Proteomic Analysis of Plant-Derived hIGF-1-Fc Reveals Proteome Abundance Changes Associated with Wound Healing and Cell Proliferation
Abstract
1. Introduction
2. Materials and Methods
2.1. Host, Expression Vector, and Cell Line
2.2. Plasmid Construction
2.3. Transient Expression of hIGF-1 Fusion Protein
2.4. Affinity-Based Purification of Plant-Derived hIGF-1 Fusion Protein
2.5. SDS-PAGE and Western Blotting
2.6. LC-MS Glycoprofiling
2.7. In Vitro Cell Proliferation Assay of Plant-Derived hIGF-1 Fusion Protein
2.8. In Vitro Wound Healing Assay of Plant-Derived hIGF-1 Fusion Protein
2.9. Preparation of Fibroblast Cell Lysates for Proteomics Analysis
2.10. Proteomics LC-MS/MS Acquisition
2.11. Proteomics Data Analysis and Pathway Analysis
2.12. Statistical Analysis
3. Results
3.1. Effects of Dpi on hIGF-1-Fc Protein Expression
3.2. Purification of Plant-Produced hIGF-1-Fc
3.3. Glycoprofiling Analysis of Plant-Produced hIGF-1-Fc
3.4. Bioactivity of Plant-Produced hIGF-1-Fc in Mammalian Cell Line
3.5. Proteomics Clustering Analysis
3.6. Proteomics Statistical Analysis
3.7. GO Function Enrichment and KEGG Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rischer, H.; Szilvay, G.R.; Oksman-Caldentey, K.-M. Cellular agriculture—Industrial biotechnology for food and materials. Curr. Opin. Biotechnol. 2020, 61, 128–134. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Chun, H.J.; Ahmad, K.; Shaikh, S.; Lim, J.H.; Ali, S.; Han, S.S.; Hur, S.J.; Sohn, J.H.; Lee, E.J.; et al. The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production. J. Anim. Sci. Technol. 2023, 65, 16–31. [Google Scholar] [CrossRef]
- Tripathi, N.K.; Shrivastava, A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front. Bioeng. Biotechnol. 2019, 7, 420. [Google Scholar] [CrossRef]
- Venkatesan, M.; Semper, C.; Skrivergaard, S.; Di Leo, R.; Mesa, N.; Rasmussen, M.K.; Young, J.F.; Therkildsen, M.; Stogios, P.J.; Savchenko, A. Recombinant production of growth factors for application in cell culture. iScience 2022, 25, 105054. [Google Scholar] [CrossRef] [PubMed]
- Bailes, J.; Soloviev, M. Insulin-Like Growth Factor-1 (IGF-1) and Its Monitoring in Medical Diagnostic and in Sports. Biomolecules 2021, 11, 217. [Google Scholar] [CrossRef]
- Laron, Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Mol. Pathol. 2001, 54, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, F.; Li, J.; Chen, L.; Mao, Y.-F.; Li, Q.-B.; Nie, C.-Y.; Lin, C.; Xiao, J. IGF-1 inhibits inflammation and accelerates angiogenesis via Ras/PI3K/IKK/NF-κB signaling pathways to promote wound healing. Eur. J. Pharm. Sci. 2024, 200, 106847. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaraj, B.; Bulaon, C.J.I.; Phoolcharoen, W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. Plants 2020, 9, 842. [Google Scholar] [CrossRef]
- Bulaon, C.J.I.; Shanmugaraj, B.; Oo, Y.; Rattanapisit, K.; Chuanasa, T.; Chaotham, C.; Phoolcharoen, W. Rapid transient expression of functional human vascular endothelial growth factor in Nicotiana benthamiana and characterization of its biological activity. Biotechnol. Rep. 2020, 27, e00514. [Google Scholar] [CrossRef]
- Hanittinan, O.; Oo, Y.; Chaotham, C.; Rattanapisit, K.; Shanmugaraj, B.; Phoolcharoen, W. Expression optimization, purification and in vitro characterization of human epidermal growth factor produced in Nicotiana benthamiana. Biotechnol. Rep. 2020, 28, e00524. [Google Scholar] [CrossRef]
- Rattanapisit, K.; Jantimaporn, A.; Kaewpungsup, P.; Shanmugaraj, B.; Pavasant, P.; Namdee, K.; Phoolcharoen, W. Plant-Produced Basic Fibroblast Growth Factor (bFGF) Promotes Cell Proliferation and Collagen Production. Planta Medica Int. Open 2020, 7, e150–e157. [Google Scholar] [CrossRef]
