Mathematical Modeling and Finite Element Analysis of Torsional Divergence of Carbon Plates with an AIREX Foam Core
Abstract
1. Introduction
2. Materials and Methods
2.1. Development of the Aeroelastic Divergence Equation for Anisotropic Wings
2.2. Galerkin-Based Approximate Solution to the Divergence Equation
- By normalizing the coordinate through the dimensionless ratio y/ymax, the basis functions remain scale-free; consequently, the same analytical expression is applicable to any wingspan by simply substituting the appropriate value of ymax.
- At the root, each ϕi satisfies the essential (geometric) boundary condition because ϕi(0) = 0 for all i, thus guaranteeing zero twist at the clamped root without any additional constraints.
- As y → ymax, the term (1 − y/ymax) tends to zero and the expression in parentheses approaches unity, ensuring ϕi(y) → 1. This end behavior provides the flexibility required to represent the twist distribution near the free tip while still allowing the natural boundary condition θ′(ymax) = 0 to be weakly enforced through the weighted residual statement.
- The exponent (i + 1) introduces progressively higher-order shape features with increasing i, enabling systematic enrichment of the approximation by simply adding basis functions.
- Finally, the closed algebraic form of ϕi(y) produces analytic first and second derivatives that are straightforward to differentiate and integrate, facilitating both the assembly of the Galerkin stiffness matrix
3. Results and Analysis
3.1. FEA Model Configuration
3.2. Material Properties
3.3. Loading and Boundary Conditions
3.4. Post-Processing and Results Interpretation
3.4.1. Shear Stress Evaluation in Foam Core
3.4.2. Interface Bond Analysis Using Total Glue Traction
3.4.3. Face Sheet Stress Evaluation
3.4.4. Compressive Instability of Face Sheets in Foam-Core Sandwich Fins
3.4.5. Global Deformation Field and Displacement Patterns
4. Discussion
4.1. Analysis of Shear Stresses in the Core
4.2. Analysis of the Adhesive Interface
4.3. Analysis of the Stresses in Face Sheet(s)
4.4. Analysis of the Imposed Constraints
- Local reinforcement: Adding extra plies, tapered laminates, or tip caps to reduce stress.
- Mesh refinement: Performing a local mesh convergence study to ensure numerical accuracy.
- Experimental validation: Applying strain gauges or full-field techniques such as Digital Image Correlation (DIC) in the tip region.
- Load redistribution: Reassessing boundary conditions or local constraint definitions that may artificially concentrate load.
- Substructuring (submodeling): isolate the high-stress tip region into a detailed submodel, apply the global FEA’s sectional-rotation boundary conditions, refine the mesh and represent each ply explicitly, then re-evaluate stresses to distinguish true hot-spots from numerical artifacts and guide precise local reinforcement.
- Increasing the core’s shear modulus (e.g., selecting a higher-stiffness foam) to better support the face sheets in compression.
- Adjusting face-sheet ply architecture thicker plies, higher-modulus fibers, or optimized fiber angles to boost local compressive stiffness.
- Ensuring flawless adhesive bonding and smooth ply terminations to eliminate delamination or free-edge effects that exacerbate wrinkling.
- Introducing targeted stiffeners or inserts at the high-stress tip region, possibly evaluated through submodeling, to suppress local buckle formation.
4.5. Discussion Summary
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
- N = [Nx, Ny, Nxy]T: in-plane force resultants;
- M = [Mx, My, Mxy]T: bending moment resultants;
- ε0= [ε0x, ε0y, γ0xy]T: mid-plane strains;
- κ = [κx, κy, κxy]T: mid-plane curvatures;
- A, B, D: extensional, coupling, and bending stiffness submatrices.
