Utilization of Upper Confidence Bound Algorithms for Effective Subproblem Selection in Cooperative Coevolution Frameworks
Abstract
1. Introduction
2. Related Works
3. Preliminaries
3.1. CC Frameworks to Solve LSGO Problems
Algorithm 1 Traditional algorithm: BasicCC |
|
3.2. Subproblem Selection Task in CC Frameworks
4. Proposed Methods
4.1. Component 1: Reward Evaluation Function (REF)
4.2. Component 2: Contribution Score Computation Function (CSF)
4.2.1. UCB1-Based Contribution Score Computation Method
4.2.2. UCB1-Tuned-Based Contribution Score Computation Method
4.2.3. Non-Stationary UCB1 and UCB1-Tuned-Based Contribution Score Computation Methods
4.2.4. The CSF Algorithm
Algorithm 2 Sub-algorithm: CSF | |
Require: [], [], n, K; , sp_name | |
1: conts = make_vector(K, 0) | |
2: for ; ; do | |
3: if sp_name == UCB then | ▹ Equation (5) |
4: | |
5: | |
6: else if sp_name == UCBT then | ▹ Equation (6) |
7: | |
8: | |
9: | |
10: else if sp_name == NSU then | ▹ Equation (11) |
11: | |
12: | |
13: | |
14: else if sp_name == NSUT then | ▹ Equation (12) |
15: | |
16: | |
17: | |
18: | |
19: else | |
20: error(“Incorrect subproblem selector name”) | |
21: return null | |
22: end if | |
23: conts | |
24: end for | |
return conts |
4.3. Component 3: Subproblem Selection Function (SSF)
Algorithm 3 Sub-algorithm: SSF | |
Require: is_init, prev_idx, conts[], K | |
1: if is_init == true then | ▹ round-robin-based selection |
2: new_idx = prev_idx + 1 | |
3: else | ▹ contribution-based selection |
4: new_idx = (conts[1], ..., conts[K]) | |
5: end if | |
return new_idx |
4.4. Implementation of the UCB-Based Subproblem Selector and Utilization in the CC Frameworks
Algorithm 4 Main algorithm: subproblemSelector |
|
Algorithm 5 Example algorithm: CC with UCB-based subproblem selector |
|
4.5. Theoretical Analysis
4.5.1. Computational Complexity Analysis
4.5.2. Theoretical Analysis of the Effects of the Decay Factor
4.5.3. Theoretical Analysis of the Effects of the Smoothing Factor
5. Experiments
5.1. Configurations for Experiments
5.2. Ablation Studies
5.2.1. Ablation Studies for the Decay Factor
5.2.2. Ablation Studies for the Population Size m and Smoothing Factor
5.3. Optimization Test Results with Wilcoxon Rank-Sum ANOVA Tests
5.3.1. Optimization Test Results for the CEC’2010 Benchmark Functions
5.3.2. Optimization Test Results for the CEC’2013 Benchmark Functions
5.3.3. Total Result Analysis and Discussion
5.4. Convergence Curve Analysis
5.5. Discussions
5.5.1. Discussion About the Experimental Results
5.5.2. Utilization Method of the CC Framework with Proposed Subproblem Selectors to Address Actual Engineering Problems
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Fitness Evaluation Function (Feval)
Algorithm A1 Feval | |
Require: , P, S, cv | |
1: m = the number of rows in P | |
2: fit_list = make_vector(m) | |
3: if S == null AND cv == null then | |
4: for ; ; do | |
5: fit_list = f(P) | |
6: end for | |
7: else | |
8: n = the dimension of cv | |
9: temp_P = make_matrix() | |
10: for ; ; do | |
11: temp_P = cv | |
12: end for | |
13: temp_P = P | ▹ Instantiation of P into temp_P |
14: for ; ; do | |
15: fit_list = f(temp_P) | |
