Aging Renewal Point Processes and Exchangeability of Event Times
Abstract
1. Introduction
2. Preliminaries
3. Statistical Aging in Mixed Renewal Processes
4. Analysis of Exchangeable Event Sequences: Simulations and Empirical Results
4.1. Exchangeable Mixture Models
| Algorithm 1 Generation of a Single Exchangeable Sequence Conditional to a Prior |
|
4.1.1. Mixture of Exponentials
- At this point, we will switch our analysis to an exchangeable sequence delineated by inter-event intervals, denoted as . These intervals are represented as random variables drawn from an exponential distribution with a rate parameter , such that , where the rate parameter itself is taken from a uniform distribution, denoted as . The marginal density function of the waiting times is given by the unconditional mixed-type pdf, as from Equation (12):The equation above is valid since the the Laplace transform of conditional aged probability density function can be written as , so that:Essentially, in this example case the renewal process is affected by neutral aging. Moreover, the mixed renewal function can be written in terms of the Laplace transform as from Proposition 4:so the mean rate of events is:so that the average number of renewals increases linearly with time, even in the presence of aging, since it is independent from the latency period .Moreover, regarding the hazard rate, we have:so that the hazard rate is a decreasing function, which is different from its conditional hazard counterpart, which is constant. Finally, the asymptotic mean residual lifetime is . In Figure 2, we compare the analytical results against simulations in the case where . From Figure 2a, it is clear that, as expected, the marginal distribution of both before and after the aging experiment follows the same fat-tail distribution function with an asymptotic behavior of , in agreement with Equation (24). Moreover, in Figure 2b we show the agreement regarding the simulated and the analytical estimate of the hazard rate, which does not depend on latency aging as predicted by Equation (26). Finally, in Figure 2c,d we show the numerical and analytical estimate of the renewal function before and after latency aging, as predicted by Equation (25), and the renewal function maintain the same trend event after aging. In all cases, the numerical simulations and analytical results are in perfect agreement.
- As a more general example, let us assume again , but now the exponential rate follows a gamma distribution, i.e., , where is the shape factor and is the scale factor. So, in this case, the marginal density function of the waiting times is given by the unconditional mixed-type pdf:which is is a Pareto Lomax density function. So, even in this case the process shows a neutral aging since there is no dependence on the latency period . In addition, it is easy to see that the unconditional hazard function is:Consequently, the cumulative hazard rate is . Similarly, one can find that the mean residual lifetime asymptotic behavior is . Finally, the mixed renewal function can be written as:so the average number of renewals is:which increases linearly with time even in presence of aging, as in the previous example.Essentially, all the survival analysis is quite similar to the one in previous example.
4.1.2. Mixture of Generalized Exponentials
4.1.3. Mixture of Heavy-Tail Distributions
4.2. Case Study: High-Frequency Exchange Rates
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CDF | Cumulative Distribution Function |
| eCDF | empirical Cumulative Distribution Function |
| probability density function | |
| i.i.d. | independent identically distributed |
| EXP | Exponential |
| GA | Gamma |
| ML | Mittag–Leffler |
Appendix A. Mixture Models Derivations
Appendix A.1. Derivation of Equation (27)
Appendix A.2. Derivation of Equation (29)
Appendix A.3. Derivation of Equation (30)
Appendix A.4. Derivation of Equation (32)
References
- Feller, W. An Introduction to Probability Theory and Its Applications; John Wiley & Sons: Hoboken, NJ, USA, 1968; Volume 1. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications; John Wiley & Sons: Hoboken, NJ, USA, 1991; Volume 2. [Google Scholar]
- Cox, D.R. Renewal Theory; Methuen: London, UK, 1967; Volume 1. [Google Scholar]
- Barlow, R.E.; Proschan, F. Statistical Theory of Reliability and Life Testing: Probability Models; Holt, Rinehart and Winston: New York, NY, USA, 1975; Volume 1. [Google Scholar]
- Lio, Y.; Chen, D.G.; Ng, H.T.; Tsai, T.R. Bayesian Inference and Computation in Reliability and Survival Analysis; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Pergamenshchikov, S.; Pchelintsev, E. Renewal Theory and Its Applications. Hal-Ope Sci. 2020. Available online: https://hal.science/hal-02485643 (accessed on 20 March 2024).
