Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies
Abstract
1. Introduction
2. Theoretical Framework and Mathematical Modeling
2.1. The Kermack–McKendrick Model
2.2. The Wonderland Model
2.3. The Proposed Model
2.3.1. Extension of the SIR Model
α = 1.94597445654447; b = 0.0247039444045711;
c = 0.0619984179153856; d = 0.00807089279296773.
2.3.2. Applying the “Wonderland Model”
3. Data
4. Model-Based Estimates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Zheng, X.; Li, J.; Zhu, B. Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics. Chaos Solitons Fractals 2020, 139, 110058. [Google Scholar] [CrossRef] [PubMed]
- Barlow, N.S.; Weinstein, S.J. Accurate closed-form solution of the SIR epidemic model. Phys. Nonlinear Phenom. 2020, 408, 132540. [Google Scholar] [CrossRef] [PubMed]
- Marinov, T.T.; Marinova, R.S. Dynamics of COVID-19 using inverse problem for coefficient identification in SIR epidemic models. Chaos Solitons Fractals X 2020, 5, 100041. [Google Scholar] [CrossRef]
- Nkwayep, C.H.; Contreras, S.; Tewa, J.J.; Kurths, J. Short-term forecasts of the COVID-19 pandemic: A study case of Cameroon. Chaos Solitons Fractals 2020, 140, 110106. [Google Scholar] [CrossRef] [PubMed]
- Contreras, S.; Villavicencio, H.A.; Medina-Ortiz, D.; Biron-Lattes, J.P.; Olivera-Nappa, Á. A multi-group SEIRA model for the spread of COVID-19 among heterogeneous populations. Chaos Solitons Fractals 2020, 136, 109925. [Google Scholar] [CrossRef] [PubMed]
- World Bank Group. Global Economic Prospects. January 2022; The World Bank Group: Washington, DC, USA, 2022; Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/36519/9781464817601.pdf (accessed on 15 May 2022).
- International Labour Organization. ILO Monitor: COVID-19 and the World of Work. Seventh Edition. International Labour Organization, 2021. Available online: https://www.ilo.org/wcmsp5/groups/public/---dgreports/---dcomm/documents/briefingnote/wcms_767028.pdf (accessed on 5 May 2022).
- International Labour Office. World Social Protection Report 2020-22 Social Protection at the Crossroads—In Pursuit of a Better Future; International Labour Organisation (ILO): Genève, Switzerland, 2021. [Google Scholar]
- Baldwin, R. Keeping the Lights on: Economic Medicine for a Medical Shock. CEPR. Available online: https://cepr.org/voxeu/columns/keeping-lights-economic-medicine-medical-shock (accessed on 22 September 2021).
- Baldwin, R.E.; di Mauro, B.W. Economics in the Time of COVID-19; VoxEU.org eBook; CEPR Press: London, UK, 2020; Available online: https://www.sensiblepolicy.com/download/2020/2020_CEPR_McKibbin_Fernando_COVD-19.pdf (accessed on 5 May 2022).
- Furceri, D.; Loungani, P.; Ostry, J.D.; Pizzuto, P. COVID-19 Will Raise Inequality if Past Pandemics Are a Guide. CEPR. Available online: https://cepr.org/voxeu/columns/covid-19-will-raise-inequality-if-past-pandemics-are-guide (accessed on 11 September 2021).
- Balleer, A.; Gehrke, B.; Hochmuth, B.; Merkl, C. Guidelines for Cost-Effective Use of SURE: Rule-Based Short-Time Work with Workers’ Consent and Aligned Replacement Rates. CEPR. Available online: https://cepr.org/voxeu/columns/guidelines-cost-effective-use-sure-rule-based-short-time-work-workers-consent-and (accessed on 1 September 2021).