16: end for | |
17: end if | |
return fit_list |
Appendix B. Supplementary Materials
Funding
References
- Liu, J.; Sarker, R.; Elsayed, S.; Essam, D.; Siswanto, N. Large-scale evolutionary optimization: A review and comparative study. Swarm Evol. Comput. 2024, 85, 101466. [Google Scholar] [CrossRef]
- Song, M.; Song, W.; Wee Lai, K. Learning-Driven Algorithm with Dual Evolution Patterns for Solving Large-Scale Multiobjective Optimization Problems. IEEE Access 2025, 13, 30976–30992. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, F.; Cai, G.; Chen, H.; Zou, L.; Liu, Y.; Wu, P. Evolutionary Reinforcement Learning: A Systematic Review and Future Directions. Mathematics 2025, 13, 833. [Google Scholar] [CrossRef]
- Hussain, K.; Mohd Salleh, M.N.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2019, 52, 2191–2233. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Zhou, Q.; Su, Q. A Surrogate-Assisted Gray Prediction Evolution Algorithm for High-Dimensional Expensive Optimization Problems. Mathematics 2025, 13, 1007. [Google Scholar] [CrossRef]
- Potter, M.A.; De Jong, K.A. A cooperative coevolutionary approach to function optimization. In Proceedings of the Parallel Problem Solving from Nature—PPSN III, Jerusalem, Israel, 9–14 October 1994; Davidor, Y., Schwefel, H.P., Männer, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 249–257. [Google Scholar] [CrossRef]
- Ma, X.; Li, X.; Zhang, Q.; Tang, K.; Liang, Z.; Xie, W.; Zhu, Z. A Survey on Cooperative Co-Evolutionary Algorithms. IEEE Trans. Evol. Comput. 2019, 23, 421–441. [Google Scholar] [CrossRef]
- Omidvar, M.N.; Li, X.; Mei, Y.; Yao, X. Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization. IEEE Trans. Evol. Comput. 2014, 18, 378–393. [Google Scholar] [CrossRef]
- Omidvar, M.N.; Li, X.; Yao, X. Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, New York, NY, USA, 5–8 June 2011; pp. 1115–1122. [Google Scholar] [CrossRef]
- Kazimipour, B.; Omidvar, M.N.; Qin, A.; Li, X.; Yao, X. Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems. Appl. Soft Comput. 2019, 76, 265–281. [Google Scholar] [CrossRef]
- Omidvar, M.N.; Yang, M.; Mei, Y.; Li, X.; Yao, X. DG2: A faster and more accurate differential grouping for large-scale black-box optimization. IEEE Trans. Evol. Comput. 2017, 21, 929–942. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Alhijawi, B.; Awajan, A. Genetic algorithms: Theory, genetic operators, solutions, and applications. Evol. Intell. 2024, 17, 1245–1256. [Google Scholar] [CrossRef]
- Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019, 44, 546–558. [Google Scholar] [CrossRef]
- Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2010, 15, 4–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Ji, G. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Math. Probl. Eng. 2015, 2015, 931256. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Shakir Hameed, A.; Alrikabi, H.M.B.; Abdul–Razaq, A.A.; Ahmed, Z.H.; Nasser, H.K.; Mutar, M.L. Appling the Roulette Wheel Selection Approach to Address the Issues of Premature Convergence and Stagnation in the Discrete Differential Evolution Algorithm. Appl. Comput. Intell. Soft Comput. 2023, 2023, 8892689. [Google Scholar] [CrossRef]