- Cha, J.H.; Finkelstein, M. Point Processes for Reliability Analysis; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Schulz, J.H.; Barkai, E.; Metzler, R. Aging renewal theory and application to random walks. Phys. Rev. X 2014, 4, 011028. [Google Scholar] [CrossRef]
- De Finetti, B. Funzione caratteristica di un fenomeno aleatorio. In Proceedings of the Atti del Congresso Internazionale dei Matematici, Bologna, Italy, 3–10 September 1928; pp. 179–190. [Google Scholar]
- De Finetti, B. La prévision: Ses lois logiques, ses sources subjectives. Ann. L’institut Henri Poincaré 1937, 7, 1–68. [Google Scholar]
- Aldous, D.J. Exchangeability and related topics. In École d’Été de Probabilités de Saint-Flour XIII—1983; Springer: Berlin/Heidelberg, Germany, 1985; pp. 1–198. [Google Scholar]
- Bernardo, J.M.; Smith, A.F. Bayesian Theory; John Wiley & Sons: Berlin/Heidelberg, Germany, 2009; Volume 405. [Google Scholar]
- Mitov, K. Renewal Processes; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Akimoto, T. Statistics of the number of renewals, occupation times, and correlation in ordinary, equilibrium, and aging alternating renewal processes. Phys. Rev. E 2023, 108, 054113. [Google Scholar] [CrossRef]
- Coen, A.; Gutiérrez, L.; Mena, R.H. Modelling failures times with dependent renewal type models via exchangeability. Statistics 2019, 53, 1112–1130. [Google Scholar] [CrossRef]
- Huang, W.J. On the characterization of point processes with the exchangeable and Markov properties. Sankhyā Indian J. Stat. Ser. A 1990, 52, 16–27. [Google Scholar]
- Lyberopoulos, D.P.; Macheras, N.D. Some characterizations of mixed renewal processes. Math. Slovaca 2022, 72, 197–216. [Google Scholar] [CrossRef]
- Monthus, C.; Bouchaud, J.P. Models of traps and glass phenomenology. J. Phys. A Math. Gen. 1996, 29, 3847. [Google Scholar] [CrossRef]
- Parisi, G. Short-time aging in binary glasses. J. Phys. A Math. Gen. 1997, 30, L765. [Google Scholar] [CrossRef]
- Baity-Jesi, M.; Calore, E.; Cruz, A.; Fernandez, L.; Gil-Narvion, J.; Gonzalez-Adalid Pemartin, I.; Gordillo-Guerrero, A.; Iñiguez, D.; Maiorano, A.; Marinari, E.; et al. Memory and rejuvenation effects in spin glasses are governed by more than one length scale. Nat. Phys. 2023, 19, 978–985. [Google Scholar] [CrossRef]
- Böhmer, T.; Gabriel, J.P.; Costigliola, L.; Kociok, J.N.; Hecksher, T.; Dyre, J.C.; Blochowicz, T. Time reversibility during the ageing of materials. Nat. Phys. 2024, 20, 637–645. [Google Scholar] [CrossRef]
- Laloux, L.; Le Doussal, P. Aging and diffusion in low dimensional environments. Phys. Rev. E 1998, 57, 6296. [Google Scholar] [CrossRef]
- Godreche, C.; Luck, J. Statistics of the occupation time of renewal processes. J. Stat. Phys. 2001, 104, 489–524. [Google Scholar] [CrossRef]
- Barkai, E. Aging in subdiffusion generated by a deterministic dynamical system. Phys. Rev. Lett. 2003, 90, 104101. [Google Scholar] [CrossRef]
- Akimoto, T.; Barkai, E. Aging generates regular motions in weakly chaotic systems. Phys. Rev. E 2013, 87, 032915. [Google Scholar] [CrossRef]
- Allegrini, P.; Aquino, G.; Grigolini, P.; Palatella, L.; Rosa, A. Generalized master equation via aging continuous-time random walks. Phys. Rev. E 2003, 68, 056123. [Google Scholar] [CrossRef]
- Cox, D.R.; Isham, V. Point Processes; CRC Press: Boca Raton, FL, USA, 1980; Volume 12. [Google Scholar]
- Metzler, R.; Jeon, J.H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014, 16, 24128–24164. [Google Scholar] [CrossRef]