- Nagano, K.; Akpan, A.; Warnasuriya, G.; Corless, S.; Totty, N.; Yang, A.; Stein, R.; Zvelebil, M.; Stensballe, A.; Burlingame, A.; et al. Functional Proteomic Analysis of Long-term Growth Factor Stimulation and Receptor Tyrosine Kinase Coactivation in Swiss 3T3 Fibroblasts. Mol. Cell. Proteom. 2012, 11, 1690–1708. [Google Scholar] [CrossRef][Green Version]
- King, C.C.; Bouic, K.; Friedmann, T. A fractionation method to identify qauntitative changes in protein expression mediated by IGF-1 on the proteome of murine C2C12 myoblasts. Proteome Sci. 2009, 7, 28. [Google Scholar] [CrossRef]
- Chen, Q.; Davis, K.R. The potential of plants as a system for the development and production of human biologics. F1000Research 2016, 5, 912. [Google Scholar] [CrossRef]
- Chen, Q.; He, J.; Phoolcharoen, W.; Mason, H.S. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum. Vaccines 2011, 7, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Srisangsung, T.; Phetphoung, T.; Manopwisedjaroen, S.; Rattanapisit, K.; Bulaon, C.J.I.; Thitithanyanont, A.; Limprasutr, V.; Strasser, R.; Phoolcharoen, W. The impact of N-glycans on the immune response of plant-produced SARS-CoV-2 RBD-Fc proteins. Biotechnol. Rep. 2024, 43, e00847. [Google Scholar] [CrossRef] [PubMed]
- Charnsatabut, C.; Suwanchaikasem, P.; Rattanapisit, K.; Iksen, I.; Pongrakhananon, V.; Bulaon, C.J.I.; Phoolcharoen, W. Optimized expression of human interleukin-15 in Nicotiana benthamiana and in vitro assessment of its activity on human keratinocytes. Biotechnol. Rep. 2025, 46, e00889. [Google Scholar] [CrossRef] [PubMed]
- Benington, L.; Mo, J.; Li, M.; Rajan, G.; Locher, C.; Lim, L.Y. In Vitro Assessment of Wound-Healing Efficacy of Stabilized Basic Fibroblast Growth Factor (FGF-2) Solutions. Pharmaceuticals 2024, 17, 247. [Google Scholar] [CrossRef]
- Carrera, M.; Mateos Martín, J. Shotgun Proteomics: Methods and Protocols; Humana: New York, NY, USA, 2020. [Google Scholar]
- Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef]
- Röst, H.L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.-C.; Gutenbrunner, P.; Kenar, E.; et al. OpenMS: A flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 2016, 13, 741–748. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2025. Nucleic Acids Res. 2025, 53, D609–D617. [Google Scholar] [CrossRef]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
- Salmon, W.D., Jr.; Daughaday, W.H. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J. Lab. Clin. Med. 1957, 49, 825–836. [Google Scholar] [PubMed]
- Rinderknecht, E.; Humbel, R.E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 1978, 253, 2769–2776. [Google Scholar] [CrossRef] [PubMed]
- Iranpoor, H.; Omidinia, E.; Vatankhah, V.; Gharanjik, V.; Shahbazi, M. Expression of Recombinant Human Insulin-like Growth Factor Type 1 (rhIGF-1) in Escherichia coli. Avicenna J. Med. Biotechnol. 2015, 7, 101–105. [Google Scholar]
- Miller-Kobisher, B.; Suárez-Vega, D.V.; Velazco de Maldonado, G.J. Epidermal Growth Factor in Aesthetics and Regenerative Medicine: Systematic Review. J. Cutan. Aesthet. Surg. 2021, 14, 137–146. [Google Scholar]
- Quinlan, D.J.; Ghanem, A.M.; Hassan, H. Topical growth factor preparations for facial skin rejuvenation: A systematic review. J. Cosmet. Dermatol. 2023, 22, 2023–2039. [Google Scholar] [CrossRef]
- Lin, J.; Asai, S.; Selicharová, I.; Mitrová, K.; Kaminský, J.; Young, E.; Jiráček, J. Recombinant Insulin-Like Growth Factor 1 Dimers: Receptor Binding Affinities and Activation Abilities. Int. J. Pept. Res. Ther. 2023, 29, 33. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-Y. A Two-Stage Mechanism for the Reductive Unfolding of Disulfide-containing Proteins. J. Biol. Chem. 1997, 272, 69–75. [Google Scholar] [CrossRef]
