Semi-Hyers–Ulam–Rassias Stability via Laplace Transform, for an Integro-Differential Equation of the Second Order
Abstract
:1. Introduction
2. Preliminary Notions and Results
- (1)
- (2)
- (i)
- If , or , with , then , for all .
- (ii)
- If , with , then there exist exactly two roots , , such that .
3. Main Stability Results
- Let , , with .
- II.
- Let , , .
- III.
- Let , , with .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulam, S.M. A Collection of Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzdek, J.; Popa, D.; Rasa, I.; Xu, B. Ulam Stability of Operators; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Tripathy, A.K. Hyers-Ulam Stability of Ordinary Differential Equations; Taylor and Francis: New York, NY, USA, 2021. [Google Scholar]
- Obloza, M. Hyers stability of the linear differential equation. Rocznik Nauk-Dydakt. Prace Mat. 1993, 13, 259–270. [Google Scholar]
- Alsina, C.; Ger, R. On some inequalities and stability results related to exponential function. J. Inequal. Appl. 1998, 2, 373–380. [Google Scholar] [CrossRef]
- Takahasi, S.E.; Takagi, H.; Miura, T.; Miyajima, S. The Hyers-Ulam stability constant of first order linear differential operators. J. Math. Anal. Appl. 2004, 296, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order, III. J. Math. Anal. Appl. 2005, 311, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Cimpean, D.S.; Popa, D. On the stability of the linear differential equation of higher order with constant coefficients. Appl. Math. Comput. 2010, 217, 4141–4146. [Google Scholar] [CrossRef]
- Popa, D.; Rasa, I. Hyers-Ulam stability of the linear differential operator with non-constant coefficients. Appl. Math. Comput. 2012, 219, 1562–1568. [Google Scholar]
- Marian, D.; Ciplea, S.A.; Lungu, N. On Ulam-Hyers stability for a system of partial differential equations of first order. Symmetry 2020, 12, 1060. [Google Scholar] [CrossRef]
- Otrocol, D. Ulam stabilities of differential equation with abstract Volterra operator in a Banach space. Nonlinear Funct. Anal. Appl. 2010, 15, 613–619. [Google Scholar]
- Cadariu, L. The generalized Hyers-Ulam stability for a class of the Volterra nonlinear integral equations. Sci. Bull. Politehnica Univ. Timis. Trans. Math. Phys. 2011, 56, 30–38. [Google Scholar]
- Ilea, V.; Otrocol, D. Existence and Uniqueness of the Solution for an Integral Equation with Supremum, via w-Distances. Symmetry 2020, 12, 1554. [Google Scholar] [CrossRef]
- Oliveira, E.C.; Sousa, J. Ulam–Hyers–Rassias Stability for a Class of Fractional Integro-Differential Equations. Results Math. 2018, 73, 111. [Google Scholar] [CrossRef] [Green Version]
- Marian, D.; Ciplea, S.A.; Lungu, N. On a functional integral equation. Symmetry 2021, 13, 1321. [Google Scholar] [CrossRef]
- Prastaro, A.; Rassias, T.M. Ulam stability in geometry of PDE’s. Nonlinear Funct. Anal. Appl. 2003, 8, 259–278. [Google Scholar]
- Jung, S.-M. Hyers-Ulam stability of linear partial differential equations of first order. Appl. Math. Lett. 2009, 22, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M.; Lee, K.-S. Hyers-Ulam stability of first order linear partial differential equations with constant coefficients. Math. Inequal. Appl. 2007, 10, 261–266. [Google Scholar] [CrossRef]
- Lungu, N.; Ciplea, S. Ulam-Hyers-Rassias stability of pseudoparabolic partial differential equations. Carpatian J. Math. 2015, 31, 233–240. [Google Scholar] [CrossRef]