- Bianco, S.; Grigolini, P.; Paradisi, P. Fluorescence intermittency in blinking quantum dots: Renewal or slow modulation? J. Chem. Phys. 2005, 123, 174704. [Google Scholar] [CrossRef] [PubMed]
- Brokmann, X.; Hermier, J.P.; Messin, G.; Desbiolles, P.; Bouchaud, J.P.; Dahan, M. Statistical aging and nonergodicity in the fluorescence of single nanocrystals. Phys. Rev. Lett. 2003, 90, 120601. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Zeng, W.B.; Wu, Y. Probability and Statistical Models: Foundations for Problems in Reliability and Financial Mathematics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Hens, T.; Schenk-Hoppé, K.R. Handbook of Financial Markets: Dynamics and Evolution; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Barbiero, A.; Hitaj, A. Discrete half-logistic distributions with applications in reliability and risk analysis. Ann. Oper. Res. 2024, 1–31. [Google Scholar] [CrossRef]
- Bianco, S.; Grigolini, P. Aging in financial market. Chaos Solitons Fractals 2007, 34, 41–50. [Google Scholar] [CrossRef]
- Fama, E.F. The behavior of stock-market prices. J. Bus. 1965, 38, 34–105. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Vinod, D.; Aghion, E.; Chechkin, A.V.; Metzler, R. Time averaging, ageing and delay analysis of financial time series. New J. Phys. 2017, 19, 063045. [Google Scholar] [CrossRef]
- Niepert, M.; Domingos, P. Exchangeable variable models. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 271–279. [Google Scholar]
- Poirier, D.J. 40 Exchangeability, Representation Theorems, and Subjectivity. In The Oxford Handbook of Bayesian Econometrics; Oxford University Press: Oxford, UK, 2011. [Google Scholar] [CrossRef]
- Hewitt, E.; Savage, L.J. Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 1955, 80, 470–501. [Google Scholar] [CrossRef]
- Diaconis, P.; Freedman, D. Finite exchangeable sequences. Ann. Probab. 1980, 8, 745–764. [Google Scholar] [CrossRef]
- Kerns, G.J.; Székely, G.J. Definetti’s theorem for abstract finite exchangeable sequences. J. Theor. Probab. 2006, 19, 589–608. [Google Scholar] [CrossRef]
- Kallenberg, O. Probabilistic Symmetries and Invariance Principles; Springer: New York, NY, USA, 2005. [Google Scholar]
- O’Neill, B. Exchangeability, correlation, and Bayes’ effect. Int. Stat. Rev. 2009, 77, 241–250. [Google Scholar] [CrossRef]
- Barber, R.F.; Candes, E.J.; Ramdas, A.; Tibshirani, R.J. De Finetti’s Theorem and Related Results for Infinite Weighted Exchangeable Sequences. arXiv 2023, arXiv:2304.03927. [Google Scholar]
- Zabell, S.L. Predicting the unpredictable. Synthese 1992, 90, 205–232. [Google Scholar] [CrossRef]
- Bernardo, J.M. Bayesian statistics. Probab. Stat. R. Viertl Ed 1994, 2, 345–407. [Google Scholar]
- Bernardo, J.M. The concept of exchangeability and its applications. Far East J. Math. Sci. 1996, 4, 111–122. [Google Scholar]
- Allegrini, P.; Barbi, F.; Grigolini, P.; Paradisi, P. Aging and renewal events in sporadically modulated systems. Chaos Solitons Fractals 2007, 34, 11–18. [Google Scholar] [CrossRef]
- Paradisi, P.; Grigolini, P.; Bianco, S.; Akin, O.C. Renewal aging in non-homogeneous poisson processes with periodic rate modulation. Int. J. Bifurc. Chaos 2008, 18, 2681–2691. [Google Scholar] [CrossRef]
- Turalska, M.; Lukovic, M.; West, B.J.; Grigolini, P. Complexity and synchronization. Phys. Rev. E 2009, 80, 021110. [Google Scholar] [CrossRef]
- Aquino, G.; Bologna, M.; Grigolini, P.; West, B.J. Aging and rejuvenation with fractional derivatives. Phys. Rev. E 2004, 70, 036105. [Google Scholar] [CrossRef]
