Comparative and Quantitative Global Proteomics Approaches: An Overview
Abstract
:1. Introduction
2. In-Gel Quantification of Proteins
2.1. Gel Electrophoresis Techniques for Proteomics
2.2. Post-Electrophoresis Staining of Proteins for their In-Gel Quantification
2.3. Pre-Electrophoresis Staining of Proteins for their In-Gel Quantification
Advantages | Drawbacks | Robustness for large scale analysis | |||
---|---|---|---|---|---|
Pre-electrophoresis staining (Proteins labelled before electrophoresis) | Chromophore-based staining | none | |||
Fluorophore-based staining | DIGE (cyanine) | Great linearity, sensitivity and reproducibility; MS-compatible | Expensive | Yes | |
PTM-specific staining | none | ||||
Post-electrophoresis staining (Proteins revealed after electrophoresis) | Chromophore-based staining | Silver staining, Zinc, Copper (metal-based) | Great sensitivity | Low reproducibility, linearity, and accuracy; Low MS compatibility, influenced by external factors | No |
CBB, ‘blue-silver’ (organic dyes) | Reproducibility, good linearity, good accuracy, MS-compatible | Moderate sensitivity | Yes | ||
Fluorophore-based staining | Sypro®, RuBPs, ASCQ_Ru, IrBPS (metal chelates) | Very good reproducibility, good linearity, great sensitivity, non-covalent labelling | Expensive | Yes | |
Deep PurpleTM, FlamingoTM, KryptonTM (Organic dyes) | |||||
PTM-specific staining | ProQdiamond, ProQemerald | Very good linearity, good sensitivity | Expensive | Yes |
2.4. Advantages and Limits of the In-Gel Quantification of Proteins
3. Off-Gel Quantification of Proteins (Peptide-Based Quantification)
Spot number | Protein Name | Swiss-Prot Accession | Theoretical | Experimental | PMF Mascot Score c | Sequence Coverage (%) | Matched/ Unmatched peptides | Identification by MS or MS/MS | Number of fragmented peptides | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MW (kDa) a | pI b | MW (kDa) a | pI b | |||||||||
One spot for one protein | 45 | Serine-threonine kinase receptor-associated protein | STRAP_BOVIN | 38.4 | 4.99 | 40.5 | 4.90 | 242 | 67 | 21/25 | MS | |
47 | Inorganic pyrophosphatase | IPYR_BOVIN | 32.8 | 5.27 | 39.7 | 5.09 | 168 | 42 | 12/14 | MS | ||
58 | Phosphatidylinositol transfer protein alpha isoform | PIPNA_BOVIN | 31.8 | 6.12 | 34.8 | 5.54 | 73 | 28 | 8/15 | MS | ||
72 | 6-phosphogluconolactonase | 6PGL_BOVIN | 27.6 | 5.57 | 29.9 | 5.44 | 129 | 40 | 10/19 | MS & MS/MS | 1 | |
78 | Apolipoprotein A-I precursor (Apo-AI) | APOA1_BOVIN | 30.2 | 5.71 | 26.2 | 5.52 | 366 | 68 | 25/16 | MS | ||
79 | Sorcin | SORCN_HUMAN | 21.7 | 5.32 | 24.1 | 4.98 | 153 | 48 | 15/28 | MS | ||
One spot for several proteins | 36 | Actin, cytoplasmic 1 (Beta-actin) | ACTB_BOVIN | 41.7 | 5.29 | 44.2 | 5.52 | 94 | 44 | 13/50 | MS & MS/MS | 1 |
Succinyl-CoA ligase [GDP-forming] beta-chain, mitochondrial [Precursor] | SUCB2_BOVIN | 46.7 | 7.51 | 44.2 | 5.52 | 112 | 28 | 14/49 | MS/MS | 1 | ||
37 | Actin, cytoplasmic 1 (Beta-actin) | ACTB_BOVIN | 41.7 | 5.29 | 44.2 | 5.66 | 80 | 44 | 14/91 | MS | ||
Leukocyte elastase inhibitor | ILEU_BOVIN | 42.2 | 5.70 | 44.2 | 5.66 | 134 | 49 | 22/83 | MS | |||
Succinyl-CoA ligase [ADP-forming] beta-chain, mitochondrial [Precursor] | SUCB1_BOVIN | 50.0 | 6.73 | 44.2 | 5.66 | 100 | 44 | 20/85 | MS | |||
Several spots for one protein | 67 | Chloride intracellular channel protein 4 | CLIC4_BOVIN | 28.7 | 5.6 | 30.9 | 5.42 | 159 | 68 | 19/47 | MS | |
70 | Chloride intracellular channel protein 4 | CLIC4_BOVIN | 28.7 | 5.6 | 30.2 | 5.69 | 288 | 81 | 22/14 | MS | ||
13 | Vimentin | VIME_BOVIN | 53.7 | 5.06 | 57.0 | 4.91 | 233 | 56 | 23/16 | MS & MS/MS | 1 | |
16 | Vimentin | VIME_BOVIN | 53.7 | 5.06 | 52.3 | 4.82 | 373 | 78 | 45/48 | MS & MS/MS | 3 | |
39 | Vimentin | VIME_BOVIN | 53.7 | 5.06 | 42.5 | 4.55 | 296 | 69 | 37/39 | MS & MS/MS | 1 | |
40 | Vimentin | VIME_BOVIN | 53.7 | 5.06 | 41.7 | 4.54 | 228 | 57 | 29/37 | MS & MS/MS | 1 | |
