Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = external rotor permanent magnet synchronous motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7734 KiB  
Article
Thermal–Flow Coupling Simulation and Performance Analysis for Self-Starting Permanent Magnet Motors
by Jinhui Liu, Yunbo Shi, Yang Zheng and Minghui Wang
Electronics 2025, 14(12), 2487; https://doi.org/10.3390/electronics14122487 - 19 Jun 2025
Viewed by 1876
Abstract
In practical applications, the fully enclosed structure is always required by self-starting permanent magnet synchronous motors for safety. However, internal heat dissipation can be obstructed as a result, which affects operational reliability. To resolve the issue, this study takes a 3 kW self-starting [...] Read more.
In practical applications, the fully enclosed structure is always required by self-starting permanent magnet synchronous motors for safety. However, internal heat dissipation can be obstructed as a result, which affects operational reliability. To resolve the issue, this study takes a 3 kW self-starting permanent magnet synchronous motor as the research object. Based on fluid dynamics and fluid solid coupling heat transfer theory, the model is reasonably simplified according to the characteristics of the structure of motor cooling, and basic assumptions and boundary conditions are given to establish a three-dimensional, whole machine solution domain model. The finite element method is used to numerically analyze and calculate under rated conditions. The fluid flow characteristics, heat transfer characteristics, motion trajectories of the cooling medium on the surface of the external casing, fan, and internal stator and rotor domains, and winding ends are analyzed. Therefore, the internal rheological characteristics and temperature rise distribution law of the self-starting permanent magnet synchronous motor can be revealed. Based on the aforementioned research, a novel method to design the wind spur structure on the surface of the rotor end is proposed. By comparing the simulation results of the fluid field and temperature field of the motor under wind spur structures with different lengths and equidistant distributions in the circumferential direction of the rotor end, the influence of the convective heat characteristics can be systematically studied. Lastly, the accuracy of the calculation results and the rationality of the solution method are verified through experiments of temperature rise, and the flow temperature distribution characteristics of the motor can be optimized by the wind spur structure, which can be used in practical applications. Full article
Show Figures

Figure 1

17 pages, 8494 KiB  
Article
Design of a High-Efficiency External Rotor Interior Permanent Magnet Synchronous Motor Without Magnetic Leakage Flux Path
by Kyoung-Soo Cha, Jae-Hyun Kim, Soo-Gyung Lee and Min-Ro Park
Mathematics 2025, 13(11), 1865; https://doi.org/10.3390/math13111865 - 3 Jun 2025
Viewed by 619
Abstract
This paper proposes a high-efficiency design for an external rotor interior permanent magnet synchronous motor (IPMSM) that eliminates the magnetic leakage flux path. The conventional model based on an external rotor surface-mounted permanent magnet synchronous motor (SPMSM) is analyzed using a statistical method. [...] Read more.
This paper proposes a high-efficiency design for an external rotor interior permanent magnet synchronous motor (IPMSM) that eliminates the magnetic leakage flux path. The conventional model based on an external rotor surface-mounted permanent magnet synchronous motor (SPMSM) is analyzed using a statistical method. Design directions are derived by comparing efficiencies at two major operating points with different motor characteristics. A V-shaped IPMSM is then proposed to increase the permanent magnet volume and reduce magnetic leakage. Design optimization is conducted using Gaussian process models (GPMs) constructed with a Latin hypercube design (LHD), and the optimal design is determined using a gradient descent algorithm. A prototype is fabricated to confirm manufacturability, and the improved efficiency of the proposed design is experimentally verified. The results demonstrate that the proposed IPMSM significantly outperforms the conventional SPMSM in terms of efficiency across both operating points. Full article
Show Figures

