The Efficiency of National Innovation Systems in Post-Soviet Countries: DEA-Based Approach
Abstract
:1. Introduction
- Do the EU institutions contribute to the higher productivity of the NIS?
- Does the economic model of state capitalism lead to inefficiency of the NIS?
2. Literature Review
3. Methodology
3.1. The Model of National Innovation System
3.2. Data Envelopment Analysis
3.3. Non-Parametric Correlation
4. Data
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NIS | National Innovation System |
R&D | Research and Development |
EU | European Union |
OECD | Organization for Economic Co-operation and Development |
EECA | Emerging Europe and Central Asia |
BRICS | Brazil, Russia, India, China, and South Africa |
KPP | Knowledge Producing Process |
KCP | Knowledge Commercializing Process |
PCA | Principal Component Analysis |
OLS | Ordinary Least Squares |
DEA | Data Envelopment Analysis |
DMU | Decision Making Unit |
CRS | Constant Returns to Scale |
VRS | Variable Returns to Scale |
References
- Samara, E.; Georgiadis, P.; Bakouros, I. The impact of innovation policies on the performance of national innovation systems: A system dynamics analysis. Technovation 2012, 32, 624–638. [Google Scholar] [CrossRef]
- Lee, K.; Lee, J.; Lee, J. Variety of national innovation systems (NIS) and alternative pathways to growth beyond the middle-income stage: Balanced, imbalanced, catching-up, and trapped NIS. World Dev. 2021, 144, 105472. [Google Scholar] [CrossRef]
- Nelson, R.R. National Innovation Systems: A Comparative Analysis; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Lundvall, B.Å. National Systems of Innovation: Toward a Theory of Innovation and Interactive Learning; Anthem Press: London, UK, 1992. [Google Scholar]
- Metcalfe, J.S. Technology systems and technology policy in an evolutionary framework. Camb. J. Econ. 1995, 19, 25–46. [Google Scholar]
- OECD. Benchmarking Industry-Science Relationship; OECD: Paris, France, 2002. [Google Scholar]
- Godinho, M.M.; Mendonca, S.F.; Pereira, T.S. Towards a Taxonomy of Innovation Systems; DE Working Papers No. 13-2005/DE/CISEP; Instituto Superior de Economia e Gestão, Universidade de Lisboa: Lisbon, Portugal, 2005; Available online: http://hdl.handle.net/10400.5/2682 (accessed on 10 June 2022).
- Balzat, M.; Pyka, A. Mapping national innovation systems in the OECD area. Int. J. Technol. Glob. 2006, 2, 158–176. [Google Scholar] [CrossRef]
- Castellacci, F.; Archibugi, D. The technology clubs: The distribution of knowledge across nations. Res. Policy 2008, 37, 1659–1673. [Google Scholar] [CrossRef] [Green Version]
- Fagerberg, J.; Srholec, M. National innovation systems, capabilities and economic development. Res. Policy 2008, 37, 1417–1435. [Google Scholar] [CrossRef]
- Castellacci, F.; Natera, J.M. The Convergence Paradox. In The Handbook of Global Science, Technology, and Innovation; Archibugi, D., Filippetti, A., Eds.; John Wiley & Sons, Ltd.: Amsterdam, The Netherlands, 2015; Chapter 1; pp. 13–45. [Google Scholar] [CrossRef]
- Zabala-Iturriagagoitia, J.M.; Aparicio, J.; Ortiz, L.; Carayannis, E.G.; Grigoroudis, E. The productivity of national innovation systems in Europe: Catching up or falling behind? Technovation 2021, 102, 102215. [Google Scholar] [CrossRef]
- Guan, J.; Chen, K. Measuring the innovation production process: A cross-region empirical study of China’s high-tech innovations. Technovation 2010, 30, 348–358. [Google Scholar] [CrossRef]
- Guan, J.; Chen, K. Modeling the relative efficiency of national innovation systems. Res. Policy 2012, 41, 102–115. [Google Scholar] [CrossRef]
- Kou, M.; Chen, K.; Wang, S.; Shao, Y. Measuring efficiencies of multi-period and multi-division systems associated with DEA: An application to OECD countries’ national innovation systems. Expert Syst. Appl. 2016, 46, 494–510. [Google Scholar] [CrossRef]
- Aytekin, A.; Ecer, F.; Korucuk, S.; Karamaşa, Ç. Global innovation efficiency assessment of EU member and candidate countries via DEA-EATWIOS multi-criteria methodology. Technol. Soc. 2022, 68, 101896. [Google Scholar] [CrossRef]
- Balashova, S. Assessment the impact of innovative capacity quality on the innovation activity of the OECD countries. Ekon. I Mat. Metod. Econ. Math. Methods 2017, 53, 21–35. Available online: https://emm.jes.su/s042473880000516-6-1-ru-2 (accessed on 10 June 2022). (In Russian).
