A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence
Abstract
1. Introduction
2. Refinement of Jensen’s Inequality
3. Applications for Mean Inequalities
4. Applications in Information Theory
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horváth, L.; Khan, K.A.; Pečarić, J. Cyclic refinements of the discrete and integral form of Jensen’s inequality with applications. Analysis 2016, 36, 253–263. [Google Scholar] [CrossRef]
- Cloud, M.J.; Drachman, B.C.; Lebedev, L.P. Inequalities with Applications to Engineering; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014. [Google Scholar]
- Liao, J.G.; Berg, A. Sharpening Jensen’s Inequality. Am. Stat. 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Vatsala, A.S. Theory of Differential and Integral Inequalities with Initial Time Difference and Applications; Springer: Berlin, Germany, 1999. [Google Scholar]
- Lin, Q. Jensen inequality for superlinear expectations. Stat. Probabil. Lett. 2019, 151, 79–83. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2021, 115, 46. [Google Scholar] [CrossRef]
- Pečarić, J.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press, Inc.: Cambridge, MA, USA, 1992. [Google Scholar]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inegalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Azar, S.A. Jensen’s inequality in finance. Int. Adv. Econ. Res. 2008, 14, 433–440. [Google Scholar] [CrossRef]
- Ruel, J.J.; Ayres, M.P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 1999, 14, 361–366. [Google Scholar] [CrossRef]
- Khan, S.; Khan, M.A.; Chu, Y.-M. Converses of the Jensen inequality derived from the Green functions with applications in information theory. Math. Method. Appl. Sci. 2020, 43, 2577–2587. [Google Scholar] [CrossRef]
- Saeed, T.; Khan, M.A.; Ullah, H. Refinements of Jensen’s inequality and applications. AIMS Math. 2022, 7, 5328–5346. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, M.A.; Saeed, T. Determination of bounds for the Jensen gap and its applications. Mathematics 2021, 9, 3132. [Google Scholar] [CrossRef]
- Steffensen, J.F. On certain inequalities and methods of approximation. J. Inst. Actuar. 1919, 51, 274–297. [Google Scholar] [CrossRef]
- Slater, M.L. A companion inequality to Jensen’s inequality. J. Approx. Theory 1981, 32, 160–166. [Google Scholar] [CrossRef]
- Pečarić, J.E. A companion to Jensen-Steffensen’s inequality. J. Approx. Theory 1985, 44, 289–291. [Google Scholar] [CrossRef]
- Pečarić, J.E. A multidimensional generalization of Slater’s inequality. J. Approx. Theory 1985, 44, 292–294. [Google Scholar] [CrossRef]
- Mercer, A.M. A variant of Jensen’s inequality. JIPAM 2003, 4, 73. [Google Scholar]
- Niezgoda, M. A generalization of Mercer’s result on convex functions. Nonlinear Anal. 2009, 71, 2771–2779. [Google Scholar] [CrossRef]
- Dragomir, S.S. A new refinement of Jensen’s inequality in linear spaces with applications. Math. Comput. Model. 2010, 52, 1497–1505. [Google Scholar] [CrossRef]
- Dragomir, S.S. A refinement of Jensen’s inequality with applications for f-divergence measures. Taiwan. J. Math. 2010, 14, 153–164. [Google Scholar] [CrossRef]
- Csiszár, I. Information-type measures of differences of probability distributions and indirect observations. Stud. Sci. Math. Hung. 1967, 2, 299–318. [Google Scholar]
- Pečarić, D.; Pečarić, J.; Rodić, M. About the sharpness of the Jensen inequality. J. Inequal. Appl. 2018, 2018, 337. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, B. Information Theory and Psycholinguistics: A Theory of Words Frequencies. In Reading in Mathematical Social Scence; Lazafeld, P., Henry, N., Eds.; MIT Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Montemurro, M.A. Beyond the Zipf-Mandelbrot law in quantitative linguistics. arXiv 2001, arXiv:cond-mat/0104066v2. [Google Scholar] [CrossRef]
- Mouillot, D.; Lepretre, A. Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity. Environ. Monit. Assess. 2000, 63, 279–295. [Google Scholar] [CrossRef]
- Silagadze, Z.K. Citations and the Zipf-Mandelbrot Law. Complex Syst. 1997, 11, 487–499. [Google Scholar]
- Manin, D. Mandelbrot’s Model for Zipf’s Law: Can Mandelbrot’s Model Explain Zipf’s Law for Language. J. Quant. Linguist. 2009, 16, 274–285. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Khan, M.A.; Saeed, T.; Sayed, Z.M.M.M. A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence. Mathematics 2022, 10, 4817. https://doi.org/10.3390/math10244817
Wu S, Khan MA, Saeed T, Sayed ZMMM. A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence. Mathematics. 2022; 10(24):4817. https://doi.org/10.3390/math10244817
Chicago/Turabian StyleWu, Shanhe, Muhammad Adil Khan, Tareq Saeed, and Zaid Mohammed Mohammed Mahdi Sayed. 2022. "A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence" Mathematics 10, no. 24: 4817. https://doi.org/10.3390/math10244817
APA StyleWu, S., Khan, M. A., Saeed, T., & Sayed, Z. M. M. M. (2022). A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence. Mathematics, 10(24), 4817. https://doi.org/10.3390/math10244817