- Roszkowski, M.; Mansuy, I.M. High Efficiency RNA Extraction From Sperm Cells Using Guanidinium Thiocyanate Supplemented With Tris(2-Carboxyethyl)Phosphine. Front. Cell Dev. Biol. 2021, 9, 648274. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, F.; Xu, W.; May, K.; Richardson, D.; Liu, H. Disulfide bond assignment of an IgG1 monoclonal antibody by LC-MS with post-column partial reduction. Anal. Biochem. 2013, 436, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Natesan, R.; Dykstra, A.B.; Banerjee, A.; Agrawal, N.J. Heterogeneity in Disulfide Bond Reduction in IgG1 Antibodies Is Governed by Solvent Accessibility of the Cysteines. Antibodies 2023, 12, 83. [Google Scholar] [CrossRef]
- Clemente, M.; Corigliano, M.G.; Pariani, S.A.; Sánchez-López, E.F.; Sander, V.A.; Ramos-Duarte, V.A. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int. J. Mol. Sci. 2019, 20, 1345. [Google Scholar] [CrossRef]
- Ma, J.; Ding, X.; Li, Z.; Wang, S. Co-expression With Replicating Vector Overcoming Competitive Effects Derived by a Companion Protease Inhibitor in Plants. Front. Plant Sci. 2021, 12, 699442. [Google Scholar] [CrossRef]
- Phakham, T.; Bulaon, C.J.I.; Khorattanakulchai, N.; Shanmugaraj, B.; Buranapraditkun, S.; Boonkrai, C.; Sooksai, S.; Hirankarn, N.; Abe, Y.; Strasser, R.; et al. Functional Characterization of Pembrolizumab Produced in Nicotiana benthamiana Using a Rapid Transient Expression System. Front. Plant Sci. 2021, 12, 736299. [Google Scholar] [CrossRef]
- Rattanapisit, K.; Bulaon, C.J.I.; Strasser, R.; Sun, H.; Phoolcharoen, W. In vitro and in vivo studies of plant-produced Atezolizumab as a potential immunotherapeutic antibody. Sci. Rep. 2023, 13, 14146. [Google Scholar] [CrossRef]
- Zheng, N.; Xia, R.; Yang, C.; Yin, B.; Li, Y.; Duan, C.; Liang, L.; Guo, H.; Xie, Q. Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice. Vaccine 2009, 27, 5001–5007. [Google Scholar] [CrossRef]
- Panahi, M.; Cheng, X.; Alli, Z.; Sardana, R.; Callaghan, M.; Phipps, J.; Altosaar, I. Plant-derived recombinant human insulin-like growth factor precursor prohormone IGF-1B caused differentiation of human neuroblastoma cell lines SH-SY5Y. Mol. Breed. 2003, 12, 21–31. [Google Scholar] [CrossRef]
- Musiychuk, K.; Sivalenka, R.; Jaje, J.; Bi, H.; Flores, R.; Shaw, B.; Jones, R.M.; Golovina, T.; Schnipper, J.; Khandker, L.; et al. Plant-produced human recombinant erythropoietic growth factors support erythroid differentiation in vitro. Stem Cells Dev. 2013, 22, 2326–2340. [Google Scholar] [CrossRef]
- Villao-Uzho, L.; Chávez-Navarrete, T.; Pacheco-Coello, R.; Sánchez-Timm, E.; Santos-Ordóñez, E. Plant Promoters: Their Identification, Characterization, and Role in Gene Regulation. Genes 2023, 14, 1226. [Google Scholar] [CrossRef]
- Rozov, S.M.; Deineko, E.V. Increasing the Efficiency of the Accumulation of Recombinant Proteins in Plant Cells: The Role of Transport Signal Peptides. Plants 2022, 11, 2561. [Google Scholar] [CrossRef]
- Nosaki, S.; Hoshikawa, K.; Ezura, H.; Miura, K. Transient protein expression systems in plants and their applications. Plant Biotechnol. (Tokyo) 2021, 38, 297–304. [Google Scholar] [CrossRef]
- Dupont, J.; Le Roith, D. Insulin-like growth factor 1 and oestradiol promote cell proliferation of MCF-7 breast cancer cells: New insights into their synergistic effects. Mol. Pathol. 2001, 54, 149–154. [Google Scholar] [CrossRef]
- Vanhaesebroeck, B.; Alessi, D.R. The PI3K-PDK1 connection: More than just a road to PKB. Biochem. J. 2000, 346 Pt 3, 561–576. [Google Scholar] [CrossRef] [PubMed]
- Skolnik, E.; Lee, C.; Batzer, A.; Vicentini, L.; Zhou, M.; Daly, R.; Myers, M.; Backer, J.; Ullrich, A.; White, M. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: Implications for insulin control of ras signalling. EMBO J. 1993, 12, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Yee, D. The insulin-like growth factor system as a target in breast cancer. Breast Cancer Res. Treat. 1994, 32, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, P.F.; Msaouel, P.; Koutsilieris, M. The role of the insulin-like growth factor-1 system in breast cancer. Mol. Cancer 2015, 14, 43. [Google Scholar] [CrossRef]