- Freeman, C. The Economics of Industrial Innovation; MIT Press: Cambridge, UK, 1982. [Google Scholar]
- Lundvall, B.Å.; Freeman, C. Small Countries Facing the Technological Revolution; Pinter Publishers: London, UK, 1988. [Google Scholar]
- Edquist, C. Systems of Innovation: Perspectives and Challenges. In The Oxford Handbook of Innovation; Fagerberg, J., Mowery, D.C., Eds.; Oxford University Press: Oxford, UK, 2006; Chapter 7; pp. 181–208. [Google Scholar] [CrossRef]
- Castellacci, F.; Natera, J.M. The dynamics of national innovation systems: A panel cointegration analysis of the coevolution between innovative capability and absorptive capacity. Res. Policy 2013, 42, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Maloney, W.F. Revisiting the National Innovation System in Developing Countries; Policy Research Working Paper No. 8219; World Bank: Washington, DC, USA, 2017; Available online: https://openknowledge.worldbank.org/handle/10986/28554 (accessed on 10 June 2022).
- Johnes, G.; Johnes, J. Apples and oranges: The aggregation problem in publications analysis. Scientometrics 1992, 25, 353–365. [Google Scholar] [CrossRef]
- Rousseau, S.; Rousseau, R. Data envelopment analysis as a tool for constructing scientometric indicators. Scientometrics 1997, 40, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Rousseau, S.; Rousseau, R. The scientific wealth of European nations: Taking effectiveness into account. Scientometrics 1998, 42, 75–87. [Google Scholar] [CrossRef]
- Jurickova, E.; Pilik, M.; Hrusecka, D. Measuring efficiency with DEA: Application to Visegrad Group countries. Actual Probl. Econ. 2017, 189, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Jurickova, E.; Bobak, R.; Pilik, M.; Hrusecka, D. Efficiency of innovation system in the Czech Republic: Comparison with other European countries. New Trends Issues Proc. Humanit. Soc. Sci. 2017, 4, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Jurickova, E.; Pilik, M.; Kwarteng, M.A. Efficiency measurement of national innovation systems of the European Union countries: DEA model application. J. Int. Stud. 2019, 12, 286–299. [Google Scholar] [CrossRef]
- ącka, I.; Brzezicki, Ł. The Efficiency and Productivity Evaluation of National Innovation Systems in Europe. Eur. Res. Stud. J. 2021, XXIV, 471–496. [Google Scholar] [CrossRef]
- Jovanović, M.; Savić, G.; Cai, Y.; Levi-Jakšić, M. Towards a Triple Helix based efficiency index of innovation systems. Scientometrics 2022, 127, 2577–2609. [Google Scholar] [CrossRef] [PubMed]
- Yesilay, R.B.; Halac, U. An Assessment of Innovation Efficiency in EECA Countries Using the DEA Method. In Contemporary Studies in Economic and Financial Analysis; Grima, S., Özen, E., Boz, H., Eds.; Emerald Publishing Limited: Bingley, UK, 2020; Volume 104, pp. 203–215. [Google Scholar] [CrossRef]
- Lee, H.Y.; Park, Y.T. An international comparison of R&D efficiency: DEA approach. Asian J. Technol. Innov. 2005, 13, 207–222. [Google Scholar] [CrossRef]