41 | Vimentin | VIME_BOVIN | 53.7 | 5.06 | 43.1 | 4.53 | 118 | 33 | 10/11 | MS | ||
64 | Vimentin (Fragment) | VIME_BOVIN | 17.2 | 9.92 | 32.2 | 5.16 | 89 | 27 | 11/19 | MS | ||
65 | Vimentin | VIME_BOVIN | 53.7 | 5.06 | 31.6 | 5.38 | 265 | 42 | 34/43 | MS & MS/MS | 4 | |
66 | Vimentin | VIME_BOVIN | 53.7 | 5.06 | 35.3 | 5.16 | 205 | 42 | 21/16 | MS | ||
76 | Vimentin | VIME_BOVIN | 53.7 | 5.06 | 26.7 | 4.50 | 110 | 32 | 12/20 | MS & MS/MS | 1 |
3.1. Reducing the Complexity of the Sample by Pre-Fractionation of Proteins
3.2. Separation of Peptides
3.3. Peptide-Based Quantification of Proteins
3.3.1. Relative Quantification
3.3.1.1. Label Free Quantification
3.3.1.2. Quantification Using Stable Isotope Labelling
3.3.1.2.1. Metabolic Labelling
3.3.1.2.2. Chemical and Enzymatic Labelling
Reactive groups | Methods | Targets | Amino Acids | nb of samples | References |
---|---|---|---|---|---|
Thiol | ICAT | proteins | cysteine | 2 | [83] |
ALICE | proteins | cysteine | 2 | [97] | |
Photocleavable-ICAT | proteins | cysteine | 2 | [98] | |
N-ethymaleimide/iodoacetamide | proteins | cysteine | 2 | [99] | |
acrylamide or vinylpyridine | proteins | cysteine | 2 | [100,101] | |
Amino | ICPL | proteins | N-term/Lys | 2,3,4 | [102,103] |
Post-digest ICPL | peptides | N-term/Lys | 2 | [104] | |
iTRAQ | peptides | N-term/Lys | 2,4,8 | [105] | |
/proteins | [106] | ||||
TMT | peptides | N-term/Lys | 2,6 | [107] | |
Dimethyl | peptides | N-term/Lys | 2,4 | [108,109] | |
Carboxyl | EMOS | proteins | C-term | 2 | [110,111,112] |
peptides | C-term | 2 | [113] | ||
AMOS | peptides | C-term | 2 | [114] | |
Methanol | peptides | C-term/ | 2 | [115] | |
Asp/Glu |
3.3.1.2.2.1. Labelling of Thiol Groups
3.3.1.2.2.2. Labelling of Amino Groups
3.3.1.2.2.3. Labelling of Carboxyl Groups
3.3.1.2.2.4. Labelling of PTMs
3.3.2. Absolute Quantification
3.4. Advantages and Limits of the Peptide-Based Quantification of Proteins
Advantages | Drawbacks | Robustness for large scale analysis | Exemples of use | |||
---|---|---|---|---|---|---|
Pre-analysis labelling (A single analysis (sample combination after labelling): mass difference between peptide pairs on the same mass spectra) | In vitro/vivo labelling (during protein synthesis) | 15N, 13C, | Accuracy | Limited to cells in culture,time-consuming | Yes (regardless of the cost and time needed) | Cells in culture |
SILAC, CIDTs, superSILAC, SILAM | ||||||
Pre-digestion labelling | ICPL, iTRAQ, TMT, ICAT, ALICE, dimethyl | Sample complexity | Low sequence recovery | All types of biological sample (regardless of the protein quantity needed) | ||
In-digestion labelling | H218O | Simplified signal analysis, low cost | Late labelling | |||
Post-digestion labelling | ICAT, iTRAQ, ICPL, ALICE, TMT | High sequence recovery | ||||
dimethyl, GIST | ||||||
Direct analysis (Two (or more) analyses carried out independently before their comparison) | Label-free Quantification (without internal standard) | Comparison of mass spectra | Sample number, low cost | Separations normalisation, signal alignment | Yes | All types of biological sample |
Spectral counting | ||||||
Absolute Quantification (with internal standard) | AQUA | Easy to use | Cost of internal standard, analysis of one or few proteins | No(too expensive) | Validation of biomarkers | |
QconCAT | Enzymatic digestion take into account | |||||
PSAQ | ||||||
SRM / MRM | High sensitivity and reproducibility |
4. MS Technology for Proteomics
5. Concluding Remarks
Acknowledgments
Conflicts of Interest
References
- Wilkins, M.R.; Gasteiger, E.; Sanchez, J.C.; Appel, R.D.; Hochstrasser, D.F. Protein identification with sequence tags. Curr. Biol. 1996, 6, 1543–1544. [Google Scholar] [CrossRef]
- Anderson, N.L.; Anderson, N.G. Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 1998, 19, 1853–1861. [Google Scholar] [CrossRef]
- Tyers, M.; Mann, M. From genomics to proteomics. Nature 2003, 422, 193–197. [Google Scholar] [CrossRef]