- Chen, W.F.; Lau, W.S.; Cheung, P.Y.; Guo, D.A.; Wong, M.S. Activation of Insulin-Like Growth Factor I Receptor-Mediated Pathway by Ginsenoside Rg1. Br. J. Pharmacol. 2006, 147, 542–551. [Google Scholar] [CrossRef]
- Han, H.; Hong, H.; Park, S.M.; Kim, D. Metal–Electrolyte Solution Dual-Mode Electrospinning Process for In Situ Fabrication of Electrospun Bilayer Membrane. Adv. Mater. Interfaces 2020, 7, 2000571. [Google Scholar] [CrossRef]
- Li, X.-J.; Huang, F.-Z.; Wan, Y.; Li, Y.-S.; Zhang, W.K.; Xi, Y.; Tian, G.-H.; Tang, H.-B. Lipopolysaccharide Stimulated the Migration of NIH3T3 Cells Through a Positive Feedback Between β-Catenin and COX-2. Front. Pharmacol. 2018, 9, 1487. [Google Scholar] [CrossRef] [PubMed]
- Achar, R.A.; Silva, T.C.; Achar, E.; Martines, R.B.; Machado, J.L. Use of insulin-like growth factor in the healing of open wounds in diabetic and non-diabetic rats. Acta Cir. Bras. 2014, 29, 125–131. [Google Scholar] [CrossRef]
- Garoufalia, Z.; Papadopetraki, A.; Karatza, E.; Vardakostas, D.; Philippou, A.; Kouraklis, G.; Mantas, D. Insulin-like growth factor-I and wound healing, a potential answer to non-healing wounds: A systematic review of the literature and future perspectives. Biomed. Rep. 2021, 15, 66. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Zhang, S.; Song, J.; Zhu, T. Baicalein inhibits proliferation and collagen synthesis of mice fibroblast cell line NIH/3T3 by regulation of miR-9/insulin-like growth factor-1 axis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3202–3211. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Qiu, R.-F.; Mai, W.-Y.; Kuang, J.; Cai, X.-Y.; Dong, Y.-G.; Hu, Y.-Z.; Song, Y.-B.; Cai, A.-P.; Jiang, Z.-G. Effects of insulin-like growth factor-1 on the properties of mesenchymal stem cells in vitro. J. Zhejiang Univ. Sci. B 2012, 13, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.J.; Lu, M.C.; Chang, H.Y. Sustained Release of Insulin-Like Growth Factor-1 from Bombyx mori L. Silk Fibroin Delivery for Diabetic Wound Therapy. Int. J. Mol. Sci. 2021, 22, 6267. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Liu, Y.; Yu, X.-Y.; Pan, X.; Zhang, Y.; Tu, J.; Song, Y.-H.; Li, Y. Ribosome biogenesis in disease: New players and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 15. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, R.; Dai, Y.; Chen, J.; Ye, P.; Zhu, H.; He, W.; Nie, X. Molecular mechanisms of ubiquitination in wound healing. Biochem. Pharmacol. 2025, 231, 116670. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, F.; Xu, C.; Zhang, Q.; Ren, H.; Huang, X.; He, C.; Ma, J.; Wang, Z. Metabolic reprogramming in skin wound healing. Burn. Trauma 2024, 12, tkad047. [Google Scholar] [CrossRef] [PubMed]
- Strasser, R. Recent Developments in Deciphering the Biological Role of Plant Complex N-Glycans. Front. Plant Sci. 2022, 13, 897549. [Google Scholar] [CrossRef]
- Ranjbari, J.; Babaeipour, V.; Vahidi, H.; Moghimi, H.; Mofid, M.R.; Namvaran, M.M.; Jafari, S. Enhanced Production of Insulin-like Growth Factor I Protein in Escherichia coli by Optimization of Five Key Factors. Iran. J. Pharm. Res. 2015, 14, 907–917. [Google Scholar] [PubMed]
- Rozov, S.M.; Permyakova, N.V.; Deineko, E.V. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins. Biochemistry 2018, 83, 215–232. [Google Scholar] [CrossRef] [PubMed]








| No. | Protein IDs | Protein Names | Gene Names | Protein Class | Razor + Unique Peptides | Sequence Coverage [%] | Score | p Value | FDR | Average LFQ Intensity Control | Average LFQ Intensity 50 ng/mL | Average LFQ Intensity 100 ng/mL |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Q8VEK3 | Heterogeneous nuclear ribonucleoprotein U | Hnrnpu | - | 9 | 18.5 | 31.30 | 6.32 × 10−10 | 1.90 × 10−7 | 0.00 | 0.00 | 6752.13 |