- Sharma, S.; Thomas, V.J. Inter-country R&D efficiency analysis: An application of data envelopment analysis. Scientometrics 2008, 76, 483–501. [Google Scholar] [CrossRef]
- Tasnim, N.; Afzal, M.N.I. An empirical investigation of country level efficiency and national systems of entrepreneurship using Data Envelopment Analysis (DEA) and the TOBIT model. J. Glob. Entrep. Res. 2018, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Zo, H. Assessing the efficiency of national innovation systems in developing countries. Sci. Public Policy 2019, 46, 530–540. [Google Scholar] [CrossRef]
- Chung, S. Building a national innovation system through regional innovation systems. Technovation 2002, 22, 485–491. [Google Scholar] [CrossRef]
- Wang, S.; Fan, J.; Zhao, D.; Wang, S. Regional innovation environment and innovation efficiency: The Chinese case. Technol. Anal. Strateg. Manag. 2016, 28, 396–410. [Google Scholar] [CrossRef]
- Firsova, A.; Chernyshova, G. Analysis of efficiency of regional innovation systems taking into account the financing structure. In Proceedings of the International Scientific Conference “Competitive, Sustainable and Secure Development of the Regional Economy: Response to Global Challenges” (CSSDRE 2018), Volgograd State University, Volgograd, Russia, 18–20 April 2018; Atlantis Press: Dordrecht, NL, USA, 2018; pp. 417–422. [Google Scholar] [CrossRef] [Green Version]
- Firsova, A.; Chernyshova, G. Efficiency Analysis of Regional Innovation Development Based on DEA Malmquist Index. Information 2020, 11, 294. [Google Scholar] [CrossRef]
- Zemtsov, S.; Kotsemir, M. An assessment of regional innovation system efficiency in Russia: The application of the DEA approach. Scientometrics 2019, 120, 375–404. [Google Scholar] [CrossRef]
- Kalapouti, K.; Petridis, K.; Malesios, C.; Dey, P.K. Measuring efficiency of innovation using combined Data Envelopment Analysis and Structural Equation Modeling: Empirical study in EU regions. Ann. Oper. Res. 2020, 294, 297–320. [Google Scholar] [CrossRef] [Green Version]
- Rudskaya, I.; Kryzhko, D.; Shvediani, A.; Missler-Behr, M. Regional Open Innovation Systems in a Transition Economy: A Two-Stage DEA Model to Estimate Effectiveness. J. Open Innov. Technol. Mark. Complex. 2022, 8, 41. [Google Scholar] [CrossRef]
- Pan, T.W.; Hung, S.W.; Lu, W.M. DEA Performance Measurement of The National Innovation System in Asia and Europe. Asia-Pac. J. Oper. Res. 2010, 27, 369–392. [Google Scholar] [CrossRef]
- Filippetti, A.; Peyrache, A. The Patterns of Technological Capabilities of Countries: A Dual Approach using Composite Indicators and Data Envelopment Analysis. World Dev. 2011, 39, 1108–1121. [Google Scholar] [CrossRef]
- Cai, Y. Factors Affecting the Efficiency of the BRICSs’ National Innovation Systems: A Comparative Study Based on DEA and Panel Data Analysis, 2011. Discussion Paper No. 2011-52. Economics E-Journal. Available online: http://www.economics-ejournal.org/economics/discussionpapers/2011-52 (accessed on 10 June 2022).