- Apweiler, R.; Aslanidis, C.; Deufel, T.; Gerstner, A.; Hansen, J.; Hochstrasser, D.; Kellner, R.; Kubicek, M.; Lottspeich, F.; Maser, E.; et al. Approaching clinical proteomics: Current state and future fields of application in fluid proteomics. Clin. Chem. Lab. Med. 2009, 47, 724–744. [Google Scholar]
- Rabilloud, T. Two-Dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics 2002, 2, 3–10. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, P.; Lei, S.; Deng, F.; Xiao, G.G.; Liu, Y.; Chen, X.; Li, L.; Wu, S.; Chen, Y.; et al. How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim. Bioph. Sin. 2008, 40, 426–436. [Google Scholar] [CrossRef]
- Gygi, S.P.; Rochon, Y.; Franza, B.R.; Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 1999, 19, 1720–1730. [Google Scholar]
- Bodzon-Kulakowska, A.; Bierczynska-Krzysik, A.; Dylag, T.; Drabik, A.; Suder, P.; Noga, M.; Jarzebinska, J.; Silberring, J. Methods for samples preparation in proteomic research. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 849, 1–31. [Google Scholar] [CrossRef]
- Rabilloud, T.; Lelong, C. Two-Dimensional gel electrophoresis in proteomics: A tutorial. J. Proteomics 2011, 74, 1829–1841. [Google Scholar] [CrossRef] [Green Version]
- Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422, 198–207. [Google Scholar] [CrossRef]
- Siuti, N.; Kelleher, N.L. Decoding protein modifications using top-down mass spectrometry. Nat. Methods 2007, 4, 817–821. [Google Scholar] [CrossRef]
- Marcus, K. (Ed.) Quantitative Methods in Proteomics; Humana Press: Totowa, NJ, USA, 2012; Volume 893.
- Linder, S.E.; Picton, H., IX. Some metallic hydrosulphides. J. Chem. Soc. Trans. 1892, 61, 114–136. [Google Scholar] [CrossRef]
- Kyle, R.A.; Shampo, M.A. Arne Tiselius—Father of electrophoresis. Mayo Clin. Proc. 2005, 80, 302. [Google Scholar]
- Smithies, O. How it all began: A personal history of gel electrophoresis. Methods Mol. Biol. 2012, 869, 1–21. [Google Scholar] [CrossRef]
- Shapiro, A.L.; Viñuela, E.; Maizel, J.V., Jr. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem. Biophys. Res. Commun. 1967, 28, 815–820. [Google Scholar] [CrossRef]
- Weber, K.; Osborn, M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 1969, 244, 4406–4412. [Google Scholar]
- Nielsen, T.B.; Reynolds, J.A. Measurements of molecular weights by gel electrophoresis. Methods Enzymol. 1978, 48, 3–10. [Google Scholar] [CrossRef]
- O’Farrell, P.H. High resolution two-dimentional electrophoresis of proteins. J. Biol. Chem. 1975, 250, 4007–4021. [Google Scholar]
- Görg, A.; Weiss, W.; Dunn, M.J. Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004, 4, 3665–3685. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Zhou, S.; Bailey, M.J.; Dunn, M.J.; Preedy, V.R.; Emery, P.W. A quantitative investigation into the losses of proteins at different stages of a two-dimensional gel electrophoresis procedure. Proteomics 2005, 5, 2739–2747. [Google Scholar] [CrossRef]
- Riederer, B.M. Non-Covalent and covalent protein labeling in two-dimensional gel electrophoresis. J. Proteomics 2008, 71, 231–244. [Google Scholar] [CrossRef]
- Miller, I.; Crawford, J.; Gianazza, E. Protein stains for proteomic applications: Which, when, why? Proteomics 2006, 6, 5385–5408. [Google Scholar] [CrossRef]
- Gauci, V.J.; Wright, E.P.; Coorssen, J.R. Quantitative proteomics: Assessing the spectrum of in-gel protein detection methods. J. Chem. Biol. 2011, 4, 3–29. [Google Scholar] [CrossRef]
- De St. Groth, S.F.; Webster, R.; Datyner, A. Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochim. Biophys. Acta 1963, 71, 377–391. [Google Scholar] [CrossRef]
- Switzer, R.C.; Merril, C.R.; Shifrin, S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal. Biochem. 1979, 98, 231–237. [Google Scholar] [CrossRef]
- Merril, C.R.; Switzer, R.C.; van Keuren, M.L. Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proc. Natl. Acad. Sci. USA 1979, 76, 4335–4339. [Google Scholar] [CrossRef]
