codebooks and replication packs [58,60,67]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, Q.; Wu, Y. From Mobile Media to Generative AI: The Evolutionary Logic of Computational Social Science Across Data, Methods, and Theory. Mathematics 2025, 13, 3062. https://doi.org/10.3390/math13193062
Li H, Wang Q, Wu Y. From Mobile Media to Generative AI: The Evolutionary Logic of Computational Social Science Across Data, Methods, and Theory. Mathematics. 2025; 13(19):3062. https://doi.org/10.3390/math13193062
Chicago/Turabian StyleLi, Hua, Qifang Wang, and Ye Wu. 2025. "From Mobile Media to Generative AI: The Evolutionary Logic of Computational Social Science Across Data, Methods, and Theory" Mathematics 13, no. 19: 3062. https://doi.org/10.3390/math13193062
APA StyleLi, H., Wang, Q., & Wu, Y. (2025). From Mobile Media to Generative AI: The Evolutionary Logic of Computational Social Science Across Data, Methods, and Theory. Mathematics, 13(19), 3062. https://doi.org/10.3390/math13193062