- Yang, G.; Ahlgren, P.; Yang, L.; Rousseau, R.; Ding, J. Using multi-level frontiers in DEA models to grade countries/territories. J. Inf. 2016, 10, 238–253. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Grigoroudis, E.; Goletsis, Y. A multilevel and multistage efficiency evaluation of innovation systems: A multiobjective DEA approach. Expert Syst. Appl. 2016, 62, 63–80. [Google Scholar] [CrossRef]
- Barbero, J.; Zabala-Iturriagagoitia, J.M.; Zofío, J.L. Is more always better? On the relevance of decreasing returns to scale on innovation. Technovation 2021, 107, 102314. [Google Scholar] [CrossRef]
- Matei, M.M.; Aldea, A. Ranking National Innovation Systems According to their technical Efficiency. Procedia Soc. Behav. Sci. 2012, 62, 968–974. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Hanley, A. Building BRICS: 2-Stage DEA analysis of R&D Efficiency, 2011. Kiel Working Paper No. 1788, Kiel Institute for 151 the World Economy. Available online: http://hdl.handle.net/10419/64832 (accessed on 10 June 2022).
- Alnafrah, I. Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment analysis. J. Innov. Entrep. 2021, 10, 26. [Google Scholar] [CrossRef]
- Afzal, M.N.I. An empirical investigation of the National Innovation System (NIS) using Data Envelopment Analysis (DEA) and the TOBIT model. Int. Rev. Appl. Econ. 2014, 28, 507–523. [Google Scholar] [CrossRef]
- Wang, E.C.; Huang, W. Relative efficiency of R&D activities: A cross-country study accounting for environmental factors in the DEA approach. Res. Policy 2007, 36, 260–273. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Goletsis, Y.; Grigoroudis, E. Multi-level multi-stage efficiency measurement: The case of innovation systems. Oper. Res. 2015, 15, 253–274. [Google Scholar] [CrossRef]
- Santos Arteaga, F.J.; Tavana, M.; Di Caprio, D.; Toloo, M. A dynamic multi-stage slacks-based measure data envelopment analysis model with knowledge accumulation and technological evolution. Eur. J. Oper. Res. 2019, 278, 448–462. [Google Scholar] [CrossRef]
- Zou, J.; Chen, W.; Peng, N.; Wei, X. Efficiency of Two-Stage Technological Innovation in High Patent-Intensive Industries That Considers Time Lag: Research Based on the SBM-NDEA Model. Math. Probl. Eng. 2020, 2020, 2906293. [Google Scholar] [CrossRef]
- Chen, P.C.; Hung, S.W. An actor-network perspective on evaluating the R&D linking efficiency of innovation ecosystems. Technol. Forecast. Soc. Chang. 2016, 112, 303–312. [Google Scholar] [CrossRef]
- Kotsemir, M. Measuring National Innovation Systems Efficiency—A Review of DEA Approach, 2013. Higher School of Economics Research Paper No. WP BRP 16/STI/2013. Available online: https://ssrn.com/abstract=2304735 (accessed on 10 June 2022).
- Matyushok, V.M. The thorny path to innovative economy. RUDN J. Econ. 2011, 5, 141–157. (In Russian) [Google Scholar]
- Makkonen, T. National Innovation System Dynamics in East Central Europe, the Baltic Countries, and Russia. In Geo-Regional Competitiveness in Central and Eastern Europe, the Baltic Countries, and Russia; Zhuplev, A., Liuhto, K., Eds.; IGI Global: Hershey, PA, USA, 2006; Chapter 2; pp. 32–56. [Google Scholar] [CrossRef] [Green Version]
- Alnafrah, I.; Mouselli, S. The Role of National Innovation Systems in Entrepreneurship Activities at Baltic State Countries. J. Knowl. Econ. 2020, 11, 84–102. [Google Scholar] [CrossRef]
- Wirkierman, A.L.; Ciarli, T.; Savona, M. Varieties of European National Innovation Systems, 2018. ISI-GrowthWorking Paper. Available online: http://www.isigrowth.eu/wp-content/uploads/2018/05/ISIGrowth_DD1.2.pdf (accessed on 10 June 2022).