Figure 1

13 pages, 7502 KiB  
Article
Position Sensorless Control of Permanent Magnet Synchronous Motor Based on Improved Model Reference Adaptive Systems
by Meng Wang, Jian Liu, Lijun Jiang, Kun Tan and Yiyong Wang
Energies 2025, 18(10), 2531; https://doi.org/10.3390/en18102531 - 14 May 2025
Cited by 1 | Viewed by 380
Abstract
To address the issues of poor stability and susceptibility to external disturbances in traditional model reference adaptive systems (MRASs) for permanent magnet synchronous motors (PMSMs), this paper proposes a sliding mode control strategy based on an improved model reference adaptive observer. First, the [...] Read more.
To address the issues of poor stability and susceptibility to external disturbances in traditional model reference adaptive systems (MRASs) for permanent magnet synchronous motors (PMSMs), this paper proposes a sliding mode control strategy based on an improved model reference adaptive observer. First, the dynamic equations of the PMSM are used as the reference model, while the stator current equations incorporating speed variables are constructed as the adjustable model. Subsequently, a novel adaptive law is designed using Popov’s hyperstability theory to enhance the estimation accuracy of rotor position. A fractional-order system was introduced to construct both a fractional-order sliding surface and reaching law. Subsequently, a comparative study was conducted between the conventional integral terminal sliding surface and the proposed novel sliding mode reaching law. The results demonstrate that the new reaching law can adaptively adjust the switching gain based on system state variables. Under sudden load increases, the improved system achieves a 25% reduction in settling time compared to conventional sliding mode control (SMC), along with a 44% decrease in maximum speed fluctuation and a 42% reduction in maximum torque ripple, significantly enhancing dynamic response performance. Furthermore, a variable-gain terminal sliding mode controller is derived, and the stability of the closed-loop control system is rigorously proven using Lyapunov theory. Finally, simulations verify the effectiveness and feasibility of the proposed control strategy in improving system robustness and disturbance rejection capability. Full article
Show Figures

Figure 1

25 pages, 9780 KiB  
Article
Efficiency Optimization of PMSM-Type Elevator Machine: An Industrial Comparison
by Mucahit Soyaslan, Osman Eldogan, Ahmet Fenercioglu, Yusuf Avsar, Nurdogan Ceylan and Muhammed Salih Sarıkaya
Machines 2025, 13(3), 173; https://doi.org/10.3390/machines13030173 - 21 Feb 2025
Viewed by 1076
Abstract
This study presents the design, modeling, and prototyping of an external rotor permanent magnet synchronous motor (ER-PMSM) specifically for elevator traction systems. The external rotor design aims to surpass the efficiency of conventional inner rotor gearless elevator traction motors. A commercially available 4 [...] Read more.
This study presents the design, modeling, and prototyping of an external rotor permanent magnet synchronous motor (ER-PMSM) specifically for elevator traction systems. The external rotor design aims to surpass the efficiency of conventional inner rotor gearless elevator traction motors. A commercially available 4 kW inner rotor permanent magnet synchronous motor (IR-PMSM) was selected for comparative analysis. Critical parameters, including stator tooth tip thickness, slot tip radius, slot height, stator yoke height, stator tooth thickness, and the number of turns per phase, were optimized to enhance efficiency. The artificial bee colony (ABC) algorithm was utilized for the first time to determine the optimal configuration of an external rotor PMSM. The prototype was fabricated and subjected to rigorous testing using a dedicated electrical motor test setup. Comparative results demonstrated a significant improvement in efficiency for the ER-PMSM over the IR-PMSM, with the efficiency increasing from 72.5% to 84.67% at nominal operating conditions. Full article
Show Figures