| 2 | P99024 | Tubulin beta-5 chain | Tubb5 | tubulin | 18 | 62.8 | 170.74 | 3.82 × 10−9 | 3.83 × 10−7 | 5479.97 | 6900.93 | 13,230.00 |
| 3 | P09671 | Superoxide dismutase [Mn], mitochondrial | Sod2 | oxidoreductase | 3 | 16.7 | 13.49 | 3.68 × 10−9 | 3.83 × 10−7 | 4804.80 | 4814.03 | 0.00 |
| 4 | P57780 | Alpha-actinin-4 | Actn4 | actin or actin-binding cytoskeletal protein | 2 | 2.4 | 6.47 | 1.22 × 10−8 | 9.15 × 10−7 | 0.00 | 0.00 | 3033.60 |
| 5 | Q99PT1 | Rho GDP-dissociation inhibitor 1 | Arhgdia | G-protein modulator | 2 | 20.1 | 14.63 | 5.50 × 10−8 | 3.31 × 10−6 | 0.00 | 0.00 | 6674.27 |
| 6 | Q9DBJ1 | Phosphoglycerate mutase 1 | Pgam1 | mutase | 16 | 79.9 | 208.75 | 8.73 × 10−8 | 4.38 × 10−6 | 49,939.67 | 57,622.00 | 74,753.33 |
| 7 | Q61598 | Rab GDP dissociation inhibitor beta | Gdi2 | G-protein modulator | 6 | 22.9 | 26.36 | 1.09 × 10−7 | 4.70 × 10−6 | 0.00 | 0.00 | 4951.97 |
| 8 | P08249 | Malate dehydrogenase, mitochondrial | Mdh2 | dehydrogenase | 17 | 63.6 | 146.94 | 2.33 × 10−7 | 8.78 × 10−6 | 12,977.67 | 16,462.33 | 33,459.00 |
| 9 | P58252 | Elongation factor 2 | Eef2 | translation elongation factor | 39 | 60.7 | 321.48 | 2.90 × 10−7 | 9.69 × 10−6 | 8059.33 | 9862.90 | 17,363.67 |
| 10 | P05213 | Tubulin alpha-1B chain | Tuba1b | tubulin | 15 | 49.0 | 95.53 | 3.68 × 10−7 | 1.0059 × 10−5 | 12,769.00 | 14,546.67 | 24,569.67 |
| 11 | P60710 | Actin, cytoplasmic 1 | Actb | actin and actin-related protein | 24 | 68.0 | 323.31 | 3.61 × 10−7 | 1.0059 × 10−5 | 156,963.33 | 185,090.00 | 245,403.33 |
| 12 | P62962 | Profilin-1 | Pfn1 | non-motor actin-binding protein | 11 | 91.4 | 85.66 | 6.06 × 10−7 | 1.5203 × 10−5 | 11,084.67 | 14,078.67 | 39,967.33 |
| 13 | Q01853 | Transitional endoplasmic reticulum ATPase | Vcp | primary active transporter | 21 | 41.7 | 144.96 | 6.57 × 10−7 | 1.5219 × 10−5 | 6507.83 | 8583.27 | 12,508.33 |
| 14 | P68372 | Tubulin beta-4B chain | Tubb4b | tubulin | 4 | 57.8 | 20.09 | 1.026 × 10−6 | 0.00002206 | 0.00 | 3092.93 | 4930.87 |
| 15 | P63038 | 60 kDa heat shock protein, mitochondrial | Hspd1 | - | 23 | 59.9 | 227.60 | 1.62 × 10−6 | 3.2498 × 10−5 | 9488.90 | 7901.73 | 13,505.67 |
| 16 | Q61425 | Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial | Hadh | - | 3 | 20.1 | 14.97 | 0.00000208 | 3.9129 × 10−5 | 0.00 | 0.00 | 5587.93 |
| 17 | Q9CQ65 | S-methyl-5-thioadenosine phosphorylase | Mtap | nucleotide kinase | 9 | 46.6 | 49.67 | 0.00001644 | 0.00029109 | 11,428.33 | 14,249.33 | 18,848.67 |
| 18 | P07356 | Annexin A2 | Anxa2 | calcium-binding protein | 15 | 58.4 | 76.54 | 2.3959 × 10−5 | 0.00040065 | 7585.53 | 8012.63 | 13,982.67 |
| 19 | Q9D8E6 | Large ribosomal subunit protein uL4 | Rpl4 | ribosomal protein | 24 | 52.5 | 121.88 | 4.9777 × 10−5 | 0.00078857 | 26,020.00 | 25,327.00 | 22,445.00 |
| 20 | P05064 | Fructose-bisphosphate aldolase A | Aldoa | aldolase | 25 | 81.3 | 233.20 | 5.4198 × 10−5 | 0.00081569 | 32,942.33 | 38,918.67 | 41,229.67 |
| 21 | P54071 | Isocitrate dehydrogenase [NADP], mitochondrial | Idh2 | dehydrogenase | 17 | 43.1 | 57.47 | 0.00009511 | 0.0013632 | 10,177.17 | 9926.90 | 12,328.00 |
| 22 | P08228 | Superoxide dismutase [Cu-Zn] | Sod1 | oxidoreductase | 8 | 58.4 | 30.51 | 0.00012794 | 0.0016743 | 18,451.00 | 17,965.33 | 14,930.33 |
| 23 | P10126 | Elongation factor 1-alpha 1 | Eef1a1 | translation factor | 10 | 29.7 | 41.23 | 0.00012262 | 0.0016743 | 4519.57 | 5741.20 | 14,470.67 |
| 24 | Q03265 | ATP synthase subunit alpha, mitochondrial | Atp5f1a | ATP synthase | 29 | 61.8 | 290.33 | 0.0001883 | 0.0023617 | 21,643.00 | 22,408.00 | 20,415.67 |
| 25 | Q9Z1Q5 | Chloride intracellular channel protein 1 | Clic1 | ion channel | 10 | 52.3 | 60.80 | 0.00022731 | 0.0027368 | 12,136.00 | 13,294.67 | 17,209.67 |
| 26 | P29758 | Ornithine aminotransferase, mitochondrial | Oat | transaminase | 9 | 29.2 | 44.85 | 0.00028426 | 0.003169 | 7568.87 | 8109.57 | 6298.13 |