- Lungu, N.; Marian, D. Ulam-Hyers-Rassias stability of some quasilinear partial differential equations of first order. Carpathian J. Math. 2019, 35, 165–170. [Google Scholar] [CrossRef]
- Lungu, N.; Popa, D. Hyers-Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 2012, 385, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Marian, D.; Ciplea, S.A.; Lungu, N. Ulam-Hyers stability of Darboux-Ionescu problem. Carpatian J. Math. 2021, 37, 211–216. [Google Scholar] [CrossRef]
- Shokri, A. A symmetric P-stable hybrid Obrechkoff methods for the numerical solution of second order IVPS. J. Pure Appl. Math. 2012, 5, 28–35. [Google Scholar]
- Shokri, A.; Saadat, H. P-stability, TF and VSDPL technique in Obrechkoff methods for the numerical solution of the Schrödinger equation. Bull. Iran. Math. Soc. 2016, 42, 687–706. [Google Scholar]
- Rezaei, H.; Jung, S.-M.; Rassias, T. Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Alqifiary, Q.; Jung, S.-M. Laplace transform and generalized Hyers-Ulam stability of linear differential equations. Electron. J. Differ. Equ. 2014, 2014, 1–11. [Google Scholar]
- Murali, R.; Ponmana Selvan, A. Mittag–Leffler-Hyers-Ulam stability of a linear differential equation of first order using Laplace transforms. Canad. J. Appl. Math. 2020, 2, 47–59. [Google Scholar]
- Biçer, E.; Tunç, C. On the Hyers-Ulam Stability of Laguerre and Bessel Equations by Laplace Transform Method. Nonlinear Dyn. Syst. 2017, 17, 340–346. [Google Scholar]
- Shen, Y.; Chen, W. Laplace Transform Method for the Ulam Stability of Linear Fractional Differential Equations with Constant Coefficients. Mediterr. J. Math. 2017, 14, 25. [Google Scholar] [CrossRef]
- Marian, D. Semi-Hyers-Ulam-Rassias stability of the convection partial differential equation via Laplace transform. Mathematics 2021, 9, 2980. [Google Scholar] [CrossRef]
- Shen, Y.; Li, Y. The z-transform method for the Ulam stability of linear difference equations with constant coefficients. Adv. Differ. Equ. 2018, 2018, 396. [Google Scholar] [CrossRef]
- Inoan, D.; Marian, D. Semi-Hyers-Ulam-Rassias stability of a Volterra integro-differential equation of order I with a convolution type kernel via Laplace transform. Symmetry 2021, 13, 2181. [Google Scholar] [CrossRef]
- Babolian, E.; Salimi Shamloo, A. Numerical solution of Volterra integral and integro-differential equations of convolution type by using operational matrices of piecewise constant orthogonal functions. J. Comput. Appl. Math. 2008, 214, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.P.; Simões, A.M. Different Types of Hyers-Ulam-Rassias Stabilities for a Class of Integro-Differential Equations. Filomat 2017, 31, 5379–5390. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inoan, D.; Marian, D. Semi-Hyers–Ulam–Rassias Stability via Laplace Transform, for an Integro-Differential Equation of the Second Order. Mathematics 2022, 10, 1893. https://doi.org/10.3390/math10111893
Inoan D, Marian D. Semi-Hyers–Ulam–Rassias Stability via Laplace Transform, for an Integro-Differential Equation of the Second Order. Mathematics. 2022; 10(11):1893. https://doi.org/10.3390/math10111893
Chicago/Turabian StyleInoan, Daniela, and Daniela Marian. 2022. "Semi-Hyers–Ulam–Rassias Stability via Laplace Transform, for an Integro-Differential Equation of the Second Order" Mathematics 10, no. 11: 1893. https://doi.org/10.3390/math10111893
APA StyleInoan, D., & Marian, D. (2022). Semi-Hyers–Ulam–Rassias Stability via Laplace Transform, for an Integro-Differential Equation of the Second Order. Mathematics, 10(11), 1893. https://doi.org/10.3390/math10111893