- Mikhaylova, A.; Mikhaylov, A.; Savchina, O.; Plotnikova, A. Innovation landscape of the Baltic region. Adm. Si Manag. Public 2019, 1, 165–180. [Google Scholar] [CrossRef]
- Wright, M.; Wood, G.; Musacchio, A.; Okhmatovskiy, I.; Grosman, A.; Doh, J.P. State capitalism in international context: Varieties and variations. J. World Bus. 2021, 56, 101160. [Google Scholar] [CrossRef]
- Radosevic, S. Techno-economic transformation in Eastern Europe and the former Soviet Union—A neo-Schumpeterian perspective. Res. Policy 2022, 51, 104397. [Google Scholar] [CrossRef]
- Mussagulova, A. Newly independent, path dependent: The impact of the Soviet past on innovation in post-Soviet states. Asia Pac. J. Public Adm. 2021, 43, 87–105. [Google Scholar] [CrossRef]
- Freeman, C. Technology, Policy, and Economic Performance: Lessons from Japan; Pinter Publishers: London, UK, 1987. [Google Scholar]
- Dosi, G.; Freeman, C.; Nelson, R.; Silverberg, G.; Soete, L. Technical Change and Economic Theory; LEM Book Series; Laboratory of Economics and Management (LEM), Sant’Anna School of Advanced Studies: Pisa, Italy, 1987. [Google Scholar]
- Lundvall, B.Å.; Vang, J.; Joseph, K.; Chaminade, C. Bridging Innovation System Research and Development Studies: Challenges and Research Opportunities; Edward Elgar Publishing, Inc.: Cheltenham, UK, 2009. [Google Scholar]
- Khan, M.S. Absorptive capacities approaches for investigating national innovation systems in low and middle income countries. Int. J. Innov. Stud. 2022, 6, 183–195. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Farrell, M.J.; Fieldhouse, M. Estimating efficient production functions under increasing returns to scale. J. R. Stat. Soc. 1962, 125, 252–267. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.I.; Seiford, L.M. Computational Accuracy and Infinitesimals In Data Envelopment Analysis. INFOR Inf. Syst. Oper. Res. 1993, 31, 290–297. [Google Scholar] [CrossRef]
- Podinovski, V.V.; Bouzdine-Chameeva, T. Solving DEA models in a single optimization stage: Can the non-Archimedean infinitesimal be replaced by a small finite epsilon? Eur. J. Oper. Res. 2017, 257, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd ed.; Springer Science and Business Media: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Gu, H.; Yue, J. The Relationship between Bank Efficiency and Stock Returns: Evidence from Chinese Listed Banks. World J. Soc. Sci. 2011, 4, 95–106. [Google Scholar]
- Řepková, I. Efficiency of the Czech Banking Sector Employing the DEA Window Analysis Approach. Procedia Econ. Financ. 2014, 12, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Zarbi, S.; Shin, S.H.; Shin, Y.J. An Analysis by Window DEA on the Influence of International Sanction to the Efficiency of Iranian Container Ports. Asian J. Shipp. Logist. 2019, 35, 163–171. [Google Scholar] [CrossRef]
- Fedyunina, A.; Averyanova, Y. Import and export of high-tech products in Russian manufacturing companies. Russ. J. Econ. 2019, 5, 199–210. [Google Scholar] [CrossRef]
- Lundvall, B.Å. National Innovation Systems—Analytical Concept and Development Tool. Ind. Innov. 2007, 14, 95–119. [Google Scholar] [CrossRef]
- Bansal, P.; Bertels, S.; Ewart, T.; MacConnachie, P.; O’Brien, J. Bridging the Research–Practice Gap. Acad. Manag. Perspect. 2012, 26, 73–92. [Google Scholar] [CrossRef]