| 27 | P18760 | Cofilin-1 | Cfl1 | non-motor actin-binding protein | 13 | 69.3 | 162.83 | 0.00027613 | 0.003169 | 60,508.33 | 61,218.33 | 83,614.00 |
| 28 | Q9EST5 | Acidic leucine-rich nuclear phosphoprotein 32 family member B | Anp32b | chromatin/chromatin-binding, or -regulatory protein | 5 | 21.0 | 20.71 | 0.00033516 | 0.003603 | 9243.43 | 9230.03 | 7850.20 |
| 29 | Q6PAC1 | Gelsolin | Gsn | - | 23 | 42.1 | 181.39 | 0.00035126 | 0.0036458 | 13,712.00 | 14,174.00 | 16,514.33 |
| 30 | P10639 | Thioredoxin | Txn | oxidoreductase | 9 | 65.7 | 83.57 | 0.00037264 | 0.0037388 | 30,886.00 | 30,616.00 | 37,830.33 |
| 31 | Q05816 | Fatty-acid-binding protein 5 | Fabp5 | transfer/carrier protein | 7 | 54.8 | 40.05 | 0.00046673 | 0.0045318 | 10,121.67 | 10,063.17 | 8700.53 |
| 32 | P35980 | Large ribosomal subunit protein eL18 | Rpl18 | ribosomal protein | 7 | 34.0 | 52.44 | 0.00057888 | 0.0051248 | 35,643.67 | 35,527.00 | 28,636.00 |
| 33 | P62082 | Small ribosomal subunit protein eS7 | Rps7 | ribosomal protein | 6 | 36.1 | 43.29 | 0.000578 | 0.0051248 | 9635.80 | 10,517.87 | 12,125.33 |
| 34 | P52480 | Pyruvate kinase PKM | Pkm | kinase | 46 | 76.8 | 323.31 | 0.00056453 | 0.0051248 | 143,280.00 | 138,166.67 | 133,363.33 |
| 35 | Q58E70 | Tropomyosin alpha-3 chain | Tpm3 | actin-binding motor protein | 22 | 70.2 | 78.94 | 0.00060716 | 0.0052215 | 21,365.00 | 21,205.33 | 17,868.00 |
| 36 | P62908 | Small ribosomal subunit protein uS3 | Rps3 | ribosomal protein | 16 | 73.7 | 86.90 | 0.00062987 | 0.0052664 | 12,127.00 | 13,240.33 | 14,048.67 |
| 37 | Q9CPR4 | Large ribosomal subunit protein uL22 | Rpl17 | ribosomal protein | 7 | 42.4 | 80.83 | 0.00075181 | 0.0061161 | 20,140.67 | 19,624.33 | 17,258.00 |
| 38 | P14152 | Malate dehydrogenase, cytoplasmic | Mdh1 | dehydrogenase | 12 | 45.2 | 98.76 | 0.00081216 | 0.0062682 | 16,658.00 | 17,165.33 | 15,238.33 |
| 39 | P05202 | Aspartate aminotransferase, mitochondrial | Got2 | transaminase | 23 | 61.4 | 172.25 | 0.0007966 | 0.0062682 | 20,688.00 | 21,339.33 | 17,041.00 |
| 40 | P51174 | Long-chain-specific acyl-CoA dehydrogenase, mitochondrial | Acadl | dehydrogenase | 9 | 24.2 | 37.13 | 0.00084378 | 0.0063495 | 7992.47 | 7431.20 | 6335.93 |
| 41 | P20029 | Endoplasmic reticulum chaperone BiP | Hspa5 | Hsp70 family chaperone | 29 | 53.7 | 190.07 | 0.00092171 | 0.0067667 | 15,860.33 | 15,596.33 | 13,669.67 |
| 42 | P62827 | GTP-binding nuclear protein Ran | Ran | small GTPase | 10 | 46.8 | 58.25 | 0.00095812 | 0.0068665 | 16,329.33 | 16,934.67 | 20,654.33 |
| 43 | P43274 | Histone H1.4 | H1-4 | chromatin/chromatin-binding, or -regulatory protein | 15 | 48.9 | 53.49 | 0.0010185 | 0.0069674 | 32,338.33 | 28,665.67 | 24,969.33 |
| 44 | Q9QZ83 | Actin, cytoplasmic 2 | Actg1 | actin | 2 | 58.5 | 68.06 | 0.0010056 | 0.0069674 | 39,749.00 | 46,141.33 | 64,713.33 |
| 45 | Q9CXW4 | Large ribosomal subunit protein uL5 | Rpl11 | ribosomal protein | 8 | 40.4 | 45.75 | 0.0010545 | 0.0070534 | 21,779.67 | 21,250.67 | 18,601.67 |
| 46 | Q9JJI8 | Large ribosomal subunit protein eL38 | Rpl38 | ribosomal protein | 4 | 50.0 | 15.51 | 0.0011868 | 0.0077656 | 7474.80 | 7977.53 | 10,594.57 |
| 47 | P14824 | Annexin A6 | Anxa6 | calcium-binding protein | 8 | 12.8 | 16.54 | 0.0014025 | 0.0089822 | 3524.47 | 3774.50 | 4491.93 |
| 48 | E9PZF0 | Nucleoside diphosphate kinase | Nme1nme2 | kinase | 16 | 82.8 | 86.69 | 0.0014861 | 0.0093194 | 51,947.67 | 50,911.00 | 45,294.33 |
| 49 | Q9QUR6 | Prolyl endopeptidase | Prep | serine protease | 18 | 36.2 | 160.87 | 0.0016692 | 0.010253 | 9704.73 | 10,166.67 | 8954.80 |
| 50 | Q99K85 | Phosphoserine aminotransferase | Psat1 | transaminase | 19 | 60.3 | 134.08 | 0.0017696 | 0.010653 | 14,659.00 | 14,747.67 | 13,433.67 |
| 51 | Q3UBP6 | Actin, cytoplasmic 1 | Actb | actin | 1 | 64.5 | 21.59 | 0.0022785 | 0.013448 | 62,708.67 | 74,479.67 | 99,487.33 |