References
- Abdalsalam, A.A.H.A. Aeroelastic Structural Analysis to Calculate Symmetrical Divergence Modes of an Aircraft Wing Using Aerodynamic Lifting Line Theory. Eng. Technol. J. 2024, 9, 5313–5320. [Google Scholar] [CrossRef]
- Rajasekaran, S. Torsion Analysis of Functionally Graded Iso/Orthotropic Sections Using Differential Quadrature and pb2-Rayleigh Ritz Methods. J. Inst. Eng. India Ser. A 2024, 105, 875–912. [Google Scholar] [CrossRef]
- Garbowski, T.; Gajewski, T.; Grabski, J.K. Torsional and Transversal Stiffness of Orthotropic Sandwich Panels. Materials 2020, 13, 5016. [Google Scholar] [CrossRef] [PubMed]
- Wieners, C. Galerkin Methods. In Encyclopedia of Applied and Computational Mathematics; Engquist, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Ismail, S.O.; Eyvazinejad Firouzsalari, S.; Naseem, S.; Oladapo, B.I. Investigation into high-speed impact response of composite sandwich structures. J. Compos. Mater. 2025, 59, 1521–1531. [Google Scholar] [CrossRef]
- Cabral, P.H.; do Prado, A.P.; Carrera, E.; Pagani, A.; Sánchez-Majano, A.R.; Enea, M. Aeroelastic Tailoring Based on Virtually-Generated Allowable and High-Order Finite Elements for Improved Composite Wing Design. In Proceedings of the ICAS 2024 Proceedings, Florence, Italy, 9–13 September 2024; p. 0167. [Google Scholar]
- Drela, M.; Hall, D.; Selig, M. Hybrid Shell Model for Aeroelastic Modeling. In Proceedings of the AIAA SciTech 2019 AIAA 2019-2227, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Pan, Y.; Zhang, H.; Li, Q. Structural and Aeroelastic Optimization of a Large Aircraft Wing. In Proceedings of the 33rd International Council of the Aeronautical Sciences (ICAS), Florence, Italy, 9–13 September 2024. [Google Scholar]
- Sadiq, M.; Kovács, T. Optimization of Composite Sandwich Structures: A Review. Machines 2025, 13, 536. [Google Scholar] [CrossRef]
- Irisarri, F.X.; Renart, J.; Sarrado, C.; Costa, J.; Guillamet, G. A General Optimization Strategy for Composite Sandwich Structures. Struct. Multidiscip. Optim. 2021, 63, 1451–1467. [Google Scholar] [CrossRef]
- Anderson, J.D. Fundamentals of Aerodynamics, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Rajagopalan, K. Torsion of Thin-Walled Structures. In St. Venant Torsion; Springer: Singapore, 2022; pp. 1–28. [Google Scholar]
- Gebre, T.H.; Galishnikova, V.V. The Impact of Section Properties on Thin-Walled Beam Sections with Restrained Torsion. J. Phys. Conf. Ser. 2020, 1687, 012020. [Google Scholar] [CrossRef]
- Daniel, I.M.; Ishai, O. Engineering Mechanics of Composite Materials; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Wan, L.; Ullah, Z.; Yang, D.; Falzon, B.G. Comprehensive Inter-Fibre Failure Analysis and Failure Criteria Comparison for Composite Materials Using Micromechanical Modelling Under Biaxial Loading. J. Compos. Mater. 2023, 57, 2919–2932. [Google Scholar] [CrossRef]
- Hyer, M.W.; White, S.R. Stress Analysis of Fiber-Reinforced Composite Materials, Updated ed.; DEStech Publications: Lancaster, PA, USA, 2009. [Google Scholar]
- Osswald, T.A.; Hernández-Ortiz, J.P.; Gómez, C. A Strength Tensor Based Failure Criterion with Stress Interactions. Polym. Compos. 2020, 41, 2620–2631. [Google Scholar] [CrossRef]
- Wan, L.; Ullah, Z.; Yang, D.; Falzon, B.G. Progressive Failure Analysis of CFRP Composite Laminates Under Uniaxial Tension Using a Discrete Element Method. J. Compos. Mater. 2021, 55, 489–507. [Google Scholar] [CrossRef]
- De Baere, I.; Vanpaepeghem, C.; Van heeder, J.; Sundararaman, M.; Van Paepeghem, Y. An Enhanced Progressive Damage Model for Laminated Fiber-Reinforced Composites Using the 3D Hashin Failure Criterion: A Multi-Level Analysis and Validation. Materials 2024, 17, 5176. [Google Scholar]
- Hu, H.; Wei, Q.; Liu, B.; Liu, Y.; Hu, N.; Ma, Q.; Wang, C. Progressive Damage Behavior Analysis and Comparison with 2D/3D Hashin Failure Models on Carbon Fibre—Reinforced Aluminium Laminates. Polymers 2022, 14, 2946. [Google Scholar] [CrossRef] [PubMed]