- Rivera, M.M.; Guerrero-Mendez, C.; Lopez-Betancur, D.; Saucedo-Anaya, T. Dynamical Sphere Regrouping Particle Swarm Optimization: A Proposed Algorithm for Dealing with PSO Premature Convergence in Large-Scale Global Optimization. Mathematics 2023, 11, 4339. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, J.; Guo, H.; Ma, Y.; Gong, Y.J. Auto-configuring Exploration-Exploitation Tradeoff in Evolutionary Computation via Deep Reinforcement Learning. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’24, New York, NY, USA, 14–18 July 2024; pp. 1497–1505. [Google Scholar] [CrossRef]
- Zangirolami, V.; Borrotti, M. Dealing with uncertainty: Balancing exploration and exploitation in deep recurrent reinforcement learning. Knowl.-Based Syst. 2024, 293, 111663. [Google Scholar] [CrossRef]
- Abdul Halim, A.H.; Das, S.; Ismail, I. Fundamental Tradeoffs Between Exploration and Exploitation Search Mechanisms. In Into a Deeper Understanding of Evolutionary Computing: Exploration, Exploitation, and Parameter Control: Volume 1; Springer Nature: Cham, Switzerland, 2024; pp. 101–199. [Google Scholar] [CrossRef]
- Gittins, J.; Glazebrook, K.; Weber, R. Multi-Armed Bandit Allocation Indices; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Watkins, C. Learning from Delayed Rewards. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1989. [Google Scholar]
- Burtini, G.; Loeppky, J.; Lawrence, R. A Survey of Online Experiment Design with the Stochastic Multi-Armed Bandit. arXiv 2015. [Google Scholar] [CrossRef]
- Vermorel, J.; Mohri, M. Multi-armed Bandit Algorithms and Empirical Evaluation. In Proceedings of the Machine Learning: ECML 2005, Porto, Portugal, 3–7 October 2005; Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 437–448. [Google Scholar] [CrossRef]
- Agrawal, R. Sample mean based index policies by O(log n) regret for the multi-armed bandit problem. Adv. Appl. Probab. 1995, 27, 1054–1078. [Google Scholar] [CrossRef]
- Auer, P.; Cesa-Bianchi, N.; Fischer, P. Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 2002, 47, 235–256. [Google Scholar] [CrossRef]
- Garivier, A.; Moulines, E. On Upper-Confidence Bound Policies for Non-Stationary Bandit Problems. arXiv 2008, arXiv:0805.3415. [Google Scholar] [CrossRef]
- Kocsis, L.; Szepesvári, C. Bandit Based Monte-Carlo Planning. In Proceedings of the Machine Learning: ECML 2006, Berlin, Germany, 18–22 September 2006; Fürnkranz, J., Scheffer, T., Spiliopoulou, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 282–293. [Google Scholar] [CrossRef]
- Wei, L.; Srivastava, V. Nonstationary Stochastic Bandits: UCB Policies and Minimax Regret. IEEE Open J. Control Syst. 2024, 3, 128–142. [Google Scholar] [CrossRef]
- Tang, K.; Li, X.; Suganthan, P.N.; Yang, Z.; Weise, T. Benchmark Functions for the CEC’2010 Special Session and Competition on Large-Scale Global Optimization; Technical Report; Nature Inspired Computation and Applications Laboratory, USTC: Hefei, China, 2010. [Google Scholar]