| 52 | P51410 | Large ribosomal subunit protein uL6 | Rpl9 | ribosomal protein | 8 | 60.4 | 109.24 | 0.0025731 | 0.014894 | 22,031.33 | 23,406.00 | 19,980.00 |
| 53 | P63276 | Small ribosomal subunit protein eS17 | Rps17 | ribosomal protein | 7 | 59.3 | 65.67 | 0.0027564 | 0.015654 | 10,205.00 | 10,982.67 | 11,837.00 |
| 54 | P63017 | Heat shock cognate 71 kDa protein | Hspa8 | Hsp70 family chaperone | 42 | 61.6 | 323.31 | 0.0028242 | 0.015742 | 59,902.00 | 58,445.00 | 54,160.67 |
| 55 | Q99KI0 | Aconitate hydratase, mitochondrial | Aco2 | hydratase | 13 | 25.9 | 76.64 | 0.0029479 | 0.016133 | 8107.70 | 8037.27 | 7362.60 |
| 56 | P56480 | ATP synthase subunit beta, mitochondrial | Atp5f1b | ATP synthase | 25 | 68.6 | 294.28 | 0.0030049 | 0.016151 | 29,110.67 | 30,717.33 | 28,225.33 |
| 57 | Q6ZWY8 | Thymosin beta-10 | Tmsb10 | actin or actin-binding cytoskeletal protein | 3 | 63.6 | 17.73 | 0.0031714 | 0.016747 | 37,373.00 | 40,604.00 | 25,140.33 |
| 58 | P67984 | Large ribosomal subunit protein eL22 | Rpl22 | ribosomal protein | 4 | 50.8 | 83.48 | 0.0033276 | 0.017269 | 19,091.67 | 18,947.00 | 15,029.67 |
| 59 | P43277 | Histone H1.3 | H1-3 | protease | 4 | 48.4 | 16.98 | 0.0036001 | 0.01806 | 16,913.33 | 16,400.00 | 13,279.00 |
| 60 | Q9Z2U0 | Proteasome subunit alpha type-7 | Psma7 | 9 | 46.4 | 39.31 | 0.0035567 | 0.01806 | 8670.03 | 8875.67 | 7606.10 | |
| 61 | P62702 | Small ribosomal subunit protein eS4 | Rps4x | chromatin/chromatin-binding, or -regulatory protein | 16 | 56.7 | 96.30 | 0.0039878 | 0.019677 | 16,314.67 | 17,054.33 | 15,460.67 |
| 62 | P12970 | Large ribosomal subunit protein eL8 | Rpl7a | ribosomal protein | 14 | 42.9 | 95.57 | 0.0048885 | 0.023733 | 19,045.33 | 20,383.33 | 17,862.33 |
| 63 | P62918 | Large ribosomal subunit protein uL2 | Rpl8 | ribosomal protein | 9 | 42.4 | 51.64 | 0.0056166 | 0.026835 | 11,289.67 | 11,530.67 | 10,106.47 |
| 64 | P29341 | Polyadenylate-binding protein 1 | Pabpc1 | RNA metabolism protein | 4 | 8.2 | 17.21 | 0.0057986 | 0.027271 | 4392.00 | 4259.23 | 5466.60 |
| 65 | P50580 | Proliferation-associated protein 2G4 | Pa2g4 | protease | 18 | 57.1 | 113.40 | 0.00615 | 0.028479 | 9321.97 | 9097.77 | 8203.57 |
| 66 | P20152 | Vimentin | Vim | intermediate filament | 41 | 75.8 | 323.31 | 0.0064388 | 0.029365 | 49,005.33 | 46,856.33 | 44,301.67 |
| 67 | P41105 | Large ribosomal subunit protein eL28 | Rpl28 | ribosomal protein | 7 | 46.0 | 21.99 | 0.0066077 | 0.029685 | 19,276.67 | 18,723.00 | 15,970.67 |
| 68 | P63323 | Small ribosomal subunit protein eS12 | Rps12 | ribosomal protein | 4 | 42.4 | 31.44 | 0.0072331 | 0.032017 | 6741.43 | 6526.37 | 7939.80 |
| 69 | Q9CWJ9 | Bifunctional purine biosynthesis protein ATIC | Atic | - | 25 | 66.9 | 213.45 | 0.007537 | 0.032879 | 14,585.33 | 14,841.67 | 11,386.33 |
| 70 | P62900 | Large ribosomal subunit protein eL31 | Rpl31 | ribosomal protein | 4 | 32.8 | 30.83 | 0.0080753 | 0.033759 | 18,986.33 | 18,426.00 | 14,632.67 |
| 71 | P47963 | Large ribosomal subunit protein eL13 | Rpl13 | ribosomal protein | 9 | 41.7 | 61.51 | 0.008017 | 0.033759 | 26,100.00 | 25,337.00 | 22,200.00 |
| 72 | P0DP28 | Calmodulin-3 | Calm3 | calmodulin-related | 8 | 85.2 | 106.68 | 0.0079118 | 0.033759 | 44,585.00 | 40,329.00 | 29,262.00 |
| 73 | P26350 | Prothymosin alpha | Ptma | - | 5 | 35.1 | 93.56 | 0.00833 | 0.034347 | 53,486.67 | 53,791.67 | 46,079.00 |
| 74 | P26041 | Moesin | Msn | actin or actin-binding cytoskeletal protein | 17 | 35.0 | 55.42 | 0.008603 | 0.034993 | 8425.43 | 8195.13 | 10,952.53 |
| 75 | Q64433 | 10 kDa heat shock protein, mitochondrial | Hspe1 | chaperonin | 8 | 74.5 | 32.85 | 0.0088507 | 0.035521 | 36,883.00 | 36,167.33 | 33,943.67 |
| 76 | P35979 | Large ribosomal subunit protein uL11 | Rpl12 | ribosomal protein | 7 | 59.4 | 77.63 | 0.0090699 | 0.035921 | 14,956.00 | 16,245.00 | 16,556.33 |
