A Generalized Approach of the Gilpin–Ayala Model with Fractional Derivatives under Numerical Simulation
Abstract
:1. Introduction of the Model
2. Preliminaries
- (A1)
- The kernel satisfies
- (A2)
- (A3)
- (A4)
3. Main Results
3.1. Positivity and Boundedness of the Solution
3.2. Existence and Uniqueness of the Solution
3.3. Stability of the Solution
3.4. An Example with Numerical Simulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayala, F.J.; Gilpin, M.E.; Ehrenfeld, J.G. Competition between species: Theoretical models and experimental tests. Theor. Popul. Biol. 1973, 4, 331–356. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Li, Y.; Dou, X. Multiple Positive Periodic Solutions for a Gilpin-Ayala Competition Predator-Prey System with Harvesting Terms. Abstr. Appl. Anal. 2012, 2012, 427264. [Google Scholar] [CrossRef] [Green Version]
- Li, H.L.; Zhang, L.; Hu, C.; Jiang, Y.L.; Teng, Z. Dynamical Analysis of a Fractional-Order Predator-Prey Model Incorporating a Prey Refuge. J. Appl. Math. Comput. 2017, 54, 435–449. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.Q.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Hu, Y.Y.W. Robust stability analysis of fractional-order Hopfield neural networks with parameter uncertainties. Math. Probl. Eng. 2014, 2014, 302702. [Google Scholar] [CrossRef] [Green Version]
- Henrquez, H.R.; Pierri, M.; Tboas, P. On S-asymptotically ω-periodic functions on Banach spaces and applications. J. Math. Anal. Appl. 2008, 343, 1119–1130. [Google Scholar] [CrossRef]
- Eswari, R.; Alzabut, J.; Samei, M.E.; Zhou, H. On periodic solutions of a discrete Nicholson’s dual system with density-dependent mortality and harvesting terms. Adv. Differ. Equ. 2021, 2021, 360. [Google Scholar] [CrossRef]
- Zhou, H.; Alzabut, J.; Rezapour, S.; Samei, M.E. Uniform persistence and almost periodic solutions of a nonautonomous patch occupancy model. Adv. Differ. Equ. 2020, 2020, 143. [Google Scholar] [CrossRef] [Green Version]
- Sintunavarat, W.; Turab, A. A unified fixed point approach to study the existence of solutions for a class of fractional boundary value problems arising in a chemical graph theory. PLoS ONE 2022, 17, e0270148. [Google Scholar] [CrossRef]
- Etemad, S.; Rezapour, S. On the existence of solutions for fractional boundary value problems on the ethane graph. Adv. Differ. Equ. 2020, 2020, 276. [Google Scholar] [CrossRef]
- Li, C.R.; Lu, S.J. The qualitative analysis of N-species periodic coefficient, nonlinear relation, prey-competition systems. Appl. Math. J. Chin. Univ. 1997, 12, 147–156. [Google Scholar]
- Area, I.; Losada, J.; Nieto, J.J. On quasi-periodicity properties of fractional integrals and fractional derivatives of periodic functions. Integral Transform. Spec. Funct. 2016, 27, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Eswari, R.; Alzabut, J.; Samei, M.E.; Tunç, C.; Jonnalagad, J.M. New results on the existence of periodic solutions for Rayleigh equations with state-dependent delay. Nonautonomous Dyn. Syst. 2022, 9, 103–115. [Google Scholar] [CrossRef]
- Amdouni, M.; Chérif, F. The pseudo almost periodic solutions of the new class of Lotka-Volterra recurrent neural Networks with mixed delays. Chaos Solitons Fractals 2018, 113, 79–88. [Google Scholar] [CrossRef]
- Amdouni, M.; Chérif, F.; Alzabut, J. Pseudo almost periodic solutions and global exponential stability of a new class of nonlinear generalized Gilpin–Ayala competitive model with feedback control with delays. Comput. Appl. Math. 2021, 40, 1–25. [Google Scholar] [CrossRef]