- Rabilloud, T. Mechanisms of protein silver staining in polyacrylamide gels: A 10-year synthesis. Electrophoresis 1990, 11, 785–794. [Google Scholar] [CrossRef]
- Bell, P.J.L.; Karuso, P. Epicocconone, a novel fluorescent compound from the fungus epicoccumnigrum. J. Am. Chem. Sci. 2003, 125, 9304–9305. [Google Scholar] [CrossRef]
- Steinberg, T.H.; Jones, L.J.; Haugland, R.P.; Singer, V.L. SYPRO orange and SYPRO red protein gel stains: One-Step fluorescent staining of denaturing gels for detection of nanogram levels of protein. Anal. Biochem. 1996, 239, 223–237. [Google Scholar] [CrossRef]
- Berggren, K.; Chernokalskaya, E.; Steinberg, T.H.; Kemper, C.; Lopez, M.F.; Diwu, Z.; Haugland, R.P.; Patton, W.F. Background-Free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 2000, 21, 2509–2521. [Google Scholar] [CrossRef]
- Rabilloud, T.; Strub, J.M.; Luche, S.; van Dorsselaer, A.; Lunardi, J. A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics 2001, 1, 699–704. [Google Scholar] [CrossRef]
- Tokarski, C.; Cren-Olivé, C.; Fillet, M.; Rolando, C. High-Sensitivity staining of proteins for one- and two-dimensional gel electrophoresis using post migration covalent staining with a ruthenium fluorophore. Electrophoresis 2006, 27, 1407–1416. [Google Scholar] [CrossRef]
- Jia, J.; Fei, H.; Zhou, M. Luminescent iridium(III) complexes as novel protein staining agents. Electrophoresis 2012, 33, 1397–1401. [Google Scholar] [CrossRef]
- Steinberg, T.H.; Agnew, B.J.; Gee, K.R.; Leung, W.-Y.; Goodman, T.; Schulenberg, B.; Hendrickson, J.; Beechem, J.M.; Haugland, R.P.; Patton, W.F. Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology. Proteomics 2003, 3, 1128–1144. [Google Scholar] [CrossRef]
- Steinberg, T.H.; Top, K.P.O.; Berggren, K.N.; Kemper, C.; Jones, L.; Diwu, Z.; Haugland, R.P.; Patton, W.F. Rapid and simple single nanogram detection of glycoproteins in polyacrylamide gels and on electroblots. Proteomics 2001, 1, 841–855. [Google Scholar] [CrossRef]
- Gauci, V.J.; Padula, M.P.; Coorssen, J.R. Coomassie blue staining for high sensitivity gel-based proteomics. J. Proteomics 2013, 90, 96–106. [Google Scholar] [CrossRef]
- Neuhoff, V.; Stamm, R.; Eibl, H. Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: A systematic analysis. Electrophoresis 1985, 6, 427–448. [Google Scholar] [CrossRef]
- Kazmin, D.; Edwards, R.A.; Turner, R.J.; Larson, E.; Starkey, J. Visualization of proteins in acrylamide gels using ultraviolet illumination. Anal. Biochem. 2002, 301, 91–96. [Google Scholar] [CrossRef]
- Unlü, M.; Morgan, M.E.; Minden, J.S. Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis 1997, 18, 2071–2077. [Google Scholar] [CrossRef]
- Lilley, K.S.; Friedman, D.B. All about DIGE: Quantification technology for differential-display 2D-gel proteomics. Expert Rev. Proteomics 2004, 1, 401–409. [Google Scholar]
- Minden, J.S.; Dowd, S.R.; Meyer, H.E.; Stühler, K. Difference gel electrophoresis. Electrophoresis 2009, 30, S156–S161. [Google Scholar]
- Braun, R.J.; Kinkl, N.; Beer, M.; Ueffing, M. Two-Dimensional electrophoresis of membrane proteins. Anal. Bioanal. Chem. 2007, 389, 1033–1045. [Google Scholar]
- Pottiez, G.; Duban-Deweer, S.; Deracinois, B.; Gosselet, F.; Camoin, L.; Hachani, J.; Couraud, P.-O.; Cecchelli, R.; Dehouck, M.-P.; Fenart, L.; et al. A differential proteomic approach identifies structural and functional components that contribute to the differentiation of brain capillary endothelial cells. J. Proteomics 2011, 75, 628–641. [Google Scholar] [CrossRef]
- Maurer, M.H. Web-Based tools for the interpretation of chain-like protein spot patterns on two-dimensional gels. Curr. Proteomics 2012, 9, 18–25. [Google Scholar] [CrossRef]
- Petrak, J.; Ivanek, R.; Toman, O.; Cmejla, R.; Cmejlova, J.; Vyoral, D.; Zivny, J.; Vulpe, C.D. Déjà vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics 2008, 8, 1744–1749. [Google Scholar] [CrossRef]
