# Comparative Study of Numerical Methods for Solving the Fresnel Integral in Aperiodic Diffractive Lenses

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Model

#### Numerical Methods Used to Solve the Fresnel Integral

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

ZP | Zone Plate |

FFT | Fast Fourier Transform |

DFT | Discrete Fourier Transform |

## References

- Castañeda, J.O.; Gómez-Reino, C. Selected Papers on Zone Plates; SPIE Optical Engineering Press: Washington, DC, USA, 1996. [Google Scholar]
- Miyamoto, K. The Phase Fresnel Lens. J. Opt. Soc. Am.
**1961**, 51, 17–20. [Google Scholar] [CrossRef] - Barrett, H.H.; Horrigan, F.A. Fresnel Zone Plate Imaging of Gamma Rays; Theory. Appl. Opt.
**1973**, 12, 2686–2702. [Google Scholar] [CrossRef] [PubMed] - Furlan, W.D.; Saavedra, G.; Monsoriu, J.A. White-light imaging with fractal zone plates. Opt. Lett.
**2007**, 32, 2109–2111. [Google Scholar] [CrossRef] [PubMed] - Muñoz-Pérez, F.M.; Ferrando, V.; Furlan, W.D.; Monsoriu, J.A.; Arias-Gonzalez, J.R. Optical multi-trapping by Kinoform m-Bonacci lenses. Opt. Express
**2022**, 30, 34378–34384. [Google Scholar] [CrossRef] [PubMed] - Saavedra, G.; Furlan, W.D.; Monsoriu, J.A. Fractal zone plates. Opt. Lett.
**2003**, 28, 971–973. [Google Scholar] [CrossRef] [PubMed] - Monsoriu, J.A.; Calatayud, A.; Remon, L.; Furlan, W.D.; Saavedra, G.; Andrés, P. Bifocal Fibonacci diffractive lenses. IEEE Photonics J.
**2013**, 5, 3400106. [Google Scholar] [CrossRef] - Aalipour, R. Calculation of Fresnel diffraction from 1D phase step by discrete Fourier transform. Opt. Commun.
**2017**, 382, 651–655. [Google Scholar] [CrossRef] - Maure, O.P.; Mungkasi, S. Application of numerical integration in solving a reverse osmosis model. AIP Conf. Proc.
**2019**, 2202, 020043. [Google Scholar] - Grier, B.; Alyanak, E.; White, M.; Camberos, J.; Figliola, R. Numerical integration techniques for discontinuous manufactured solutions. J. Comput. Phys.
**2014**, 278, 193–203. [Google Scholar] [CrossRef] - Gałaj, T.; Wojciechowski, A. A study on numerical integration methods for rendering atmospheric scattering phenomenon. Open Phys.
**2019**, 17, 241–249. [Google Scholar] [CrossRef] - Wang, Z.C.; Peng, Y.F.; Liu, Y.F.; He, K.F.; Wu, Z.T.; Li, B.Q. The Calculation Method of PV Direct Current Energy Based on Modulated Broadband Mode Decomposition and Compound Simpson Integral Algorithm. IEEE Access
**2021**, 9, 51403–51415. [Google Scholar] [CrossRef] - Kosmas, O.; Vlachos, D. Local path fitting: A new approach to variational integrators. J. Comput. Appl. Math.
**2012**, 236, 2632–2642. [Google Scholar] [CrossRef] - Kosmas, O.; Leyendecker, S. Analysis of higher order phase fitted variational integrators. Adv. Comput. Math.
**2016**, 42, 605–619. [Google Scholar] [CrossRef] - Kosmas, O.; Leyendecker, S. Variational Integrators for Orbital Problems Using Frequency Estimation. Adv. Comput. Math.
**2019**, 45, 1–21. [Google Scholar] [CrossRef] - d’Aquino, M.; Capuano, F.; Coppola, G.; Serpico, C.; Mayergoyz, I.D. Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics. AIP Adv.
**2018**, 8, 056014. [Google Scholar] [CrossRef] - Liu, B.; Tan, D. A Nitsche stabilized finite element method for embedded interfaces: Application to fluid-structure interaction and rigid-body contact. J. Comput. Phys.
**2020**, 413, 109461. [Google Scholar] [CrossRef] - Alazah, M.; Chandler-Wilde, S.N.; Porte, S.L. Computing Fresnel integrals via modified trapezium rules. Numer. Math.
**2014**, 128, 635–661. [Google Scholar] [CrossRef] - Mielenz, K. Numerical Evaluation of Diffraction Integrals. J. Res. Natl. Inst. Stand. Technol.
**2000**, 105, 581. [Google Scholar] [CrossRef] [PubMed] - Barnett, A.H. Efficient high-order accurate Fresnel diffraction via areal quadrature and the nonuniform fast Fourier transform. J. Astron. Telesc. Instruments Syst.
**2021**, 7, 021211. [Google Scholar] [CrossRef] - Li, J.C.; Picart, P. Calculating Diffraction by Fast Fourier Transform. In Digital Holography; ISTE Ltd.: London, UK, 2012; Chapter 3; pp. 77–114. [Google Scholar]
- Goodman, J.W. Introducción a la Óptica de Fourier; Uned: Madrid, Spain, 2008. [Google Scholar]
- Monowar, K.; Mujibur, S.M. Computer simulation of Fresnel diffraction from double rectangular apertures in one and two dimensional using the iterative fresnel integral method. Opt. Laser Technol.
**2012**, 44, 394–402. [Google Scholar] - Macía, E. The role of aperiodic order in science and technology. Rep. Prog. Phys.
**2006**, 69, 397–441. [Google Scholar] [CrossRef] - Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration; Courier Corporation: North Chelmsford, MA, USA, 2007. [Google Scholar]
- Johnson, S.G.; Frigo, M. A Modified Split-Radix FFT With Fewer Arithmetic Operations. IEEE Trans. Signal Process.
**2007**, 55, 111–119. [Google Scholar] [CrossRef]