Figure 1

33 pages, 15412 KiB  
Article
Improved Performance of the Permanent Magnet Synchronous Motor Sensorless Control System Based on Direct Torque Control Strategy and Sliding Mode Control Using Fractional Order and Fractal Dimension Calculus
by Marcel Nicola, Claudiu-Ionel Nicola, Dan Selișteanu, Cosmin Ionete and Dorin Șendrescu
Appl. Sci. 2024, 14(19), 8816; https://doi.org/10.3390/app14198816 - 30 Sep 2024
Cited by 4 | Viewed by 2326
Abstract
This article starts from the premise that one of the global control strategies of the Permanent Magnet Synchronous Motor (PMSM), namely the Direct Torque Control (DTC) control strategy, is characterized by the fact that the internal flux and torque control loop usually uses [...] Read more.
This article starts from the premise that one of the global control strategies of the Permanent Magnet Synchronous Motor (PMSM), namely the Direct Torque Control (DTC) control strategy, is characterized by the fact that the internal flux and torque control loop usually uses ON–OFF controllers with hysteresis, which offer easy implementation and very short response times, but the oscillations introduced by them must be cancelled by the external speed loop controller. Typically, this is a PI speed controller, whose performance is good around global operating points and for relatively small variations in external parameters and disturbances, caused in particular by load torque variation. Exploiting the advantages of the DTC strategy, this article presents a way to improve the performance of the sensorless control system (SCS) of the PMSM using the Proportional Integrator (PI), PI Equilibrium Optimizer Algorithm (EOA), Fractional Order (FO) PI, Tilt Integral Derivative (TID) and FO Lead–Lag under constant flux conditions. Sliding Mode Control (SMC) and FOSMC are proposed under conditions where the flux is variable. The performance indicators of the control system are the usual ones: response time, settling time, overshoot, steady-state error and speed ripple, plus another one given by the fractal dimension (FD) of the PMSM rotor speed signal, and the hypothesis that the FD of the controlled signal is higher when the control system performs better is verified. The article also presents the basic equations of the PMSM, based on which the synthesis of integer and fractional controllers, the synthesis of an observer for estimating the PMSM rotor speed, electromagnetic torque and stator flux are presented. The comparison of the performance for the proposed control systems and the demonstration of the parametric robustness are performed by numerical simulations in Matlab/Simulink using Simscape Electrical and Fractional-Order Modelling and Control (FOMCON). Real-time control based on an embedded system using a TMS320F28379D controller demonstrates the good performance of the PMSM-SCS based on the DTC strategy in a complete Hardware-In-the-Loop (HIL) implementation. Full article
(This article belongs to the Special Issue Control Systems for Next Generation Electric Applications)
Show Figures

Figure 1

23 pages, 9346 KiB  
Article
PMSM Sensorless Control Based on Moving Horizon Estimation and Parameter Self-Adaptation
by Aoran Chen, Wenbo Chen and Heng Wan
Electronics 2024, 13(13), 2444; https://doi.org/10.3390/electronics13132444 - 21 Jun 2024
Viewed by 1850
Abstract
The field of sensorless control of permanent magnet synchronous motor (PMSM) systems has been the subject of extensive research. The accuracy of sensorless controllers depends on the precise estimation of PMSM state quantities, including rotational speed and rotor position. In order to enhance [...] Read more.
The field of sensorless control of permanent magnet synchronous motor (PMSM) systems has been the subject of extensive research. The accuracy of sensorless controllers depends on the precise estimation of PMSM state quantities, including rotational speed and rotor position. In order to enhance state estimation accuracy, this paper proposes a moving horizon estimator that can be utilized in the sensorless control system of PMSM. Considering the parameter variations observed in PMSM, a nonlinear mathematical model of PMSM is established. A model reference adaptive system (MRAS) is employed to identify parameters such as resistance, inductance, and magnetic chain in real time. This approach can mitigate the impact of parameter fluctuations. Moving horizon estimation (MHE) is an estimation method based on optimization that can directly handle nonlinear system models. In order to eliminate the influence of external interference and improve the robustness of state estimation, a method based on MHE has been designed for PMSM, and a sensorless observer has been established. Considering the traditional MHE with large computation and high memory occupation, the calculation of MHE is optimized by utilizing a Hessian matrix and gradient vector. The speed and position of the PMSM are estimated within constraints during a single-step iteration. The results of the simulation demonstrate that in comparison to the traditional control structure, the estimation error of rotational speed and rotor position can be reduced by utilizing the proposed method. A more accurate estimation can be achieved with good adaptability and computational speed, which can enhance the robustness of the control system of PMSM. Full article
(This article belongs to the Special Issue Advances in Control for Permanent Magnet Synchronous Motor (PMSM))
Show Figures