- Rogowska-Wrzesinska, A.; le Bihan, M.-C.; Thaysen-Andersen, M.; Roepstorff, P. 2D gels still have a niche in proteomics. J. Proteomics 2013, 88, 4–13. [Google Scholar] [CrossRef]
- Pottiez, G.; Deracinois, B.; Duban-Deweer, S.; Cecchelli, R.; Fenart, L.; Karamanos, Y.; Flahaut, C. A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties. Proteome Sci. 2010, 8, e57. [Google Scholar] [CrossRef]
- Deracinois, B.; Duban-Deweer, S.; Pottiez, G.; Cecchelli, R.; Karamanos, Y.; Flahaut, C. TNAP and EHD1 are over-expressed in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties. PLoS One 2012, 7, e48428. [Google Scholar]
- Ros, A.; Faupel, M.; Mees, H.; van Oostrum, J.; Ferrigno, R.; Reymond, F.; Michel, P.; Rossier, J.S.; Girault, H.H. Protein purification by Off-Gel electrophoresis. Proteomics 2002, 2, 151–156. [Google Scholar] [CrossRef]
- Wang, W.; Wu, X.; Xiong, E.; Tai, F. Improving gel-based proteome analysis of soluble protein extracts by heat prefractionation. Proteomics 2012, 12, 938–943. [Google Scholar] [CrossRef]
- Ramos, Y.; García, Y.; Llopiz, A.; Castellanos-Serra, L. Selectivity of bacterial proteome fractionation based on differential solubility: A mass spectrometry evaluation. Anal. Biochem. 2008, 377, 134–140. [Google Scholar] [CrossRef]
- Bai, H.; Yang, F.; Yang, X. Novel prefractionation method can be used in proteomic analysis. J. Proteome Res. 2006, 5, 840–845. [Google Scholar] [CrossRef]
- Bardel, J.; Louwagie, M.; Jaquinod, M.; Jourdain, A.; Luche, S.; Rabilloud, T.; Macherel, D.; Garin, J.; Bourguignon, J. A survey of the plant mitochondrial proteome in relation to development. Proteomics 2002, 2, 880–898. [Google Scholar] [CrossRef]
- Fountoulakis, M.; Langen, H.; Gray, C.; Takács, B. Enrichment and purification of proteins of Haemophilus influenzae by chromatofocusing. J. Chromatogr. A 1998, 806, 279–291. [Google Scholar] [CrossRef]
- Pernemalm, M.; Lewensohn, R.; Lehtiö, J. Affinity prefractionation for MS-based plasma proteomics. Proteomics 2009, 9, 1420–1427. [Google Scholar] [CrossRef]
- Badock, V.; Steinhusen, U.; Bommert, K.; Otto, A. Prefractionation of protein samples for proteome analysis using reversed-phase high-performance liquid chromatography. Electrophoresis 2001, 22, 2856–2864. [Google Scholar] [CrossRef]
- Lescuyer, P.; Hochstrasser, D.F.; Sanchez, J.-C. Comprehensive proteome analysis by chromatographic protein prefractionation. Electrophoresis 2004, 25, 1125–1135. [Google Scholar] [CrossRef]
- Hörth, P.; Miller, C.A.; Preckel, T.; Wenz, C. Efficient fractionation and improved protein identification by peptide OFFGEL electrophoresis. Mol. Cell. Proteomics 2006, 5, 1968–1974. [Google Scholar] [CrossRef]
- Staub, A.; Schappler, J.; Rudaz, S.; Veuthey, J.-L. CE-TOF/MS: Fundamental concepts, instrumental considerations and applications. Electrophoresis 2009, 30, 1610–1623. [Google Scholar] [CrossRef]
- Desiderio, C.; Rossetti, D.V.; Iavarone, F.; Messana, I.; Castagnola, M. Capillary electrophoresis-mass spectrometry: Recent trends in clinical proteomics. J. Pharmaceut. Biomed. 2010, 53, 1161–1169. [Google Scholar] [CrossRef]
- Lienqueo, M.E.; Mahn, A.; Salgado, J.C.; Asenjo, J.A. Current insights on protein behaviour in hydrophobic interaction chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 849, 53–68. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, A.; Riley, C.P.; Wang, M.; Regnier, F.E.; Buck, C. Multi-Dimensional liquid chromatography in proteomics—A review. Anal. Chim. Acta 2010, 664, 101–113. [Google Scholar] [CrossRef]
- Di Palma, S.; Hennrich, M.L.; Heck, A.J.R.; Mohammed, S. Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J. Proteomics 2012, 75, 3791–3813. [Google Scholar] [CrossRef]
- Motoyama, A.; Yates, J.R. Multidimensional LC separations in shotgun proteomics. Anal. Chem. 2008, 80, 7187–7193. [Google Scholar] [CrossRef]
