Dbar-Dressing Method and N-Soliton Solutions of the Derivative NLS Equation with Non-Zero Boundary Conditions
Abstract
:1. Introduction
2. Dbar-Dressing Method and -Problem for DNLSENBC
2.1. Dbar-Dressing Method
2.2. -Problem for DNLSENBC
3. Lax Pair of the DNLSENBC
4. Solutions
4.1. -Dressing Method and N-Soliton Solutions
4.2. Application of N-Soliton Formula
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boutabbaa, N.; Eleucha, H.; Bouchriha, H. Thermal bath effect on soliton propagation in three-level atomic system. Synth. Met. 2009, 159, 1239–1243. [Google Scholar] [CrossRef]
- Eleuch, H.; Elser, D.; Bennaceur, R. Soliton propagation in an absorbing three-level atomic system. Laser Phys. Lett. 2004, 1, 391–396. [Google Scholar] [CrossRef]
- Al Khawaja, U.; Eleuchb, H.; Bahlouli, H. Analytical analysis of soliton propagation in microcavity wires. Results Phys. 2019, 12, 471–474. [Google Scholar] [CrossRef]
- Johnson, R.S. On the modulation of water waves in the neighbourhood of kh≈1.363. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1977, 357, 131–141. [Google Scholar]
- Rosales, J.L.; Sánchez-Gómez, J.L. Non-linear Schrödinger equation coming from the action of the particle’s gravitational field on the quantum potential. Phys. Lett. A 1992, 166, 111–115. [Google Scholar] [CrossRef]
- Eleuch, H.; Rotter, I. Width bifurcation and dynamical phase transitions in open quantum systems. Phys. Rev. E 2013, 87, 052136. [Google Scholar] [CrossRef] [Green Version]
- Eleuch, H.; Rotter, I. Nearby states in non-Hermitian quantum systems I: Two states. Eur. Phys. J. D 2015, 69, 229. [Google Scholar] [CrossRef] [Green Version]
- Karjanto, N. The nonlinear Schrödinger equation: A mathematical model with its wide-ranging applications. arXiv 2019, arXiv:1912.10683v1. [Google Scholar]
- Rogister, A. Parallel propagation of nonlinear low-frequency waves in high-β plasma. Phys. Fluids 1971, 14, 2733–2739. [Google Scholar] [CrossRef]
- Mjølhus, E. On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 1976, 16, 321–334. [Google Scholar] [CrossRef]
- Mio, K.; Ogino, T.; Minami, K.; Takeda, S. Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn. 1976, 41, 265–271. [Google Scholar] [CrossRef]
- Wadati, M.; Sanuki, H.; Konno, K.; Ichikawa, Y. Circular polarized nonlinear Alfvén waves-A new type of nonlinear evolution equation in plasma physics. Rocky Mt. J. Math. 1978, 8, 323–331. [Google Scholar] [CrossRef]
- Ichikawa, Y.H.; Sanuki, H.; Konno, K.; Sanuki, H. Spiky soliton in circular polarized Alfvén wave. J. Phys. Soc. Jpn. 1980, 48, 279–286. [Google Scholar] [CrossRef]
- Mjølhus, E. Nonlinear Alfvén waves and the DNLS equation: Oblique aspects. Phys. Scr. 1989, 40, 227–237. [Google Scholar] [CrossRef]
- Bosanac, S. A method for calculation of Regge poles in atomic collisions. J. Math. Phys. 1978, 19, 789–797. [Google Scholar] [CrossRef]
- Qiao, Z.J. A new completely integrable Liouville’s system produced by the Kaup-Newell eigenvalue problem. J. Math. Phys. 1993, 34, 3110–3120. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Z.J. A hierarchy of nonlinear evolution equations and finite-dimensional involutive systems. J. Math. Phys. 1994, 35, 2971–2977. [Google Scholar] [CrossRef] [Green Version]
- Steudel, H. The hierarchy of multi-soliton solutions of the derivative nonlinear Schrödinger equation. J. Phys. A Math. Gen. 2003, 36, 1931–1946. [Google Scholar] [CrossRef]
- Xu, S.W.; He, J.S.; Wang, L.H. The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A Math. Theor. 2001, 44, 6629–6630. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Ling, L.M.; Liu, Q.P. High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 2012, 130, 317–344. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Yan, Z.Y. The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and N-double-pole solutions. J. Nonlinear Sci. 2020, 30, 3089–3127. [Google Scholar] [CrossRef]
- Pelinovsky, D.E.; Shimabukuro, Y. Existence of global solutions to the derivative NLS equation with the inverse scattering transform method. Int. Math. Res. Not. 2016, 2018, 5663–5728. [Google Scholar] [CrossRef]
- Bahouri, H.; Perelman, G. Global well-posedness for the derivative nonlinear Schrödinger equation. Invent. Math. 2022, 229, 639–688. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.B. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. J. Funct. Anal. Appl. 1974, 8, 226–235. [Google Scholar] [CrossRef]