| 77 | P10107 | Annexin A1 | Anxa1 | calcium-binding protein | 6 | 26.6 | 29.55 | 0.00935 | 0.03655 | 2005.67 | 0.00 | 4871.20 |
| 78 | P47911 | Large ribosomal subunit protein eL6 | Rpl6 | ribosomal protein | 12 | 41.6 | 81.45 | 0.0098371 | 0.037481 | 17,518.00 | 17,086.00 | 16,377.00 |
| 79 | P47955 | Large ribosomal subunit protein P1 | Rplp1 | ribosomal protein | 3 | 79.8 | 64.64 | 0.0097769 | 0.037481 | 14,762.33 | 15,305.33 | 19,075.33 |
| 80 | P27661 | Histone H2AX | H2ax | chromatin/chromatin-binding, or -regulatory protein | 3 | 38.5 | 54.13 | 0.010327 | 0.038856 | 16,497.00 | 14,605.33 | 11,427.43 |
| 81 | P43276 | Histone H1.5 | H1-5 | chromatin/chromatin-binding, or -regulatory protein | 7 | 38.1 | 18.61 | 0.010464 | 0.038884 | 8272.10 | 7751.87 | 7107.23 |
| 82 | E9Q616 | AHNAK nucleoprotein (desmoyokin) | Ahnak | - | 83 | 41.8 | 315.61 | 0.010628 | 0.039012 | 74,622.00 | 73,850.33 | 60,056.00 |
| 83 | Q9CZD3 | Glycine—tRNA ligase | Gars1 | aminoacyl-tRNA synthetase | 3 | 6.3 | 10.03 | 0.011634 | 0.041687 | 0.00 | 1983.93 | 4342.40 |
| 84 | P62751 | Large ribosomal subunit protein uL23 | Rpl23a | ribosomal protein | 8 | 34.6 | 34.62 | 0.011617 | 0.041687 | 20,730.33 | 19,457.33 | 17,889.67 |
| 85 | Q61699 | Heat shock protein 105 kDa | Hsph1 | Hsp70 family chaperone | 10 | 19.7 | 41.66 | 0.012453 | 0.043086 | 3790.20 | 4263.23 | 4571.70 |
| 86 | Q91V12 | Cytosolic acyl coenzyme A thioester hydrolase | Acot7 | transferase | 4 | 13.1 | 10.93 | 0.012417 | 0.043086 | 3947.23 | 4232.43 | 3802.13 |
| 87 | P08030 | Adenine phosphoribosyltransferase | Aprt | esterase | 7 | 62.8 | 48.03 | 0.012202 | 0.043086 | 1133.50 | 4454.63 | 8172.63 |
| 88 | P63325 | Small ribosomal subunit protein eS10 | Rps10 | Hsp70 family chaperone | 6 | 35.8 | 11.38 | 0.012964 | 0.043359 | 8004.17 | 8093.47 | 9416.30 |
| 89 | Q6IRU2 | Tropomyosin alpha-4 chain | Tpm4 | ribosomal protein | 16 | 64.1 | 92.19 | 0.012825 | 0.043359 | 11,235.30 | 11,205.00 | 7898.63 |
| 90 | Q3U2G2 | Heat shock 70 kDa protein 4 | Hspa4 | actin-binding motor protein | 29 | 45.6 | 223.88 | 0.012766 | 0.043359 | 18,301.33 | 18,635.67 | 15,595.67 |
| 91 | Q8QZT1 | Acetyl-CoA acetyltransferase, mitochondrial | Acat1 | acyltransferase | 10 | 34.4 | 78.09 | 0.014524 | 0.048042 | 10,216.43 | 10,280.13 | 8457.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kittirotruji, K.; Ngaokrajang, U.; Buranasudja, V.; Sujarittham, I.; Nwe, S.Y.; Suwanchaikasem, P.; Rattanapisit, K.; Bulaon, C.J.I.; Phoolcharoen, W. Proteomic Analysis of Plant-Derived hIGF-1-Fc Reveals Proteome Abundance Changes Associated with Wound Healing and Cell Proliferation. Proteomes 2025, 13, 59. https://doi.org/10.3390/proteomes13040059
Kittirotruji K, Ngaokrajang U, Buranasudja V, Sujarittham I, Nwe SY, Suwanchaikasem P, Rattanapisit K, Bulaon CJI, Phoolcharoen W. Proteomic Analysis of Plant-Derived hIGF-1-Fc Reveals Proteome Abundance Changes Associated with Wound Healing and Cell Proliferation. Proteomes. 2025; 13(4):59. https://doi.org/10.3390/proteomes13040059
Chicago/Turabian StyleKittirotruji, Kittinop, Utapin Ngaokrajang, Visarut Buranasudja, Ittichai Sujarittham, San Yoon Nwe, Pipob Suwanchaikasem, Kaewta Rattanapisit, Christine Joy I. Bulaon, and Waranyoo Phoolcharoen. 2025. "Proteomic Analysis of Plant-Derived hIGF-1-Fc Reveals Proteome Abundance Changes Associated with Wound Healing and Cell Proliferation" Proteomes 13, no. 4: 59. https://doi.org/10.3390/proteomes13040059
APA StyleKittirotruji, K., Ngaokrajang, U., Buranasudja, V., Sujarittham, I., Nwe, S. Y., Suwanchaikasem, P., Rattanapisit, K., Bulaon, C. J. I., & Phoolcharoen, W. (2025). Proteomic Analysis of Plant-Derived hIGF-1-Fc Reveals Proteome Abundance Changes Associated with Wound Healing and Cell Proliferation. Proteomes, 13(4), 59. https://doi.org/10.3390/proteomes13040059