- Leitner, A.; Lindner, W. Chemistry meets proteomics: The use of chemical tagging reactions for MS-based proteomics. Proteomics 2006, 6, 5418–5434. [Google Scholar] [CrossRef]
- Julka, S.; Regnier, F. Quantification in proteomics through stable isotope coding: A review. J. Proteome Res. 3, 350–363. [CrossRef]
- Zhu, W.; Smith, J.W.; Huang, C.-M. Mass spectrometry-based label-free quantitative proteomics. J. Biomed. Biotechnol. 2010, 2010, e840518. [Google Scholar]
- Panchaud, A.; Affolter, M.; Moreillon, P.; Kussmann, M. Experimental and computational approaches to quantitative proteomics: Status quo and outlook. J. Proteomics 2008, 71, 19–33. [Google Scholar] [CrossRef]
- Valleix, A.; Carrat, S.; Caussignac, C.; Léonce, E.; Tchapla, A. Secondary isotope effects in liquid chromatography behaviour of 2H and 3H labelled solutes and solvents. J. Chromatogr. A 2006, 1116, 109–126. [Google Scholar] [CrossRef]
- Mann, M.; Kulak, N.A.; Nagaraj, N.; Cox, J. The coming age of complete, accurate, and ubiquitous proteomes. Mol. Cell 2013, 49, 583–590. [Google Scholar] [CrossRef]
- Bantscheff, M.; Schirle, M.; Sweetman, G.; Rick, J.; Kuster, B. Quantitative mass spectrometry in proteomics: A critical review. Anal. Bioanal. Chem. 2007, 389, 1017–1031. [Google Scholar] [CrossRef]
- Wang, M.; You, J.; Bemis, K.G.; Tegeler, T.J.; Brown, D.P.G. Label-Free mass spectrometry-based protein quantification technologies in proteomic analysis. Brief. Funct. Genomic. Proteomic 2008, 7, 329–339. [Google Scholar] [CrossRef]
- Bondarenko, P.V.; Chelius, D.; Shaler, T.A. Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal. Chem. 2002, 74, 4741–4749. [Google Scholar] [CrossRef]
- Liu, H.; Sadygov, R.G.; Yates, J.R. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 2004, 76, 4193–4201. [Google Scholar] [CrossRef]
- Voyksner, R.D.; Lee, H. Investigating the use of an octupole ion guide for ion storage and high-pass mass filtering to improve the quantitative performance of electrospray ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 1427–1437. [Google Scholar] [CrossRef]
- Tsou, C.-C.; Tsai, C.-F.; Tsui, Y.-H.; Sudhir, P.-R.; Wang, Y.-T.; Chen, Y.-J.; Chen, J.-Y.; Sung, T.-Y.; Hsu, W.-L. IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol. Cell. Proteomics 2010, 9, 131–144. [Google Scholar] [CrossRef]
- Rappsilber, J.; Ryder, U.; Lamond, A.I.; Mann, M. Large-Scale proteomic analysis of the human spliceosome. Genome Res. 2002, 12, 1231–1245. [Google Scholar] [CrossRef]
- Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics 2005, 4, 1265–1272. [Google Scholar] [CrossRef]
- Lu, P.; Vogel, C.; Wang, R.; Yao, X.; Marcotte, E.M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 2007, 25, 117–124. [Google Scholar] [CrossRef]
- Braisted, J.C.; Kuntumalla, S.; Vogel, C.; Marcotte, E.M.; Rodrigues, A.R.; Wang, R.; Huang, S.-T.; Ferlanti, E.S.; Saeed, A.I.; Fleischmann, R.D.; et al. The APEX Quantitative Proteomics Tool: Generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinform. 2008, 9, e529. [Google Scholar] [CrossRef]
- Gygi, S.P.; Rist, B.; Gerber, S.A.; Turecek, F.; Gelb, M.H.; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17, 994–999. [Google Scholar]
- Oda, Y.; Huang, K.; Cross, F.R.; Cowburn, D.; Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 1999, 96, 6591–6596. [Google Scholar] [CrossRef]
- Paša-Tolić, L.; Jensen, P.K.; Anderson, G.A.; Lipton, M.S.; Peden, K.K.; Martinović, S.; Tolić, N.; Bruce, J.E.; Smith, R.D. High throughput proteome-wide precision measurements of protein expression using mass spectrometry. J. Am. Chem. Sci. 1999, 121, 7949–7950. [Google Scholar] [CrossRef]
- Ong, S.-E. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, 376–386. [Google Scholar] [CrossRef]
- Bendall, S.C.; Hughes, C.; Stewart, M.H.; Doble, B.; Bhatia, M.; Lajoie, G.A. Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol. Cell. Proteomics 2008, 7, 1587–1597. [Google Scholar] [CrossRef]