- Belhadi, A.; Kamble, S.; Jabbour, C.J.C.; Gunasekaran, A.; Ndubisi, N.O.; Venkatesh, M. Manufacturing and service supply chain resilience to the COVID-19 outbreak: Lessons learned from the automobile and airline industries. Technol. Forecast. Soc. Change 2021, 163, 120447. [Google Scholar] [CrossRef]
- Škare, M.; Soriano, D.R.; Porada-Rochoń, M. Impact of COVID-19 on the travel and tourism industry. Technol. Forecast. Soc. Change 2021, 163, 120469. [Google Scholar] [CrossRef]
- Devezas, T. The struggle SARS-CoV-2 vs. homo sapiens–Why the earth stood still, and how will it keep moving on? Technol. Forecast. Soc. Change 2020, 160, 120264. [Google Scholar] [CrossRef]
- Devezas, T. Aeronautics and COVID-19: A Reciprocal Cause-and-Effect Phenomenon. J. Aerosp. Technol. Manag. 2020, 12, e3420. [Google Scholar] [CrossRef]
- Stiglitz, J.E. The proper role of government in the market economy: The case of the post-COVID recovery. J. Gov. Econ. 2021, 1, 100004. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Vaishya, R. Effects of COVID-19 pandemic in daily life. Curr. Med. Res. Pract. 2020, 10, 78–79. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Muldowney, J.S. Global stability for the SEIR model in epidemiology. Math. Biosci. 1995, 125, 155–164. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Turab, A. Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator. Math. Comput. Simul. 2022, 198, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 1927, 115, 700–721. [Google Scholar] [CrossRef]
- Sanderson, W.C. Simulation Models of Demographic, Economic, and Environmental Interactions. In Population—Development—Environment; Lutz, W., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 33–71. [Google Scholar] [CrossRef]
- Lutz, W. (Ed.) Population—Development—Environment: Understanding their Interactions in Mauritius; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar] [CrossRef]
- Anderson, J.; Begamini, E.; Brekelmans, S.; Cameron, A.; Darvas, Z.; Domíngez Jiménez, M. The Fiscal Response to the Economic Fallout from the Coronavirus. Bruegel|The Brussels-Based Economic Think Tank. Available online: https://www.bruegel.org/publications/datasets/covid-national-dataset/ (accessed on 1 May 2022).
- RBK. The Accounts Chamber Estimated the Cost of Fighting the Pandemic, Cчeтнaя пaлaтa Oцeнилa вeличинy Pacxoдoв нa бopьбy c пaндeмиeй (In Russian). Available online: https://www.rbc.ru/economics/24/02/2021/6034d7659a7947b5e4403bdd (accessed on 1 May 2022).
- Asian Development Bank (ADB). Homepage|ADB COVID-19 Policy Database. 2020. Available online: https://covid19policy.adb.org/ (accessed on 12 May 2022).
- KPMG. Brazil—Government and Institution Measures in Response to COVID-19. 2020. Available online: https://home.kpmg/xx/en/home/insights/2020/04/brazil-government-and-institution-measures-in-response-to-covid.html (accessed on 1 May 2021).
- Comunian, A.; Gaburro, R.; Giudici, M. Inversion of a SIR-based model: A critical analysis about the application to COVID-19 epidemic. Phys. Nonlinear Phenom. 2020, 413, 132674. [Google Scholar] [CrossRef] [PubMed]
- Zvyagintsev, А.I. On a Nonlinear Differential System Modeling the Dynamics of the COVID-19 Pandemic, O HEЛИHEЙHOЙ ДИФФEPEHЦИAЛbHOЙ CИCTEME, MOДEЛИPYЮЩEЙ ДИHAMИKY ПAHДEMИИ COVID-19 (In Russian). Int. Res. J. Meждyнapoдный Hayчнo-Иccлeдoвameльcкuй Жypнaл 2022, 7, 116–121. [Google Scholar] [CrossRef]
- Sadovnichiy, V.A.; Akaev, A.A.; Zvyagintsev, A.I.; Sarygulov, A.I. Mathematical Modeling of Overcoming the COVID-19 Pandemic and Restoring Economic Growth. Dokl. Math. 2022, 106, 30–235. [Google Scholar] [CrossRef]
- Leonov, G.A.; Zvyagintseva, K.A. Piragas stabilization of discrete delayed feedback systems with a periodic pulse gain, Cтaбилизaция пo Пиpaгacy диcкpeтныx cиcтeм зaпaздывaющeй oбpaтнoй cвязью c пepиoдичecким импyльcным кoэффициeнтoм ycилeния (In Russian). Vestn. St. Petersburg Univ. Math. 2015, 48, 147–156. [Google Scholar] [CrossRef]
- Leonov, G.A.; Zvyagintseva, K.A.; Kuznetsova, O.A. Pyragas stabilization of discrete systems via delayed feedback with periodic control gain. IFAC-Pap. 2016, 49, 56–61. [Google Scholar] [CrossRef]
- Pyragas, K. Continuous control of chaos by self-controlling feedback. Phys. Lett. A 1992, 170, 421–428. [Google Scholar] [CrossRef]
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Beltekian, D.; Roser, M. Coronavirus Pandemic (COVID-19). Our World Data. 2020. Available online: https://ourworldindata.org/coronavirus (accessed on 27 August 2022).