- Li, X.; Tang, K.; Omidvar, M.N.; Yang, Z.; Qin, K.; China, H. Benchmark Functions for the CEC 2013 Special Session and Competition on Large-Scale Global Optimization; Technical Report 33; Nature Inspired Computation and Applications Laboratory, USTC: Hefei, China, 2013. [Google Scholar]
- Wang, Z.J.; Zhan, Z.H.; Yu, W.J.; Lin, Y.; Zhang, J.; Gu, T.L.; Zhang, J. Dynamic Group Learning Distributed Particle Swarm Optimization for Large-Scale Optimization and Its Application in Cloud Workflow Scheduling. IEEE Trans. Cybern. 2020, 50, 2715–2729. [Google Scholar] [CrossRef]
- Hu, X.M.; He, F.L.; Chen, W.N.; Zhang, J. Cooperation coevolution with fast interdependency identification for large scale optimization. Inf. Sci. 2017, 381, 142–160. [Google Scholar] [CrossRef]
- Sun, Y.; Kirley, M.; Halgamuge, S.K. A recursive decomposition method for large scale continuous optimization. IEEE Trans. Evol. Comput. 2017, 22, 647–661. [Google Scholar] [CrossRef]
- Kim, K.S.; Choi, Y.S. An efficient variable interdependency-identification and decomposition by minimizing redundant computations for large-scale global optimization. Inf. Sci. 2020, 513, 289–323. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, A.; Li, C.; Yao, X. An Efficient Recursive Differential Grouping for Large-Scale Continuous Problems. IEEE Trans. Evol. Comput. 2021, 25, 159–171. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, K.; Yao, X. Self-adaptive differential evolution with neighborhood search. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 1110–1116. [Google Scholar] [CrossRef]
- Mei, Y.; Omidvar, M.N.; Li, X.; Yao, X. A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box Optimization. ACM Trans. Math. Softw. 2016, 42, 1–24. [Google Scholar] [CrossRef]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Zhou, Z.; Abawajy, J. Reinforcement Learning-Based Edge Server Placement in the Intelligent Internet of Vehicles Environment. IEEE Trans. Intell. Transp. Syst. 2025, 1–11. [Google Scholar] [CrossRef]
Base Algorithms | Names (Abbreviations) | CC Frameworks | sp_Name |
---|---|---|---|
UCB1 | UCBSP | UCBSPCC | UCB |
UCB1-tuned | UCBTSP | UCBTSPCC | UCBT |
Non-stationary UCB1 | NSUSP | NSUSPCC | NSU |
Non-stationary UCB1-tuned | NSUTSP | NSUTSPCC | NSUT |
Benchmarks | Functions | Separable Variables | Non-Separable Variables | Separable Variable Groups * | Non-Separable Variable Groups | Used? |
---|---|---|---|---|---|---|
CEC’2010 | , | 1000 | 0 | 50 | 0 | ✔ |
0 | 1000 | 0 | 1 | ✘ | ||
, , , | 950 | 50 | 48 | 1 | ✔ | |
0 | 1000 | 0 | 2 | ✔ | ||
, , , | 500 | 500 | 25 | 10 | ✔ | |
0 | 1000 | 0 | 11 | ✔ | ||
, , , , | 0 | 1000 | 0 | 20 | ✔ | |
, | 0 | 1000 | 0 | 1 | ✘ | |
CEC’2013 | , | 1000 | 0 | 50 | 0 | ✔ |
0 | 1000 | 0 | 1 | ✘ | ||
, , | 700 | 300 | 35 | 7 | ✔ | |
0 | 1000 | 0 | 7 | ✔ | ||
200 | 800 | 10 | 17 | ✔ | ||
, , | 0 | 1000 | 0 | 20 | ✔ | |
, | 0 | 1000 | 0 | 1 | ✘ | |
0 | 905 | 0 | 2 | ✔ | ||
0 | 905 | 0 | 1 | ✘ |
Parameter Settings | Descriptions |
---|---|
The decay factor used in NSUSP. | |
The decay factor used in NSUTSP. | |
The smoothing factor to prevent that the denominator becomes zero. | |
maxFEs = | The allowable maximum number of FEs. |
The number of individuals in a population. | |
The maximum number of separable variables in a separable variable group [40]. | |