- Allegrini, P.; Aquino, G.; Grigolini, P.; Palatella, L.; Rosa, A.; West, B.J. Correlation function and generalized master equation of arbitrary age. Phys. Rev. E 2005, 71, 066109. [Google Scholar] [CrossRef]
- Bernstein, D.L. The double Laplace integral. Duke Math. J. 1941, 8, 460–496. [Google Scholar] [CrossRef]
- Debnath, L.; Bhatta, D. Integral Transforms and Their Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016; Chapter 4. [Google Scholar]
- Aquino, G.; Palatella, L.; Grigolini, P. Absorption and emission in the non-poisson case: The theoretical challenge posed by renewal aging. Braz. J. Phys. 2005, 35, 418–424. [Google Scholar] [CrossRef]
- Spizzichino, F. Subjective Probability Models for Lifetimes; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Lai, C.D.; Xie, M. Stochastic Ageing and Dependence for Reliability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Nappo, G.; Spizzichino, F. Relations between ageing and dependence for exchangeable lifetimes with an extension for the IFRA/DFRA property. Depend. Model. 2020, 8, 1–33. [Google Scholar] [CrossRef]
- McCall, J.J. An Introduction to Exchangeability and Its Economic Applications; Hoover Institution, Stanford University: Stanford, CA, USA, 1988. [Google Scholar]
- Faragó, A. Decomposition of Random Sequences into Mixtures of Simpler Ones and Its Application in Network Analysis. Algorithms 2021, 14, 336. [Google Scholar] [CrossRef]
- Mainardi, F.; Gorenflo, R.; Vivoli, A. Renewal Processes of Mittag-Leffler and Wright Type. Fract. Calc. Appl. Anal. 2005, 8, 7–38. [Google Scholar]
- Mainardi, F.; Raberto, M.; Gorenflo, R.; Scalas, E. Fractional calculus and continuous-time finance II: The waiting-time distribution. Phys. A Stat. Mech. Its Appl. 2000, 287, 468–481. [Google Scholar] [CrossRef]
- Pramukkul, P.; Svenkeson, A.; Grigolini, P.; Bologna, M.; West, B. Complexity and the fractional calculus. Adv. Math. Phys. 2013, 2013, 498789. [Google Scholar] [CrossRef]
- Apelblat, A. Differentiation of the Mittag-Leffler functions with respect to parameters in the Laplace transform approach. Mathematics 2020, 8, 657. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Scalas, E.; Gorenflo, R.; Mainardi, F. Fractional calculus and continuous-time finance. Phys. A Stat. Mech. Its Appl. 2000, 284, 376–384. [Google Scholar] [CrossRef]
- Gençay, R.; Dacorogna, M.; Muller, U.A.; Pictet, O.; Olsen, R. An Introduction to High-Frequency Finance; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Palatella, L.; Perelló, J.; Montero, M.; Masoliver, J. Activity autocorrelation in financial markets: A comparative study between several models. Eur. Phys. J. Condens. Matter Complex Syst. 2004, 38, 671–677. [Google Scholar] [CrossRef]
- Taylor, S.J. Modeling stochastic volatility: A review and comparative study. Math. Financ. 1994, 4, 183–204. [Google Scholar] [CrossRef]
- Pederzoli, C. Stochastic volatility and GARCH: A comparison based on UK stock data. Eur. J. Financ. 2006, 12, 41–59. [Google Scholar] [CrossRef]
- Fouque, J.P.; Papanicolaou, G.; Sircar, K.R. Derivatives in Financial Markets with Stochastic Volatility; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Cont, R. Statistical modeling of high-frequency financial data. IEEE Signal Process. Mag. 2011, 28, 16–25. [Google Scholar] [CrossRef]
- Corp., I.D. TrueFX Market Exchange Rate Data, 2014. EURUSD Exchange Rates Data. Available online: https://www.truefx.com/truefx-historical-downloads/#93-106-november (accessed on 20 March 2024).