- Elalfy, M.H.; Abdalla, M.M.; Abuelfoutouh, N. Numerical Generation of Omnistrain Failure Envelopes. J. Compos. Mater. 2023, 57, 4603–4614. [Google Scholar] [CrossRef]
- Pozorski, Z.; Pozorska, J. Influence of the Heterogeneity of the Core Material on the Local Instability of a Sandwich Panel. Materials 2022, 15, 6687. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Liu, S. New method for predicting the wrinkling stress in sandwich panels. Arch. Appl. Mech. 2025, 95, 4. [Google Scholar] [CrossRef]
Parameter | Value | Units |
---|---|---|
Span | 0.345 | [m] |
Root Chord | 0.225 | [m] |
Tip Chord | 0.053 | [m] |
Core Thickness | 0.0025 | [m] |
Lamina Thickness | 0.0002 | [m] |
Laminate Lay-up | [0/90/45/−45] s | [0] |
Number of Layers | 4 | [-] |
Sweep angle | 38.44 | [0] |
Structural Characteristic | Value | Units |
---|---|---|
Fiber volume fraction | 62 | [%] |
Longitudinal modulus E1 | 77 | [GPa] |
Transverse modulus E2 | 75 | [GPa] |
In-plane shear modulus G12 | 6.5 | [GPa] |
Major Poisson Ratio ν12 | 0.06 | [-] |
Longitudinal tensile F1T strength | 963 | [MPa] |
Transverse tensile F2T strength | 853 | [MPa] |
Longitudinal compressive strength, F1c | 900 | [MPa] |
Transverse compressive strength F2C, | 900 | [MPa] |
In-plane shear strength, F6 | 71 | [MPa] |
Interface Shear strength | 63 | [MPa] |
Ultimate longitudinal tensile strain ε1T | 0.013 | [-] |
Ultimate transverse tensile strain ε2T | 0.012 | [-] |
Ultimate longitudinal compressive strain ε1C | 0.008 | [-] |
Ultimate transverse compressive strain ε2C | 0.012 | [-] |
Structural Characteristic | Value | Units |
---|---|---|
In-plane tensile modulus | 35 | [MPa] |
In-plane Shear modulus | 13 | [MPa] |
Tensile strength | 1.3 | [MPa] |
Shear strength | 0.85 | [MPa] |
In-Plane Stress Component | 95% of Fin Area | Localized Tip Region |
---|---|---|
normal stress in the fiber direction σ1 [MPa] 1 | 221 | 997 |
normal stress in transverse direction σ2 [MPa] | 22 | −454 |
in-plane shear stress τ12 [MPa] | 20 | 141 |
Criterion | Failure Type | 95% of Fin Area | Localized Tip Region |
---|---|---|---|
Tsai-Wu | Fiber | 0.072 | 1.219 |
Matrix | 0.002 | 0.241 | |
Shear | 0.079 | 3.944 | |
Combined | 0.160 | 4.849 | |
Max Strain | Fiber | 0.253 | 0.956 |
Matrix | 0.101 | 0.181 | |
Shear | 0.282 | 1.986 | |
Combined | 0.282 | 1.986 | |
Hashin | Fiber Tension | - | - |
Fiber Compres. | 0.246 | 1.108 | |
Matrix Tension | 0.080 | 0.000 | |
Matrix Compres. | - | 4.196 | |
Combined | 0.246 | 4.196 |
Model | σcr [MPa] | Remark |
---|---|---|
Hoff | 928 | Based on shear stiffness |
Allen | 421 | Includes core compressibility |
Plantema | 170 | Most conservative estimate |
FEA (σ1max) | −454 | Simulation-based reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinulović, M.; Perić, M.; Stamenković, D.; Trninić, M.; Bengin, J. Mathematical Modeling and Finite Element Analysis of Torsional Divergence of Carbon Plates with an AIREX Foam Core. Mathematics 2025, 13, 2695. https://doi.org/10.3390/math13162695
Dinulović M, Perić M, Stamenković D, Trninić M, Bengin J. Mathematical Modeling and Finite Element Analysis of Torsional Divergence of Carbon Plates with an AIREX Foam Core. Mathematics. 2025; 13(16):2695. https://doi.org/10.3390/math13162695
Chicago/Turabian StyleDinulović, Mirko, Mato Perić, Dragi Stamenković, Marta Trninić, and Jovan Bengin. 2025. "Mathematical Modeling and Finite Element Analysis of Torsional Divergence of Carbon Plates with an AIREX Foam Core" Mathematics 13, no. 16: 2695. https://doi.org/10.3390/math13162695
APA StyleDinulović, M., Perić, M., Stamenković, D., Trninić, M., & Bengin, J. (2025). Mathematical Modeling and Finite Element Analysis of Torsional Divergence of Carbon Plates with an AIREX Foam Core. Mathematics, 13(16), 2695. https://doi.org/10.3390/math13162695