Figure 1

22 pages, 12103 KiB  
Article
Design and Optimization of an Interior Permanent-Magnet Synchronous Motor for Aircraft Drive Application
by Fei Xiong, Rui Yan, Yuhang Xie and Kai Yang
Appl. Sci. 2024, 14(1), 309; https://doi.org/10.3390/app14010309 - 29 Dec 2023
Cited by 2 | Viewed by 3402
Abstract
The torque performance of the interior permanent-magnet synchronous motor (IPMSM) must be further improved to satisfy the growing demand of aircraft drive application. To this end, this article focuses on the design optimization of the IPMSM structure in the aircraft drive systems to [...] Read more.
The torque performance of the interior permanent-magnet synchronous motor (IPMSM) must be further improved to satisfy the growing demand of aircraft drive application. To this end, this article focuses on the design optimization of the IPMSM structure in the aircraft drive systems to improve the torque density and reduce the torque ripple. A special fractional-slot winding and ∇-type magnetic-pole rotor topology are proposed as the optimized IPMSM structure compared with the structure of an existing motor. The simulations of the original and optimized structures at different current values reveal the variance of the torque in the average and ripple, mechanical and external characteristics, efficiency and steady-state temperature. The performance of an optimized prototype is analyzed by experimental testing, and the results show that an optimized motor has a higher torque density and lower torque ripple than the original one at the same speed and rated power, but it also has a higher temperature rise. However, the temperature rise value is acceptable in the experimental testing condition, so the validity of the design optimization method for the proposed structure is verified. Full article
Show Figures

Figure 1

25 pages, 10796 KiB  
Article
Novel Magnetic Field Modeling Method for a Low-Speed, High-Torque External-Rotor Permanent-Magnet Synchronous Motor
by Shaokai Kou, Ziming Kou, Juan Wu and Yandong Wang
Electronics 2023, 12(24), 5025; https://doi.org/10.3390/electronics12245025 - 15 Dec 2023
Cited by 4 | Viewed by 1630
Abstract
In view of the unstable electromagnetic performance of the air gap magnetic field caused by the torque ripple and harmonic interference of a multi-slot and multi-pole low-speed, high-torque permanent magnet synchronous motor, we propose a simplified model of double-layer permanent magnets. The model [...] Read more.
In view of the unstable electromagnetic performance of the air gap magnetic field caused by the torque ripple and harmonic interference of a multi-slot and multi-pole low-speed, high-torque permanent magnet synchronous motor, we propose a simplified model of double-layer permanent magnets. The model is divided into an upper and a lower subdomain, with the upper subdomain being an ideal circular ring and the lower subdomain being a segmented sector ring. Moreover, we develop an exact analytical model of the motor that predicts the magnetic field distribution based on Laplace’s and Poisson’s equations, which is solved using the method of separating variables. Taking a 40p168s low-speed, high-torque permanent magnet synchronous motor as an example, the accuracy of the model is verified by comparison with an ideal circular ring model, a segmented sector ring model, and the finite element method. Based on the proposed simplified model, three combined permanent magnets considering both edge-cutting and polar arc cutting structures are proposed, which are chamfered, rounded, and rectangular combinations. Under the premise of a consistent edge-cutting amount, the electromagnetic characteristics of the three combination types of permanent magnets are compared using the finite element method. The results show that the electromagnetic characteristics of the chamfered combination PM are superior to those of the other two combinations. Finally, a prototype is manufactured and tested to validate the theoretical analysis. Full article
Show Figures

Figure 1

19 pages, 5617 KiB  
Article
Multi-Objective Optimization Design of the External Rotor Permanent Magnet-Assisted Synchronous Reluctance Motor Based on the Composite Algorithm
by Guoshuai Li, Huiqin Sun, Weiguang Hu, Ying Li, Yongqiang Bai and Yingjun Guo
Electronics 2023, 12(19), 4004; https://doi.org/10.3390/electronics12194004 - 22 Sep 2023
Cited by 5 | Viewed by 1986
Abstract
Based on the complex structural characteristics of permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs), this paper proposes a multi-objective optimization design method for the motor using a composite algorithm. Firstly, the power density, electromagnetic torque, cogging torque, and torque fluctuation coefficient were used as [...] Read more.
Based on the complex structural characteristics of permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs), this paper proposes a multi-objective optimization design method for the motor using a composite algorithm. Firstly, the power density, electromagnetic torque, cogging torque, and torque fluctuation coefficient were used as optimization targets based on parametric analysis data of 14 motor structure variables, where parametric sensitivity analysis helped select eight optimization variables. Secondly, the motor prediction model was fitted using the genetic algorithm–back propagation (GA-BP) neural network. Finally, non-dominated sorting genetic algorithm-III (NSGA-III), based on the reference points, was used to find the optimization of the prediction model and complete the multi-objective optimization design of the external rotor PMA-SynRM with eight inputs and four outputs. A comparative analysis of the electromagnetic performance of the motor before and after optimization verifies the feasibility of optimizing the motor using the composite algorithm. This paper provides an analytical tool for the multi-parameter and multi-objective PMA-SynRM optimization design. Full article
Show Figures