- Our World in Data. COVID Live—Coronavirus Statistics—Worldometer. Coronavirus Pandemic (COVID-19). Available online: https://www.worldometers.info/coronavirus/ (accessed on 5 May 2022).
- International Monetary Fund. World Economic Outlook, April 2022: War Sets Back the Global Recovery; IMF: Washington, DC, USA, 2022; Available online: https://www.imf.org/en/Publications/WEO/Issues/2022/04/19/world-economic-outlook-april-2022 (accessed on 5 May 2022).
- World Bank. GDP (Constant 2015 US$)—India, Indonesia, Brazil, South Africa, Kazakhstan|Data. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.KD?end=2020&locations=IN-ID-BR-ZA-KZ&start=2014 (accessed on 1 May 2022).
- World Bank. Population, Total—India, Indonesia, Brazil, South Africa, Kazakhstan | Data. The Worldbank. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?end=2020&locations=IN-ID-BR-ZA-KZ&start=2014 (accessed on 1 May 2022).
- Organization for Economic Cooperation and Development. Quarterly National Accounts. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=QNA (accessed on 12 May 2022).
- Dime, R.; Ginting, E.; Zhuang, J. Estimating Fiscal Multipliers in Selected Asian Economies. ADB Econ. Work. Pap. Ser. 2021, 638, 1–32. [Google Scholar] [CrossRef]
- Raga, S. Fiscal Multipliers: A Review of Fiscal Stimulus Options and Impact on Developing Countries. IDRC. 2022. Available online: https://set.odi.org/fiscal-multipliers-a-review-of-fiscal-stimulus-options-and-impact-on-developing-countries/ (accessed on 5 May 2022).
Brazil | India | Indonesia | Kazakhstan | South Africa | |
---|---|---|---|---|---|
(Susceptible, %) | 0.198118 | 0.343269 | 0.390949 | 0.509977 | 0.68141 |
(Infected, %) | 0.006257 | 0.000221 | 0.000121 | 0.000052 | 0.00059 |
(Recovered, %) | 0.006235 | 0.00022 | 0.00012 | 0.000051 | 0.00058 |
(Vaccinated, %) | 0.78939 | 0.65629 | 0.60881 | 0.48992 | 0.31742 |
(Epidemiological level of infection) | 0.63818 | 0.6251 | 0.58678 | 0.41644 | 0.25091 |
(GDP per capita, USD) | 8549.62 | 1953.94 | 3855.9 | 11269.4 | 5864.0 |
Brazil | India | Indonesia | Kazakhstan | South Africa | |
---|---|---|---|---|---|
a | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
b | 0.5 | 5 | 10 | 50 | 5 |
c | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
d | 0.000005263157895 | 0.000005263157895 | 0.000005263157895 | 0.000005263157895 | 0.000005263157895 |
r | 1 | 10 | 20 | 100 | 10 |
v | 0.35 | 0.8 | 1.3 | 5.3 | 0.8 |
q | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 |
γ | 0.00004 | 0.00004 | 0.00004 | 0.00004 | 0.00004 |
η | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
λ | 2 | 2 | 2 | 2 | 2 |
δ | 0.190487385822133 | 0.00458002457714418 | 0.00447593310948182 | 0.00247737693036435 | 0.013011433457796 |
ω | −0.2 | −0.2 | −0.2 | −0.2 | −0.2 |
ρ | 3 | 3 | 3 | 3 | 3 |
k | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Scale of Vaccination (% of Country’s Population) | Additional Investments in the Economy (bln USD) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Date | BRA | IND | IDN | KAZ | ZAF | BRA | IND | IDN | KAZ | ZAF |
07.22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 32.70 | 21.71 | 10.15 | 1.14 | 3.34 |