The initial mean value of the Gaussian distribution used to adaptively control the crossover rate in the SaNSDE optimizer. | |
The exploration-exploitation control factor used in BBCC. |
Benchmark Suite | CEC’2010 (17 Benchmark Functions) | CEC’2013 (11 Benchmark Functions) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Decay factor of NSUTSP | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
Improved benchmark functions | 10 | 10 | 9 | 4 | 3 | 7 | 7 | 8 | 6 | 2 |
Equivalent benchmark functions | 2 | 3 | 3 | 9 | 12 | 2 | 2 | 1 | 3 | 7 |
Worse benchmark functions | 5 | 4 | 5 | 4 | 2 | 2 | 2 | 2 | 2 | 2 |
Benchmark Suite | CEC’2010 (17 Benchmark Functions) | CEC’2013 (11 Benchmark Functions) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Decay factor of NSUSP | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
Improved benchmark functions | 10 | 9 | 10 | 5 | 1 | 7 | 6 | 7 | 5 | 0 |
Equivalent benchmark functions | 2 | 3 | 3 | 10 | 15 | 1 | 2 | 2 | 4 | 10 |
Worse benchmark functions | 5 | 5 | 4 | 2 | 1 | 3 | 3 | 2 | 2 | 1 |
Benchmarks | Measures | |||||
---|---|---|---|---|---|---|
CEC’2010 | Mean | 9.11 × 108 | 1.07 × 109 | 2.84 × 109 | 2.82 × 109 | 4.76 × 109 |
Median | 3.37 × 102 | 4.20 × 102 | 5.22 × 102 | 5.89 × 102 | 1.08 × 103 | |
CEC’2013 | Mean | 4.81 × 109 | 5.08 × 109 | 1.60 × 1010 | 1.85 × 109 | 8.58 × 108 |
Median | 2.37 × 107 | 3.91 × 107 | 3.72 × 107 | 3.29 × 107 | 2.63 × 107 |
Benchmarks | Measures | |||||
---|---|---|---|---|---|---|
CEC’2010 | Mean | 1.40 × 109 | 1.33 × 109 | 1.21 × 109 | 2.84 × 109 | 1.31 × 109 |
Median | 4.85 × 102 | 5.04 × 102 | 4.79 × 102 | 5.22 × 102 | 4.90 × 102 | |
CEC’2013 | Mean | 2.44 × 109 | 4.17 × 109 | 3.71 × 109 | 1.60 × 1010 | 9.64 × 109 |
Median | 4.08 × 107 | 4.35 × 107 | 4.87 × 107 | 3.72 × 107 | 3.13 × 107 |
Func. | Measures | NSUTSPCC | NSUSPCC | UCBSPCC | UCBTSPCC | BasicCC | RandomCC | BBCC | CBCC1 | CBCC2 |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 9.88 × 10−3 | 1.27 × 10−4 | 1.53 × 10−5 | 2.22 × 10−5 | 3.36 × 10−2 | 7.21 × 106 | 1.66 × 107 | 3.39 × 10−2 | 3.43 × 10−2 | |
p-value | - | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | |
W/T/L | - | L | L | L | W | W | W | W | W | |
Mean | 2.85 × 102 | 1.39 × 102 | 1.17 × 102 | 1.19 × 102 | 1.18 × 102 | 6.76 × 102 | 5.05 × 102 | 1.57 × 102 | 3.17 × 102 | |
p-value | - | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 3.44 × 10−4 | |
W/T/L | - | L | L | L | L | W | W | L | W | |
Mean | 4.81 × 1010 | 3.06 × 1011 | 3.45 × 1012 | 1.59 × 1012 | 1.01 × 1013 | 1.06 × 1013 | 1.04 × 1010 | 3.86 × 1012 | 7.51 × 109 | |
p-value | - | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | |
W/T/L | - | W | W | W | W | W | L | W | L | |
Mean | 1.82 × 108 | 3.11 × 108 | 3.57 × 108 | 3.18 × 108 | 3.96 × 108 | 4.14 × 108 | 1.08 × 108 | 3.13 × 108 | 1.79 × 108 | |
p-value | - | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 6.62 × 10−1 | |
W/T/L | - | W | W | W | W | W | L | W | T | |
Mean | 1.00 × 101 | 1.16 × 101 | 1.44 × 101 | 1.39 × 101 | 1.53 × 101 | 1.53 × 101 | 1.79 × 101 | 1.55 × 101 | 1.25 × 101 | |
p-value | - | 3.53 × 10−2 | 1.23 × 10−5 | 4.74 × 10−5 | 1.21 × 10−7 | 1.21 × 10−7 | 1.07 × 10−8 | 2.11 × 10−7 | 1.88 × 10−3 | |
