On the Product of Zeta-Functions
Abstract
:1. Introduction
2. The Product of Two Riemann Zeta-Functions
3. -Expansion and Proof of Theorem 2
4. Proof of Theorem 1
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardy, G.H. Divergent Series; Oxford UP: Oxford, UK, 1949. [Google Scholar]
- Titchmarsh, E.C. Some problems in the analytic theory of numbers. Quart. J. Math. (Oxf. Ser.) 1942, 13, 129–152. [Google Scholar] [CrossRef]
- Bochner, S. Some properties of modular relations. Ann. Math. 1951, 53, 332–363. [Google Scholar] [CrossRef]
- Bellman, R. Wigert’s approximate functional equation and the Riemann zeta-function. Duke Math. J. 1949, 16, 547–552. [Google Scholar] [CrossRef]
- Wigert, S. Sur la série de Lambert et son application à la théorie des nombres. Acta Math. 1918, 41, 197–218. [Google Scholar] [CrossRef]
- Bellman, R. Analytic Number Theory—An Introduction; Benjamin: Reading, MA, USA, 1980. [Google Scholar]
- Atkinson, F.V. The Abel summation of certain Dirichlet series. Quart. J. Math. (Oxf. Ser.) 1948, 19, 59–64. [Google Scholar] [CrossRef]
- Berndt, B.C. Identities involving the coefficients of a class of Dirichlet series IV. Trans. Am. Math. Soc. 1970, 149, 179–185. [Google Scholar] [CrossRef]
- Kanemitsu, S.; Tsukada, H. Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy; World Science: Singapore, 2014. [Google Scholar]
- Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. Some number-theoretic applications of a general modular relation. Intern. J. Number Theory 2006, 2, 599–615. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. (Eds.) Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume I–III. [Google Scholar]
- Kanemitsu, S.; Tsukada, H. Vistas of Special Functions; World Scientific: Singapore, 2007. [Google Scholar]
- Srivastava, H.M.; Choi, J.-S. Series Associated with the Zeta and Related Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2001. [Google Scholar]
- Braaksma, B.L.J. Asymptotic expansions and analytic continuations for a class of Barnes integrals. Compos. Math. 1962, 15, 239–341. [Google Scholar]
- Kanemitsu, S.; Tanigawa, Y.; Yoshimoto, M. Ramanujan’s formula and modular forms. In Number-Theoretic Methods—Future Trends, Proceedings of a Conference Held in Iizuka; Kanemitsu, S., Jia, C., Eds.; Kluwer: Dordrecht, The Netherlands, 2002; pp. 159–212. [Google Scholar]
- Li, W.B.; Li, H.Y.; Mehta, J. Around the Lipschitz summation formula. Hindawi Math. Probl. Eng. 2020, 2020, 5762823. [Google Scholar] [CrossRef]
- Wang, N.-L.; Agarwal, K.; Kanemitsu, S. Limiting values and functional and difference equations. Math. Differ. Differ. Equ. 2020, 8, 407. [Google Scholar] [CrossRef]
- Stankus, E.P. A remark on the Laurent coefficients of the Riemann zeta-function. Zap. Naucn. Sem. LOMI 1983, 121, 103–107. [Google Scholar]
- Li, H.-L. On generalized Euler constants and an integral related to the Piltz divisor problem. Šiaulai Math. Sem. 2005, 8, 81–93. [Google Scholar]
- Kurokawa, N. Limit values of Eisenstein series and multiple cotangent functions. J. Number Theory 2008, 128, 1776–1784. [Google Scholar] [CrossRef]
- Koyama, S.; Kurokawa, N. Multiple Eisenstein series and multiple cotangent functions. J. Number Theory 2008, 128, 1769–1774. [Google Scholar] [CrossRef]
- Chapman, R. Limit formulas for non-modular Eisenstein series. J. Comb. Number Theory 2009, 1, 127–132. [Google Scholar]
- Serre, J.-P. A Course in Arithmetic; Springer: New York, NY, USA, 1973. [Google Scholar]
- Toyoizumi, M. Ramanujan’s formula for certain Dirichlet series. Comment. Math. Univ. Sancti Pauli. 1981, 30, 140–173. [Google Scholar]
- Chan, H.; Kanemitus, S.; Magi, B. Modular relations associated to the Rankin-Selberg L-function. Ramanujan J. 2016, 42, 285–299. [Google Scholar] [CrossRef]
- Chakraborty, K.; Kanemitsu, S.; Kuzumaki, T. Modular Relations and Parity in Number Theory; Springer Nature: Singapore, 2025; 330p, in press. [Google Scholar]
- Chan, H.H. Theta Functions, Elliptic Functions and π; de Gruyter: Berlin, Germany; Boston, MA, USA, 2020. [Google Scholar]
- Kanemitsu, S.; Kuzumaki, T. Transformation formulas for Lambert series. Siaulai Math. Sem. 2009, 4, 105–123. [Google Scholar]
- Weil, A. Sur une formule classique. J. Math. Soc. Japan 1968, 20, 400–402. [Google Scholar]
- Bellman, R. On the functional equations of the Dirichlet series derived from Siegel modular forms. Proc. Natl. Acad. Sci. USA 1951, 37, 84–87. [Google Scholar] [CrossRef]
- Bellman, R. On a class of functional equations of modular type. Proc. Natl. Acad. Sci. USA 1956, 42, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Berndt, B.C. Identities involving the coefficients of a class of Dirichlet series I. Trans. Am. Math. Soc. 1969, 137, 345–359. [Google Scholar] [CrossRef]
- Walfisz, A.Z. Über die Summatorischen Funktionen Einiger Dirichletscher Reihen. Inaugural Thesis, Dieterichsche Universitäts, Göttingnen, Germany, 1923. [Google Scholar]
- Walfisz, A.Z. Über das Piltzsche Teilerproblem in algebraishcen Zahlkörpern. Math. Z. 1925, 22, 153–188. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Chakraborty, K.; Kuzumaki, T. On the Product of Zeta-Functions. Mathematics 2025, 13, 1900. https://doi.org/10.3390/math13111900
Wang N, Chakraborty K, Kuzumaki T. On the Product of Zeta-Functions. Mathematics. 2025; 13(11):1900. https://doi.org/10.3390/math13111900
Chicago/Turabian StyleWang, Nianliang, Kalyan Chakraborty, and Takako Kuzumaki. 2025. "On the Product of Zeta-Functions" Mathematics 13, no. 11: 1900. https://doi.org/10.3390/math13111900
APA StyleWang, N., Chakraborty, K., & Kuzumaki, T. (2025). On the Product of Zeta-Functions. Mathematics, 13(11), 1900. https://doi.org/10.3390/math13111900