Graphical abstract

25 pages, 21161 KiB  
Article
Improved Performance for PMSM Sensorless Control Based on the LADRC Controller, ESO-Type Observer, DO-Type Observer, and RL-TD3 Agent
by Claudiu-Ionel Nicola and Marcel Nicola
Mathematics 2023, 11(15), 3324; https://doi.org/10.3390/math11153324 - 28 Jul 2023
Cited by 4 | Viewed by 1492
Abstract
Starting from the fact that in sensorless control systems of the Permanent Magnet Synchronous Motor (PMSM), the load torque can have short and significant variations, this paper presents the sensorless control of a PMSM based on a Linear Adaptive Disturbance Rejection Controller (LADRC) [...] Read more.
Starting from the fact that in sensorless control systems of the Permanent Magnet Synchronous Motor (PMSM), the load torque can have short and significant variations, this paper presents the sensorless control of a PMSM based on a Linear Adaptive Disturbance Rejection Controller (LADRC) type controller. Essentially, the successful operation of the LADRC controller to achieve PMSM rotor speed control performance depends on a good estimation of the disturbances acting on the system. Traditionally, an Extended State Observer (ESO) is used to make such an estimate. In this paper, it is proposed to use a Disturbance Observer (DO) to estimate the external disturbances, and after their rejection, the LADRC controller ensures an equivalent global behavior of the control system with an ideal double integrator, thus increasing ease in achieving the desired control performance. Control structures and Matlab/Simulink implementation of the PMSM sensorless control system based on the LADRC controller with an ESO-/DO-type observer are presented, as is its use in tandem with a Reinforcement Learning Twin-Delayed Deep Deterministic Policy Gradient (RL-TD3) specially trained agent that provides correction signals for more accurate estimation of external disturbances and hence improved control performance. To optimize the gain value of the DO-type observer, a computational intelligence algorithm such as the Ant Colony Algorithm (ACO) is used. Qualitatively superior performance is achieved by using LADRC with the RL-TD3 agent control structure in terms of parametric robustness, response time, and steady-state error. In addition, by calculating the fractal dimension (DF) of the controlled signal and the PMSM rotor speed, it is found that the higher the DF, the better the performance of the control system. The validation of the superiority of the proposed control structures is carried out by means of numerical simulations in the Matlab/Simulink environment. Full article
Show Figures

Figure 1

23 pages, 9427 KiB  
Article
Analytical Modeling, Analysis and Diagnosis of External Rotor PMSM with Stator Winding Unbalance Fault
by Ahmed Belkhadir, Remus Pusca, Driss Belkhayat, Raphaël Romary and Youssef Zidani
Energies 2023, 16(7), 3198; https://doi.org/10.3390/en16073198 - 1 Apr 2023
Cited by 6 | Viewed by 2537
Abstract
Multiple factors and consequences may lead to a stator winding fault in an external rotor permanent magnet synchronous motor that can unleash a complete system shutdown and impair performance and motor reliability. This type of fault causes disturbances in operation if it is [...] Read more.
Multiple factors and consequences may lead to a stator winding fault in an external rotor permanent magnet synchronous motor that can unleash a complete system shutdown and impair performance and motor reliability. This type of fault causes disturbances in operation if it is not recognized and detected in time, since it might lead to catastrophic consequences. In particular, an external rotor permanent magnet synchronous motor has disadvantages in terms of fault tolerance. Consequently, the distribution of the air-gap flux density will no longer be uniform, producing fault harmonics. However, a crucial step of diagnosis and controlling the system condition is to develop an accurate model of the machine with a lack of turns in the stator winding. This paper presents an analytical model of the stator winding unbalance fault represented by lack of turns. Here, mathematical approaches are used by introducing a stator winding parameter for the analytical modeling of the faulty machine. This model can be employed to determine the various quantities of the machine under different fault levels, including the magnetomotive force, the flux density in the air-gap, the flux generated by the stator winding, the stator inductances, and the electromagnetic torque. On this basis, a corresponding link between the fault level and its signature is established. The feasibility and efficiency of the analytical approach are validated by finite element analysis and experimental implementation. Full article
(This article belongs to the Special Issue Modeling, Control and Diagnosis of Electrical Machines and Devices)
Show Figures