W/T/L | - | W | W | W | W | W | W | W | W | |
Mean | 1.35 × 10−4 | 3.57 × 10−5 | 3.63 × 107 | 1.60 × 10−5 | 1.99 × 109 | 8.29 × 109 | 4.95 × 103 | 1.70 × 108 | 5.30 × 10−3 | |
p-value | - | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | |
W/T/L | - | L | W | L | W | W | W | W | W | |
Mean | 6.53 × 105 | 3.95 × 107 | 7.02 × 107 | 3.90 × 107 | 2.53 × 108 | 1.41 × 1011 | 4.84 × 105 | 7.06 × 107 | 1.59 × 105 | |
p-value | - | 3.45 × 10−5 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 8.53 × 10−5 | 1.07 × 10−8 | 2.78 × 10−5 | |
W/T/L | - | W | W | W | W | W | L | W | L | |
Mean | 9.18 × 106 | 1.92 × 107 | 3.11 × 107 | 2.54 × 107 | 3.77 × 107 | 5.81 × 107 | 1.05 × 107 | 3.55 × 107 | 1.89 × 109 | |
p-value | - | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 2.72 × 10−3 | 1.07 × 10−8 | 1.07 × 10−8 | |
W/T/L | - | W | W | W | W | W | W | W | W | |
Mean | 3.51 × 103 | 3.66 × 103 | 3.61 × 103 | 3.69 × 103 | 4.20 × 103 | 4.56 × 103 | 3.40 × 103 | 4.10 × 103 | 3.99 × 103 | |
p-value | - | 5.95 × 10−4 | 8.42 × 10−3 | 5.95 × 10−4 | 1.07 × 10−8 | 1.07 × 10−8 | 5.60 × 10−2 | 1.07 × 10−8 | 1.07 × 10−8 | |
W/T/L | - | W | W | W | W | W | T | W | W | |
Mean | 1.02 × 101 | 1.03 × 101 | 1.18 × 101 | 1.16 × 101 | 1.17 × 101 | 1.17 × 101 | 1.13 × 101 | 1.17 × 101 | 1.23 × 101 | |
p-value | - | 8.08 × 10−1 | 1.38 × 10−5 | 1.44 × 10−4 | 2.83 × 10−5 | 5.52 × 10−6 | 2.28 × 10−1 | 2.03 × 10−5 | 1.36 × 10−6 | |
W/T/L | - | T | W | W | W | W | T | W | W | |
Mean | 1.54 × 100 | 2.24 × 101 | 2.03 × 103 | 5.64 × 102 | 5.30 × 103 | 2.23 × 104 | 4.78 × 103 | 4.47 × 103 | 1.61 × 104 | |
p-value | - | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | |
W/T/L | - | W | W | W | W | W | W | W | W | |
Mean | 5.22 × 102 | 6.75 × 102 | 8.92 × 102 | 7.51 × 102 | 1.30 × 103 | 1.13 × 107 | 3.79 × 103 | 1.21 × 103 | 2.08 × 103 | |
p-value | - | 3.37 × 10−6 | 2.95 × 10−8 | 5.17 × 10−7 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 2.21 × 10−8 | 1.07 × 10−8 | |
W/T/L | - | W | W | W | W | W | W | W | W | |
Mean | 2.96 × 107 | 2.90 × 107 | 3.00 × 107 | 3.07 × 107 | 3.03 × 107 | 3.70 × 107 | 4.84 × 107 | 3.27 × 107 | 7.36 × 109 | |
p-value | - | 1.00 × 100 | 1.00 × 100 | 7.88 × 10−1 | 1.00 × 100 | 7.45 × 10−7 | 2.12 × 10−7 | 3.55 × 10−3 | 1.07 × 10−8 | |
W/T/L | - | T | T | T | T | W | W | W | W | |
Mean | 5.41 × 103 | 5.31 × 103 | 5.25 × 103 | 5.40 × 103 | 5.35 × 103 | 5.93 × 103 | 5.46 × 103 | 5.40 × 103 | 5.91 × 103 | |
p-value | - | 5.69 × 10−1 | 6.44 × 10−2 | 1.00 × 100 | 1.00 × 100 | 2.69 × 10−5 | 1.00 × 100 | 1.00 × 100 | 8.49 × 10−5 | |
W/T/L | - | T | T | T | T | W | T | T | W | |
Mean | 7.62 × 10−2 | 1.58 × 10−1 | 1.17 × 10−1 | 3.44 × 10−1 | 4.05 × 10−1 | 2.69 × 10−1 | 8.40 × 10−1 | 3.04 × 10−1 | 4.51 × 10−1 | |
p-value | - | 6.11 × 10−2 | 1.51 × 10−6 | 2.34 × 10−2 | 6.11 × 10−2 | 8.69 × 10−7 | 1.02 × 10−6 | 6.11 × 10−2 | 5.22 × 10−7 | |
W/T/L | - | T | W | W | T | W | W | T | W | |
Mean | 1.93 × 102 | 1.61 × 102 | 1.32 × 102 | 1.31 × 102 | 1.32 × 102 | 9.25 × 102 | 1.95 × 104 | 1.96 × 102 | 1.56 × 103 | |
p-value | - | 8.42 × 10−3 | 2.61 × 10−6 | 1.29 × 10−6 | 1.29 × 10−6 | 1.07 × 10−8 | 1.07 × 10−8 | 3.99 × 10−1 | 1.07 × 10−8 | |