- Beals, R.; Coifman, R.R. The D-bar approach to inverse scattering and nonlinear evolutions. Physica D 1986, 18, 242–249. [Google Scholar] [CrossRef]
- Beals, R.; Coifman, R.R. Linear spectral problems, non-linear equations and the -method. Inverse Problem 1989, 5, 87–130. [Google Scholar] [CrossRef]
- Bogdanov, L.V.; Manakov, S.V. The non-local -problem and (2+1)-dimensional soliton equations. J. Phys. A Math. Gen. 1988, 21, L537–L544. [Google Scholar] [CrossRef]
- Doktorov, E.V.; Leble, S.B. A Dressing Method in Mathematical Physics; Springer: Berlin, Germany, 2007. [Google Scholar]
- Fokas, A.S.; Zakharov, V.E. The dressing method and nonlocal Riemann-Hilbert problem. J. Nonlinear Sci. 1992, 2, 109–134. [Google Scholar] [CrossRef]
- Parvizi, M.; Khodadadian, A.; Eslahchi, M.R. Analysis of Ciarlet-Raviart mixed finite element methods for solving damped Boussinesq equation. J. Comput. Appl. Math. 2020, 379, 112818. [Google Scholar] [CrossRef]
- Khodadadian, A.; Parvizia, M.; Heitzinger, C. An adaptive multilevel Monte Carlo algorithm for the stochastic drift-diffusion-Poisson system. Comput. Methods Appl. Mech. Eng. 2020, 368, 113163. [Google Scholar] [CrossRef]
- Jaulent, M.; Manna, M.; Alonso, L.M. equations in the theory of integrable systems. Inverse Probl. 1988, 4, 123–150. [Google Scholar] [CrossRef]
- Kuang, Y.H.; Zhu, J.Y. A three-wave interaction model with self-consistent sources: The -dressing method and solutions. J. Math. Anal. Appl. 2015, 426, 783–793. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Papamikos, G.; Wang, J.P. Dressing method for the vector sine-Gordon equation and its soliton interactions. Physica D 2016, 325, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, R.; Lyons, T.; Orr, N. A dressing method for soliton solutions of the Camass-Holm equation. AIP Conf. Proc. 2017, 1895, 040003. [Google Scholar]
- Luo, J.H.; Fan, E.G. Dbar-dressing method for the coupled Gerdjikov-Ivanov equation. Appl. Math. Lett. 2020, 110, 106589. [Google Scholar] [CrossRef]
- Luo, J.H.; Fan, E.G. Dbar-dressing method for the Gerdjikov-Ivanov equation with nonzero boundary conditions. Appl. Math. Lett. 2021, 120, 107297. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Jiang, X.L.; Wang, X.R. Dbar dressing method to nonlinear Schrödinger equation with nonzero boundary conditions. arXiv 2021, arXiv:2011.09028v2. [Google Scholar]
- Yao, Y.Q.; Huang, Y.H.; Fan, E.G. The -dressing method and Cauchy matrix for the defocuing matrix NLS system. Appl. Math. Lett. 2021, 117, 107143. [Google Scholar] [CrossRef]
- Li, Z.Q.; Tian, S.F. A hierarchy of nonlocal nonlinear evolution equations and -dressing method. Appl. Math. Lett. 2021, 120, 107254. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Zhang, Y.F.; Zhang, X.Z. A New Application of the -Method. J. Nonlinear Math. Phys. 2021, 28, 492–506. [Google Scholar] [CrossRef]
- Chai, X.D.; Zhang, Y.F.; Zhao, S.Y. Application of the -dressing method to a (2+1)-dimensional equation. Theor. Math. Phys. 2021, 209, 1717–1725. [Google Scholar] [CrossRef]
- Peng, W.Q.; Chen, Y. Double and triple pole solutions for the Gerdjikov–Ivanov type of derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions. arXiv 2021, arXiv:2104.12073. [Google Scholar] [CrossRef]
- Kaup, D.J.; Newell, A.C. An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 1978, 19, 798. [Google Scholar] [CrossRef]
, | , | , | , | , |
---|---|---|---|---|
one-breather | one-soliton | soliton-breather | two-breather | two-soliton |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Huang, Y.; Yao, Y. Dbar-Dressing Method and N-Soliton Solutions of the Derivative NLS Equation with Non-Zero Boundary Conditions. Mathematics 2022, 10, 4424. https://doi.org/10.3390/math10234424
Zhou H, Huang Y, Yao Y. Dbar-Dressing Method and N-Soliton Solutions of the Derivative NLS Equation with Non-Zero Boundary Conditions. Mathematics. 2022; 10(23):4424. https://doi.org/10.3390/math10234424
Chicago/Turabian StyleZhou, Hui, Yehui Huang, and Yuqin Yao. 2022. "Dbar-Dressing Method and N-Soliton Solutions of the Derivative NLS Equation with Non-Zero Boundary Conditions" Mathematics 10, no. 23: 4424. https://doi.org/10.3390/math10234424
APA StyleZhou, H., Huang, Y., & Yao, Y. (2022). Dbar-Dressing Method and N-Soliton Solutions of the Derivative NLS Equation with Non-Zero Boundary Conditions. Mathematics, 10(23), 4424. https://doi.org/10.3390/math10234424