Figure 1

23 pages, 13176 KiB  
Article
Research on Permanent Magnet Synchronous Motor Sensorless Control System Based on Integral Backstepping Controller and Enhanced Linear Extended State Observer
by Lihuan Shao, Changfeng Zheng, Yan Zhang, Guanling Xie, Xiyu Hao and Xiaolong Zheng
Appl. Sci. 2023, 13(3), 1680; https://doi.org/10.3390/app13031680 - 28 Jan 2023
Cited by 5 | Viewed by 2243
Abstract
The traditional sensorless control system of permanent magnet synchronous motor (PMSM) has the problems of low estimation accuracy and poor anti-interference ability. Moreover, the position estimation performance is subjected to position harmonic ripples caused by inverter nonlinearities and flux spatial harmonics. To optimize [...] Read more.
The traditional sensorless control system of permanent magnet synchronous motor (PMSM) has the problems of low estimation accuracy and poor anti-interference ability. Moreover, the position estimation performance is subjected to position harmonic ripples caused by inverter nonlinearities and flux spatial harmonics. To optimize the dynamic performance of the PMSM sensorless control system, this paper proposes a sensorless control scheme that combines integral backstepping control with enhanced linear extended state observer (ELESO). The ELESO consists of two linear extended state observers (LESOs), which estimate the internal and external disturbances of the system, to improve the estimation accuracy of rotor position. Then, the integral backstepping controller processes the estimated rotor position and speed information to obtain d and q-axis voltages. The sensorless control scheme is implemented in the Matlab/Simulink and verified by experiments. The simulation and experiment show that the scheme can effectively suppress load interference and improve control accuracy. Full article
(This article belongs to the Topic Advanced Electrical Machines and Drives Technologies)
Show Figures

Figure 1

15 pages, 3773 KiB  
Article
Active Disturbance Rejection Control for Speed Control of PMSM Based on Auxiliary Model and Supervisory RBF
by Peng Gao, Xiuqin Su, Zhibin Pan, Maosen Xiao, Wenbo Zhang and Ruoyu Liu
Appl. Sci. 2022, 12(21), 10880; https://doi.org/10.3390/app122110880 - 27 Oct 2022
Cited by 10 | Viewed by 2486
Abstract
External vibration, shock, unbalanced torque and other uncertain disturbances are mainly transmitted to the motor rotor through the bearing friction. To restrain the uncertain friction disturbances and improve the speed stability of a permanent magnet synchronous motor (PMSM), an optimized active disturbance rejection [...] Read more.
External vibration, shock, unbalanced torque and other uncertain disturbances are mainly transmitted to the motor rotor through the bearing friction. To restrain the uncertain friction disturbances and improve the speed stability of a permanent magnet synchronous motor (PMSM), an optimized active disturbance rejection control (ADRC) algorithm is proposed in this study. Firstly, an auxiliary model of friction and a reduced-order processing method are introduced into extended state observation (ESO) to reduce the burden of single ESO and promote the compensation accuracy of disturbances. In addition, a supervisory radial basis function (SRBF) is employed to supervise and promote the error elimination efficiency of the nonlinear state error feedback rate (NLSEF). The hybrid control algorithm makes up for the deficiency of typical ADRC through the fusion of multiple control quantities. Simulation and experimental results show that the proposed algorithm has strong anti-disturbance performance and effectively solves the problem of low-speed crawling. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