W/T/L | - | L | L | L | L | W | W | T | W | |
Mean | 1.08 × 103 | 1.07 × 103 | 1.17 × 103 | 1.12 × 103 | 1.20 × 103 | 1.22 × 103 | 3.41 × 103 | 1.13 × 103 | 1.42 × 103 | |
p-value | - | 8.39 × 10−1 | 4.29 × 10−2 | 4.79 × 10−1 | 1.28 × 10−2 | 5.26 × 10−3 | 1.94 × 10−8 | 4.79 × 10−1 | 7.81 × 10−7 | |
W/T/L | - | T | W | T | W | W | W | T | W | |
Total | Win (W) | - | 8 | 12 | 10 | 12 | 17 | 11 | 12 | 14 |
Tie (T) | - | 5 | 2 | 3 | 3 | 0 | 3 | 4 | 1 | |
Lose (L) | - | 4 | 3 | 4 | 2 | 0 | 3 | 1 | 2 |
Func. | Measures | NSUTSPCC | NSUSPCC | UCBSPCC | UCBTSPCC | BasicCC | RandomCC | BBCC | CBCC1 | CBCC2 |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 1.05 × 10−2 | 1.67 × 10−4 | 1.94 × 10−5 | 3.36 × 10−5 | 4.37 × 10−2 | 1.72 × 108 | 1.91 × 107 | 3.94 × 10−2 | 4.28 × 10−2 | |
p-value | - | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | |
W/T/L | - | L | L | L | W | W | W | W | W | |
Mean | 3.50 × 102 | 2.05 × 102 | 1.95 × 102 | 1.88 × 102 | 1.97 × 102 | 7.96 × 102 | 2.48 × 103 | 2.25 × 102 | 3.78 × 102 | |
p-value | - | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.11 × 10−5 | |
W/T/L | - | L | L | L | L | W | W | L | W | |
Mean | 5.24 × 107 | 2.75 × 108 | 1.88 × 109 | 7.53 × 108 | 4.53 × 109 | 1.80 × 1010 | 1.59 × 109 | 2.36 × 109 | 1.45 × 1010 | |
p-value | - | 2.77 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 2.66 × 10−5 | 1.07 × 10−8 | 1.07 × 10−8 | |
W/T/L | - | W | W | W | W | W | W | W | W | |
Mean | 4.58 × 106 | 6.95 × 106 | 7.77 × 106 | 6.82 × 106 | 9.30 × 106 | 9.81 × 106 | 2.92 × 106 | 7.56 × 106 | 5.00 × 106 | |
p-value | - | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 2.77 × 10−8 | 1.07 × 10−8 | 3.72 × 10−3 | |
W/T/L | - | W | W | W | W | W | L | W | W | |
Mean | 1.06 × 106 | 1.06 × 106 | 1.06 × 106 | 1.06 × 106 | 1.06 × 106 | 1.06 × 106 | 1.05 × 106 | 1.06 × 106 | 1.06 × 106 | |
p-value | - | 1.34 × 10−1 | 9.20 × 10−2 | 6.62 × 10−1 | 4.01 × 10−1 | 9.20 × 10−2 | 1.20 × 10−8 | 2.53 × 10−2 | 3.76 × 10−5 | |
W/T/L | - | T | T | T | T | T | L | L | L | |
Mean | 3.15 × 104 | 6.20 × 105 | 8.71 × 107 | 1.90 × 107 | 1.21 × 108 | 2.13 × 108 | 1.52 × 108 | 1.19 × 108 | 2.51 × 108 | |
p-value | - | 4.86 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 2.10 × 10−7 | 1.07 × 10−8 | 1.07 × 10−8 | |
W/T/L | - | W | W | W | W | W | W | W | W | |
Mean | 1.74 × 1011 | 6.85 × 1011 | 4.97 × 1013 | 2.04 × 1013 | 1.32 × 1014 | 1.10 × 1014 | 2.88 × 1011 | 3.50 × 1013 | 7.38 × 1011 | |
p-value | - | 1.52 × 10−3 | 1.07 × 10−8 | 1.09 × 10−8 | 1.07 × 10−8 | 1.07 × 10−8 | 1.28 × 10−1 | 1.07 × 10−8 | 6.99 × 10−7 | |
W/T/L | - | W | W | W | W | W | T | W | W | |
Mean | 1.42 × 108 | 1.73 × 108 | 2.74 × 108 | 2.35 × 108 | 3.22 × 108 | 3.53 × 108 | 1.60 × 108 | 2.28 × 108 | 1.93 × 108 | |
p-value | - | 3.69 × 10−3 | 2.90 × 10−4 | 5.08 × 10−5 | 3.12 × 10−5 | 5.22 × 10−7 | 5.35 × 10−2 | 2.90 × 10−4 | 1.45 × 10−4 | |
W/T/L | - | W | W | W | W | W | T | W | W | |
Mean | 9.42 × 107 | 9.45 × 107 | 9.44 × 107 | 9.44 × 107 | 9.45 × 107 | 9.46 × 107 | 9.32 × 107 | 9.43 × 107 | 9.43 × 107 | |