**Figure 1.**Schematic diagram of Fresnel diffraction for a zone plate with transmittance function $t({x}_{0},{y}_{0})$.

**Figure 2.**Zone plates based on (

**a**) the Fibonacci sequence of order $S=8$ and (

**b**) the Triadic Cantor sequence of order $S=3$.

**Figure 3.**Axial irradiance distribution computed through numerical and FFT methods, both one-dimensional and two-dimensional, for (

**a**) a Fibonacci lens of order $S=8$ and (

**b**) a triadic Cantor lens of order $S=3$. These calculations have been carried out with a number of sampling points of $N=200$.

**Figure 4.**Analysis of the numerical error provided by the used methods to calculate the axial irradiance for different values of sampling points for (

**a**) the Fibonacci lens of order $S=8$ and (

**b**) the Triadic Cantor lens of order $S=3$.

**Figure 5.**Computation time for different numbers of sampling points, for the calculation of the irradiance distribution of the (

**a**) Fibonacci lens of order $S=8$ and (

**b**) Triadic Cantor lens of order $S=3$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Garmendía-Martínez, A.; Muñoz-Pérez, F.M.; Furlan, W.D.; Giménez, F.; Castro-Palacio, J.C.; Monsoriu, J.A.; Ferrando, V. Comparative Study of Numerical Methods for Solving the Fresnel Integral in Aperiodic Diffractive Lenses. *Mathematics* **2023**, *11*, 946.
https://doi.org/10.3390/math11040946

**AMA Style**

Garmendía-Martínez A, Muñoz-Pérez FM, Furlan WD, Giménez F, Castro-Palacio JC, Monsoriu JA, Ferrando V. Comparative Study of Numerical Methods for Solving the Fresnel Integral in Aperiodic Diffractive Lenses. *Mathematics*. 2023; 11(4):946.
https://doi.org/10.3390/math11040946

**Chicago/Turabian Style**

Garmendía-Martínez, Adrián, Francisco M. Muñoz-Pérez, Walter D. Furlan, Fernando Giménez, Juan C. Castro-Palacio, Juan A. Monsoriu, and Vicente Ferrando. 2023. "Comparative Study of Numerical Methods for Solving the Fresnel Integral in Aperiodic Diffractive Lenses" *Mathematics* 11, no. 4: 946.
https://doi.org/10.3390/math11040946