20 pages, 5762 KiB  
Article
Swiveling Magnetization for Anisotropic Magnets for Variable Flux Spoke-Type Permanent Magnet Motor Applied to Electric Vehicles
by Yin-Hui Lee and Min-Fu Hsieh
Energies 2022, 15(10), 3825; https://doi.org/10.3390/en15103825 - 23 May 2022
Viewed by 2365
Abstract
This paper investigates the application of anisotropic low-coercive force (LCF) magnets to a novel variable-flux spoke-type permanent magnet synchronous motor (VFS-PMSM) for electrical vehicles with a wide speed range. In the VFS-PMSM, flux is regulated by swiveling the magnetization of the anisotropic LCF [...] Read more.
This paper investigates the application of anisotropic low-coercive force (LCF) magnets to a novel variable-flux spoke-type permanent magnet synchronous motor (VFS-PMSM) for electrical vehicles with a wide speed range. In the VFS-PMSM, flux is regulated by swiveling the magnetization of the anisotropic LCF magnets instead of directly magnetizing or demagnetizing them. The previously proposed VFS-PMSM uses only isotropic LCF magnets for easily swiveling the magnetic pole direction, resulting in lower torque density. The challenge thus lies in the feasibility to swivel the magnetic pole direction of the anisotropic LCF magnet, and the impact of the different magnetization strengths of the anisotropic magnets on the motor performance. This paper first studies the feasibility to swivel the magnetization direction of anisotropic LCF magnets through experiments. It is confirmed that the magnetization direction can be successfully swiveled by 90 degrees with a reduced external magnetizing field. Then, two VFS-PMSM topologies and various rotor configurations are compared in terms of key performance indices to determine critical sizing factors for performance enhancement. Finite element analysis is used for simulations. In comparison with the VFS-PMSM equipped with isotropic LCF magnets, the maximum torque of the proposed topology can be improved for the same flux adjustment ability. Alternatively, the flux adjustment ability can also be enhanced by 37.43% for the same maximum torque. Full article
(This article belongs to the Topic Application of Innovative Power Electronic Technologies)
Show Figures

Figure 1

20 pages, 8041 KiB  
Article
Static-Errorless Rotor Position Estimation Method Based on Linear Extended State Observer for IPMSM Sensorless Drives
by Feng Jiang, Fan Yang, Songjun Sun and Kai Yang
Energies 2022, 15(5), 1943; https://doi.org/10.3390/en15051943 - 7 Mar 2022
Cited by 7 | Viewed by 2463
Abstract
This article presents a static-errorless rotor position estimation method based on the linear extended state observer (LESO) for interior permanent magnet synchronous motor (IPMSM) drives. Two second-order LESOs are utilized to estimate the α-β axis back-EMFs. A third-order LESO is incorporated [...] Read more.
This article presents a static-errorless rotor position estimation method based on the linear extended state observer (LESO) for interior permanent magnet synchronous motor (IPMSM) drives. Two second-order LESOs are utilized to estimate the α-β axis back-EMFs. A third-order LESO is incorporated into the quadrature phase-locked loop (QPLL) to achieve a high robustness of position tracking against external disturbance. In addition, considering that the nonideal back-EMF will bring DC and harmonic fluctuation errors to the estimated position, an enhanced LESO-based QPLL with static-errorless rotor position estimation is proposed. On the one hand, the DC position esti mation error caused by the phase lag of the back-EMF estimator is analyzed and compensated. On the other hand, to suppress the position harmonic fluctuations induced from the nonsinusoidal back-EMFs, a second-order generalize integrator (SOGI) is embedded in the feedforward path of the LESO-based QPLL. The experimental results on the 1.0 kW IPMSM drive platform show that, compared to the conventional method, the proposed method can achieve better position estimation performance both in steady-state operation and in transient-state operation. Full article
(This article belongs to the Special Issue Active Disturbance Rejection Control in Power Electronics)
Show Figures

Figure 1

Back to TopTop