- Scalas 7, E.; Gorenflo, R.; Luckock, H.; Mainardi, F.; Mantelli, M.; Raberto, M. Anomalous waiting times in high-frequency financial data. Quant. Financ. 2004, 4, 695–702. [Google Scholar] [CrossRef]
- Aldrich, E.M.; Heckenbach, I.; Laughlin, G. The random walk of high frequency trading. arXiv 2014, arXiv:1408.3650. [Google Scholar]
- Gao, F.; He, X. Survival Analysis: Theory and Application in Finance. In Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning; World Scientific: Singapore, 2021; pp. 4087–4118. [Google Scholar]
- Gepp, A.; Kumar, K. The role of survival analysis in financial distress prediction. Int. Res. J. Financ. Econ. 2008, 16, 13–34. [Google Scholar]
- Calabrese, P.; Gambassi, A. Ageing properties of critical systems. J. Phys. A Math. Gen. 2005, 38, R133. [Google Scholar] [CrossRef]
- Henkel, M.; Pleimling, M. Non-Equilibrium Phase Transitions: Volume 2: Ageing and Dynamical Scaling Far from Equilibrium; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Hase, M.O.; Tomé, T.; de Oliveira, M.J. Aging and fluctuation-dissipation ratio in a nonequilibrium q-state lattice model. Phys. Rev. E 2010, 82, 011133. [Google Scholar] [CrossRef] [PubMed]
- Geisel, T.; Nierwetberg, J.; Zacherl, A. Accelerated diffusion in Josephson junctions and related chaotic systems. Phys. Rev. Lett. 1985, 54, 616. [Google Scholar] [CrossRef] [PubMed]
- Beck, C. Superstatistics: Theory and applications. Contin. Mech. Thermodyn. 2004, 16, 293–304. [Google Scholar] [CrossRef]
- Allegrini, P.; Barbi, F.; Grigolini, P.; Paradisi, P. Renewal, modulation, and superstatistics in times series. Phys. Rev. E 2006, 73, 046136. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, Y.; Kadoya, T. Superstatistics with cut-off tails for financial time series. Phys. A Stat. Mech. Its Appl. 2019, 526, 120930. [Google Scholar] [CrossRef]
- Schäfer, B.; Heppell, C.M.; Rhys, H.; Beck, C. Fluctuations of water quality time series in rivers follow superstatistics. iScience 2021, 24, 102881. [Google Scholar] [CrossRef] [PubMed]
- Katz, Y.A.; Tian, L. Superstatistical fluctuations in time series of leverage returns. Phys. A Stat. Mech. Its Appl. 2014, 405, 326–331. [Google Scholar] [CrossRef]
- Beck, C. Recent developments in superstatistics. Braz. J. Phys. 2009, 39, 357–363. [Google Scholar] [CrossRef]
- Bray, A.J.; Majumdar, S.N.; Schehr, G. Persistence and first-passage properties in nonequilibrium systems. Adv. Phys. 2013, 62, 225–361. [Google Scholar] [CrossRef]
- Bénichou, O. Anomalous persistence exponents for normal yet aging diffusion. Phys. Rev. E 2020, 102, 062115. [Google Scholar]
- Constantin, M.; Sarma, S.D. Volatility, persistence, and survival in financial markets. Phys. Rev. E 2005, 72, 051106. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Casillas-Pérez, D.; Del Ser, J.; Casanova-Mateo, C.; Cuadra, L.; Piles, M.; Camps-Valls, G. Persistence in complex systems. Phys. Rep. 2022, 957, 1–73. [Google Scholar] [CrossRef]
- Tobias, P.A.; Trindade, D. Applied Reliability; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Wang, P.; Coit, D.W. Repairable systems reliability trend tests and evaluation. In Proceedings of the Annual Reliability and Maintainability Symposium, Citeseer, Alexandria, VA, USA, 24–27 January 2005; pp. 416–421. [Google Scholar]






| Code | Pair | Name |
|---|---|---|
| I | USD/EUR | US Dollar/Euro |
| II | USD/AUD | US Dollar/Australian Dollar |
| III | USD/GBP | US Dollar/British Pound |
| IV | USD/NZD | US Dollar/New Zealand Dollar |
| V | USD/CAD | US Dollar/Canadian Dollar |
| VI | USD/CHF | US Dollar/Swiss Franc |
| VII | USD/JPY | US Dollar/Japanese Yen |
| VIII | USD/MXN | US Dollar/Mexican Peso |
| IX | USD/ZAR | US Dollar/South African Rand |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanni, F.; Lambert, D. Aging Renewal Point Processes and Exchangeability of Event Times. Mathematics 2024, 12, 1529. https://doi.org/10.3390/math12101529
Vanni F, Lambert D. Aging Renewal Point Processes and Exchangeability of Event Times. Mathematics. 2024; 12(10):1529. https://doi.org/10.3390/math12101529
Chicago/Turabian StyleVanni, Fabio, and David Lambert. 2024. "Aging Renewal Point Processes and Exchangeability of Event Times" Mathematics 12, no. 10: 1529. https://doi.org/10.3390/math12101529
APA StyleVanni, F., & Lambert, D. (2024). Aging Renewal Point Processes and Exchangeability of Event Times. Mathematics, 12(10), 1529. https://doi.org/10.3390/math12101529