- Ong, S.-E.; Kratchmarova, I.; Mann, M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2003, 2, 173–181. [Google Scholar] [CrossRef]
- Molina, H.; Yang, Y.; Ruch, T.; Kim, J.; Mortensen, P.; Otto, T.; Nalli, A.; Tang, Q.; Lane, M.D.; Chaerkady, R.; et al. Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J. Proteome Res. 2009, 8, 48–58. [Google Scholar] [CrossRef]
- Ishihama, Y.; Sato, T.; Tabata, T.; Miyamoto, N.; Sagane, K.; Nagasu, T.; Oda, Y. Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat. Biotechnol. 2005, 23, 617–621. [Google Scholar] [CrossRef]
- Geiger, T.; Cox, J.; Ostasiewicz, P.; Wisniewski, J.R.; Mann, M. Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat. Methods 2010, 7, 383–385. [Google Scholar] [CrossRef]
- Deeb, S.J.; D’Souza, R.C.J.; Cox, J.; Schmidt-Supprian, M.; Mann, M. Super-SILAC allows Classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol. Cell. Proteomics 2012, 11, 77–89. [Google Scholar] [CrossRef]
- McClatchy, D.B.; Dong, M.; Wu, C.C.; Venable, J.D.; Yates, J.R. 15N metabolic labeling of mammalian tissue with slow protein turnover. J. Proteome Res. 2007, 6, 2005–2010. [Google Scholar] [CrossRef]
- Wu, C.C.; MacCoss, M.J.; Howell, K.E.; Matthews, D.E.; Yates, J.R. Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem. 2004, 76, 4951–4959. [Google Scholar] [CrossRef]
- Ong, S.E.; Mittler, G.; Mann, M. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat. Methods 2004, 1, 119–126. [Google Scholar] [CrossRef]
- Sarioglu, H.; Brandner, S.; Jacobsen, C.; Meindl, T.; Schmidt, A.; Kellermann, J.; Lottspeich, F.; Andrae, U. Quantitative analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced proteome alterations in 5L rat hepatoma cells using isotope-coded protein labels. Proteomics 2006, 6, 2407–2421. [Google Scholar] [CrossRef]
- Qiu, Y.; Sousa, E.A.; Hewick, R.M.; Wang, J.H. Acid-Labile isotope-coded extractants: A class of reagents for quantitative mass spectrometric analysis of complex protein mixtures. Anal. Chem. 2002, 74, 4969–4979. [Google Scholar] [CrossRef]
- Bottari, P.; Aebersold, R.; Turecek, F.; Gelb, M.H. Design and synthesis of visible isotope-coded affinity tags for the absolute quantification of specific proteins in complex mixtures. Bioconjugate Chem. 2004, 15, 380–388. [Google Scholar] [CrossRef]
- Kurono, S.; Kurono, T.; Komori, N.; Niwayama, S.; Matsumoto, H. Quantitative proteome analysis using D-labeled N-ethylmaleimide and 13C-labeled iodoacetanilide by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Bioorgan. Med. Chem. 2006, 14, 8197–8209. [Google Scholar] [CrossRef]
- Gehanne, S.; Cecconi, D.; Carboni, L.; Righetti, P.G.; Domenici, E.; Hamdan, M. Quantitative analysis of two-dimensional gel-separated proteins using isotopically marked alkylating agents and matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2002, 16, 1692–1698. [Google Scholar] [CrossRef]
- Sechi, S. A method to identify and simultaneously determine the relative quantities of proteins isolated by gel electrophoresis. Rapid Commun. Mass Spectrom. 2002, 16, 1416–1424. [Google Scholar] [CrossRef]
- Schmidt, A.; Kellermann, J.; Lottspeich, F. A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 2005, 5, 4–15. [Google Scholar] [CrossRef]
- Lottspeich, F.; Kellermann, J. ICPL labeling strategies for proteome research. Method. Mol. Biol. 2011, 753, 55–64. [Google Scholar]
- Leroy, B.; Rosier, C.; Erculisse, V.; Leys, N.; Mergeay, M.; Wattiez, R. Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34. Proteomics 2010, 10, 2281–2291. [Google Scholar] [CrossRef]
- Ross, P.L.; Huang, Y.N.; Marchese, J.N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 2004, 3, 1154–1169. [Google Scholar] [CrossRef]
- Wiese, S.; Reidegeld, K.A.; Meyer, H.E.; Warscheid, B. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7, 340–350. [Google Scholar] [CrossRef]
- Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Johnstone, R.; Mohammed, A.K.A.; Hamon, C. Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 2003, 75, 1895–1904. [Google Scholar] [CrossRef]