- Balashova, S. The impact of public R&D policy on business-funded R&D (case of OECD countries). Appl. Econom. 2015, 38, 64–82. [Google Scholar]
- Bessant, J.; Tidd, J. Innovation and Entrepreneurship, 3rd ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Sadykhanova, G.; Erezhepova, A.; Nurmanova, B.; Aitbembetova, A.; Bimendiyeva, L. Efficiency of Financing High-Tech Industries: The Case of Kazakhstan. J. Asian Financ. Econ. Bus. 2019, 6, 287–295. [Google Scholar] [CrossRef]
- Gokhberg, L.; Ditkovskiy, K.; Diachenko, E.; Fridlyanova, S.; Fursov, K.; Kotsemir, M.; Kuznetsova, I.; Lukinova, E.; Martynova, S.; Nefedova, A.; et al. Science and Technology Indicators in the Russian Federation. In Data Book; National Research University Higher School of Economics: Moscow, Russia, 2019. [Google Scholar]
- Mosconi, F.; D’Ingiullo, D. Institutional Quality and Innovation: Evidence from Emilia-Romagna. Economics of Innovation and New Technology; Taylor & Francis: Abingdon, UK, 2021; pp. 1–33. [Google Scholar] [CrossRef]
- Celli, V.; Cerqua, A.; Pellegrini, G. Does R&D Expenditure Boost Economic Growth in Lagging Regions? Soc. Indic. Res. 2021. [Google Scholar] [CrossRef]
Country | Inputs | Outputs | |||||
---|---|---|---|---|---|---|---|
Research and Development Expenditure (% of GDP) 1 | Researchers in R&D (Per Million People) 2 | Technicians in R&D (Per Million People) 3 | Charges for the Use of Intellectual Property, Payments (% of GDP) 4 | Charges for the Use of Intellectual Property, Receipts (% of GDP) 4 | High-Technology Exports (% of Manufactured Exports) 5 | High-Technology Exports (% of GDP) 5 | |
Estonia | 1.614 | 3407.747 | 698.483 | 0.234 | 0.062 | 20.978 | 9.050 |
Lithuania | 0.938 | 2906.469 | 462.476 | 0.113 | 0.047 | 11.738 | 4.347 |
Latvia | 0.610 | 1797.627 | 391.190 | 0.156 | 0.029 | 16.057 | 4.003 |
Moldova | 0.298 | 741.751 | 68.316 | 0.241 | 0.060 | 4.583 | 0.241 |
Ukraine | 0.615 | 1087.540 | 197.825 | 0.428 | 0.077 | 6.291 | 1.264 |
Russia | 1.055 | 2997.127 | 472.413 | 0.369 | 0.040 | 11.931 | 0.565 |
Kazakhstan | 0.151 | 667.237 | 126.473 | 0.071 | 0.001 | 32.212 | 1.378 |
Uzbekistan | 0.161 | 508.923 | 56.341 | 0.047 | 0.006 | 6.291 | 0.037 |
Indicator | Spearman Correlation | Kendall Correlation |
---|---|---|
Ease of doing business | −0.81 ** | −0.64 ** |
Protecting minority investors | −0.77 ** | −0.55 * |
Enforcing contracts | −0.24 | −0.29 |
Starting business | −0.90 *** | −0.79 *** |
Getting credit | −0.12 | −0.04 |
Trading across borders | −0.36 | −0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratner, S.V.; Balashova, S.A.; Lychev, A.V. The Efficiency of National Innovation Systems in Post-Soviet Countries: DEA-Based Approach. Mathematics 2022, 10, 3615. https://doi.org/10.3390/math10193615
Ratner SV, Balashova SA, Lychev AV. The Efficiency of National Innovation Systems in Post-Soviet Countries: DEA-Based Approach. Mathematics. 2022; 10(19):3615. https://doi.org/10.3390/math10193615
Chicago/Turabian StyleRatner, Svetlana V., Svetlana A. Balashova, and Andrey V. Lychev. 2022. "The Efficiency of National Innovation Systems in Post-Soviet Countries: DEA-Based Approach" Mathematics 10, no. 19: 3615. https://doi.org/10.3390/math10193615
APA StyleRatner, S. V., Balashova, S. A., & Lychev, A. V. (2022). The Efficiency of National Innovation Systems in Post-Soviet Countries: DEA-Based Approach. Mathematics, 10(19), 3615. https://doi.org/10.3390/math10193615