- Amdouni, M.; Chérif, F.; Tunç, C. On the Weighted Piecewise Pseudo Almost Automorphic Solutions Mackey–Glass Model with Mixed Delays and Harvesting Term. Iran J. Sci. Technol. Trans. Sci. 2022. [Google Scholar] [CrossRef]
- Ngondiep, E. A novel three-level time-split approach for solving two-dimensional nonlinear unsteady convection-diffusion-reaction equation. J. Math. Comput. Sci. 2022, 26, 222–248. [Google Scholar] [CrossRef]
- Amdouni, M.; Chérif, F. (μ,η)-pseudo almost automorphic solutions of a new class of competitive Lotka-Volterra model with mixed delays. Nonauton. Dyn. Syst 2020, 2020, 249–271. [Google Scholar] [CrossRef]
- Oderinu, R.A.; Owolabi, J.A.; Taiwo, M. Approximate solutions of linear time-fractional differential equations. J. Math. Comput. Sci. 2022, 29, 60–72. [Google Scholar] [CrossRef]
- Akgüla, A.; Khoshnaw, S.H.A. Application of fractional derivative on non-linear biochemical reaction models. Int. J. Intell. Netw. 2020, 1, 52–58. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Machado, J.A.T. An efficient local meshless approach for solving nonlinear time-fractional fourth-order diffusion model. J. King Saud Univ. Sci. 2021, 33, 101243. [Google Scholar] [CrossRef]
- Senthilkumar, L.S.; Mahendran, R.; Subburayan, V. A second order convergent initial value method for singularly perturbed system of differential-difference equations of convection diffusion type. J. Math. Comput. Sci. 2022, 25, 73–83. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Basel, Switzerland; Philadelphia, PA, USA, 1993. [Google Scholar]
- Odibat, Z.M.; Shawagfeh, N.T. Generalized Taylor’s formula. Appl. Math. Comput. 2007, 186, 286–293. [Google Scholar] [CrossRef]
- Lazopoulos, K.A. On Λ-Fractional Differential Equations. Foundations 2022, 2, 726–745. [Google Scholar] [CrossRef]
Symbols | Declaration |
---|---|
Time variable | |
Prey population density | |
Predator population density | |
, | Natural growth rates |
, | Intraspecific competition rates |
Predation rates | |
, | Kernel functions with innite distributed delay |
, | Manual control functions |
(A2) | (A3) | (A4)-1 | (A4)-2 | ||||||
---|---|---|---|---|---|---|---|---|---|
(A2) | (A3) | (A4)-1 | (A4)-2 | ||||||
---|---|---|---|---|---|---|---|---|---|
(A2) | (A3) | (A4)-1 | (A4)-2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amdouni, M.; Alzabut, J.; Samei, M.E.; Sudsutad, W.; Thaiprayoon, C. A Generalized Approach of the Gilpin–Ayala Model with Fractional Derivatives under Numerical Simulation. Mathematics 2022, 10, 3655. https://doi.org/10.3390/math10193655
Amdouni M, Alzabut J, Samei ME, Sudsutad W, Thaiprayoon C. A Generalized Approach of the Gilpin–Ayala Model with Fractional Derivatives under Numerical Simulation. Mathematics. 2022; 10(19):3655. https://doi.org/10.3390/math10193655
Chicago/Turabian StyleAmdouni, Manel, Jehad Alzabut, Mohammad Esmael Samei, Weerawat Sudsutad, and Chatthai Thaiprayoon. 2022. "A Generalized Approach of the Gilpin–Ayala Model with Fractional Derivatives under Numerical Simulation" Mathematics 10, no. 19: 3655. https://doi.org/10.3390/math10193655
APA StyleAmdouni, M., Alzabut, J., Samei, M. E., Sudsutad, W., & Thaiprayoon, C. (2022). A Generalized Approach of the Gilpin–Ayala Model with Fractional Derivatives under Numerical Simulation. Mathematics, 10(19), 3655. https://doi.org/10.3390/math10193655