08.22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.80 | 21.52 | 10.05 | 1.13 | 3.25 |
09.22 | 3.4 | 6.2 | 7.2 | 9.7 | 13.4 | 17.12 | 35.60 | 15.20 | 1.33 | 3.62 |
10.22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.63 | 14.16 | 6.60 | 0.73 | 2.11 |
11.22 | 2.7 | 5.0 | 5.8 | 7.8 | 10.7 | 13.11 | 25.46 | 10.73 | 0.90 | 2.42 |
12.22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.25 | 9.26 | 4.31 | 0.47 | 1.37 |
01.23 | 2.2 | 4.0 | 4.6 | 6.2 | 8.6 | 10.10 | 18.33 | 7.63 | 0.61 | 1.63 |
02.23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.04 | 6.03 | 2.80 | 0.31 | 0.89 |
03.23 | 1.7 | 3.2 | 3.7 | 5.0 | 6.9 | 7.83 | 13.29 | 5.46 | 0.41 | 1.10 |
04.23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.61 | 3.91 | 1.82 | 0.20 | 0.57 |
05.23 | 1.4 | 2.5 | 3.0 | 4.0 | 5.5 | 6.10 | 9.73 | 3.94 | 0.28 | 0.74 |
06.23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.68 | 2.53 | 1.17 | 0.13 | 0.37 |
07.23 | 1.1 | 2.0 | 2.4 | 3.2 | 4.4 | 4.77 | 7.19 | 2.88 | 0.20 | 0.51 |
08.23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.08 | 1.63 | 0.76 | 0.08 | 0.24 |
09.23 | 0.9 | 1.6 | 1.9 | 2.6 | 3.5 | 3.75 | 5.36 | 2.12 | 0.14 | 0.35 |
10.23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.69 | 1.05 | 0.49 | 0.05 | 0.15 |
11.23 | 0.7 | 1.3 | 1.5 | 2.0 | 2.8 | 2.95 | 4.04 | 1.58 | 0.10 | 0.24 |
12.23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.45 | 0.68 | 0.31 | 0.03 | 0.10 |
01.24 | 0.6 | 1.0 | 1.2 | 1.6 | 2.2 | 2.33 | 3.07 | 1.19 | 0.07 | 0.17 |
02.24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.29 | 0.44 | 0.20 | 0.02 | 0.06 |
03.24 | 0.5 | 0.8 | 1.0 | 1.3 | 1.8 | 1.85 | 2.35 | 0.90 | 0.05 | 0.12 |
04.24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.18 | 0.28 | 0.13 | 0.01 | 0.04 |
05.24 | 0.4 | 0.7 | 0.8 | 1.0 | 1.4 | 1.47 | 1.81 | 0.69 | 0.04 | 0.09 |
06.24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.12 | 0.18 | 0.08 | 0.01 | 0.03 |
07.24 | 0.3 | 0.5 | 0.6 | 0.8 | 1.1 | 1.17 | 1.40 | 0.53 | 0.03 | 0.06 |
08.24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.08 | 0.12 | 0.05 | 0.01 | 0.02 |
09.24 | 0.2 | 0.4 | 0.5 | 0.7 | 0.9 | 0.93 | 1.09 | 0.41 | 0.02 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akaev, A.; Zvyagintsev, A.I.; Sarygulov, A.; Devezas, T.; Tick, A.; Ichkitidze, Y. Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies. Mathematics 2022, 10, 3654. https://doi.org/10.3390/math10193654
Akaev A, Zvyagintsev AI, Sarygulov A, Devezas T, Tick A, Ichkitidze Y. Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies. Mathematics. 2022; 10(19):3654. https://doi.org/10.3390/math10193654
Chicago/Turabian StyleAkaev, Askar, Alexander I. Zvyagintsev, Askar Sarygulov, Tessaleno Devezas, Andrea Tick, and Yuri Ichkitidze. 2022. "Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies" Mathematics 10, no. 19: 3654. https://doi.org/10.3390/math10193654
APA StyleAkaev, A., Zvyagintsev, A. I., Sarygulov, A., Devezas, T., Tick, A., & Ichkitidze, Y. (2022). Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies. Mathematics, 10(19), 3654. https://doi.org/10.3390/math10193654