p-value | - | 1.45 × 10−1 | 6.32 × 10−1 | 4.04 × 10−1 | 1.10 × 10−1 | 8.65 × 10−3 | 7.02 × 10−8 | 1.00 × 100 | 1.00 × 100 | |
W/T/L | - | T | T | T | T | W | L | T | T | |
Mean | 1.79 × 109 | 4.12 × 109 | 1.94 × 1010 | 1.44 × 1010 | 2.11 × 1010 | 4.72 × 1010 | 3.18 × 108 | 1.52 × 1010 | 9.57 × 109 | |
p-value | - | 3.36 × 10−2 | 5.67 × 10−7 | 5.67 × 10−7 | 5.67 × 10−7 | 1.55 × 10−7 | 1.43 × 10−6 | 5.67 × 10−7 | 5.67 × 10−7 | |
W/T/L | - | W | W | W | W | W | L | W | W | |
Mean | 3.72 × 107 | 2.90 × 107 | 1.08 × 108 | 5.00 × 108 | 4.14 × 108 | 1.23 × 108 | 5.37 × 107 | 6.16 × 107 | 3.62 × 1011 | |
p-value | - | 1.38 × 10−1 | 2.92 × 10−6 | 2.92 × 10−6 | 1.36 × 10−7 | 2.03 × 10−7 | 5.00 × 10−2 | 3.81 × 10−4 | 1.07 × 10−8 | |
W/T/L | - | T | W | W | W | W | T | W | W | |
Total | Win (W) | - | 6 | 7 | 7 | 8 | 10 | 4 | 8 | 9 |
Tie (T) | - | 3 | 2 | 2 | 2 | 1 | 3 | 1 | 1 | |
Lose (L) | - | 2 | 2 | 2 | 1 | 0 | 4 | 2 | 1 |
CCs with Proposed Methods | Results | CC Frameworks with Other Subproblem Selection Methods | Total | Average | ||||
---|---|---|---|---|---|---|---|---|
BasicCC | RandomCC | BBCC | CBCC1 | CBCC2 | ||||
NSUTSPCC | Win | 12 | 17 | 11 | 12 | 14 | 66 | 13.2 |
Tie | 3 | 0 | 3 | 4 | 1 | 11 | 2.2 | |
Lose | 2 | 0 | 3 | 1 | 2 | 8 | 1.6 | |
NSUSPCC | Win | 13 | 17 | 10 | 13 | 13 | 66 | 13.2 |
Tie | 2 | 0 | 3 | 4 | 1 | 10 | 2 | |
Lose | 2 | 0 | 4 | 0 | 3 | 9 | 1.8 | |
UCBTSPCC | Win | 9 | 13 | 10 | 10 | 12 | 54 | 10.8 |
Tie | 8 | 3 | 1 | 6 | 2 | 20 | 4 | |
Lose | 0 | 1 | 6 | 1 | 3 | 11 | 2.2 | |
UCBSPCC | Win | 10 | 14 | 9 | 10 | 11 | 54 | 10.8 |
Tie | 7 | 3 | 1 | 6 | 1 | 18 | 3.6 | |
Lose | 0 | 0 | 7 | 1 | 5 | 13 | 2.6 |
CCs with Proposed Methods | Results | CC frameworks with Other Subproblem Selection Methods | Total | Average | ||||
---|---|---|---|---|---|---|---|---|
BasicCC | RandomCC | BBCC | CBCC1 | CBCC2 | ||||
NSUTSPCC | Win | 8 | 10 | 4 | 8 | 9 | 39 | 7.8 |
Tie | 2 | 1 | 3 | 1 | 1 | 8 | 1.6 | |
Lose | 1 | 0 | 4 | 2 | 1 | 8 | 1.6 | |
NSUSPCC | Win | 8 | 9 | 3 | 8 | 6 | 34 | 6.8 |
Tie | 2 | 2 | 4 | 3 | 3 | 14 | 2.8 | |
Lose | 1 | 0 | 4 | 0 | 2 | 7 | 1.4 | |
UCBTSPCC | Win | 8 | 8 | 3 | 7 | 5 | 31 | 6.2 |
Tie | 2 | 2 | 1 | 2 | 2 | 9 | 1.8 | |
Lose | 1 | 1 | 7 | 2 | 4 | 15 | 3 | |
UCBSPCC | Win | 6 | 9 | 3 | 3 | 5 | 26 | 5.2 |
Tie | 5 | 2 | 1 | 6 | 1 | 15 | 3 | |
Lose | 0 | 0 | 7 | 2 | 5 | 14 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-S. Utilization of Upper Confidence Bound Algorithms for Effective Subproblem Selection in Cooperative Coevolution Frameworks. Mathematics 2025, 13, 3052. https://doi.org/10.3390/math13183052
Kim K-S. Utilization of Upper Confidence Bound Algorithms for Effective Subproblem Selection in Cooperative Coevolution Frameworks. Mathematics. 2025; 13(18):3052. https://doi.org/10.3390/math13183052
Chicago/Turabian StyleKim, Kyung-Soo. 2025. "Utilization of Upper Confidence Bound Algorithms for Effective Subproblem Selection in Cooperative Coevolution Frameworks" Mathematics 13, no. 18: 3052. https://doi.org/10.3390/math13183052
APA StyleKim, K.-S. (2025). Utilization of Upper Confidence Bound Algorithms for Effective Subproblem Selection in Cooperative Coevolution Frameworks. Mathematics, 13(18), 3052. https://doi.org/10.3390/math13183052