- Hsu, J.-L.; Huang, S.-Y.; Chow, N.-H.; Chen, S.-H. Stable-Isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 2003, 75, 6843–6852. [Google Scholar] [CrossRef]
- Hsu, J.-L.; Huang, S.-Y.; Shiea, J.-T.; Huang, W.-Y.; Chen, S.-H. Beyond quantitative proteomics: Signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 2005, 4, 101–108. [Google Scholar] [CrossRef]
- Fenselau, C.; Yao, X. 18O2-Labeling in quantitative proteomic strategies: A status report. J. Proteome Res. 2009, 8, 2140–2143. [Google Scholar] [CrossRef]
- Stewart, I.I.; Thomson, T.; Figeys, D. 18O labeling: A tool for proteomics. Rapid Commun. Mass Spectrom. 2001, 15, 2456–2465. [Google Scholar] [CrossRef]
- Mirgorodskaya, O.A.; Kozmin, Y.P.; Titov, M.I.; Körner, R.; Sönksen, C.P.; Roepstorff, P. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun. Mass Spectrom. 2000, 14, 1226–1232. [Google Scholar] [CrossRef]
- Staes, A.; Demol, H.; van Damme, J.; Martens, L.; Vandekerckhove, J.; Gevaert, K. Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J. Proteome Res. 2004, 3, 786–791. [Google Scholar] [CrossRef]
- Niles, R.; Witkowska, H.E.; Allen, S.; Hall, S.C.; Fisher, S.J.; Hardt, M. Acid-Catalyzed oxygen-18 labeling of peptides. Anal. Chem. 2009, 81, 2804–2809. [Google Scholar] [CrossRef]
- Goodlett, D.R.; Keller, A.; Watts, J.D.; Newitt, R.; Yi, E.C.; Purvine, S.; Eng, J.K.; von Haller, P.; Aebersold, R.; Kolker, E. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun. Mass Spectrom. 2001, 15, 1214–1221. [Google Scholar] [CrossRef]
- Yi, E.C.; Li, X.-J.; Cooke, K.; Lee, H.; Raught, B.; Page, A.; Aneliunas, V.; Hieter, P.; Goodlett, D.R.; Aebersold, R. Increased quantitative proteome coverage with (13)C/(12)C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. Proteomics 2005, 5, 380–387. [Google Scholar] [CrossRef]
- Hsu, J.-L.; Huang, S.-Y.; Chen, S.-H. Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics. Electrophoresis 2006, 27, 3652–3660. [Google Scholar] [CrossRef]
- Riggs, L.; Seeley, E.H.; Regnier, F.E. Quantification of phosphoproteins with global internal standard technology. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 817, 89–96. [Google Scholar] [CrossRef]
- Chakraborty, A.; Regnier, F.E. Global internal standard technology for comparative proteomics. J. Chromatogr. A 2002, 949, 173–184. [Google Scholar] [CrossRef]
- Sevinsky, J.R.; Brown, K.J.; Cargile, B.J.; Bundy, J.L.; Stephenson, J.L. Minimizing back exchange in 18O/16O quantitative proteomics experiments by incorporation of immobilized trypsin into the initial digestion step. Anal. Chem. 2007, 79, 2158–2162. [Google Scholar]
- Haaf, E.; Schlosser, A. Peptide and protein quantitation by acid-catalyzed 18O-labeling of carboxyl groups. Anal. Chem. 2012, 84, 304–311. [Google Scholar] [CrossRef]
- Fíla, J.; Honys, D. Enrichment techniques employed in phosphoproteomics. Amino Acids 2012, 43, 1025–1047. [Google Scholar] [CrossRef]
- Pan, S.; Chen, R.; Aebersold, R.; Brentnall, T.A. Mass spectrometry based glycoproteomics—From a proteomics perspective. Mol. Cell. Proteomics 2011, 10, 1–14. [Google Scholar]
- Sparbier, K.; Koch, S.; Kessler, I.; Wenzel, T.; Kostrzewa, M. Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J. Biomol. Technol. 2005, 16, 407–413. [Google Scholar]
- Weckwerth, W.; Willmitzer, L.; Fiehn, O. Comparative quantification and identification of phosphoproteins using stable isotope labeling and liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 1677–1681. [Google Scholar] [CrossRef]
- Goshe, M.B.; Conrads, T.P.; Panisko, E.A.; Angell, N.H.; Veenstra, T.D.; Smith, R.D. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal. Chem. 2001, 73, 2578–2586. [Google Scholar] [CrossRef]
- Gerber, S.A.; Rush, J.; Stemman, O.; Kirschner, M.W.; Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 2003, 100, 6940–6945. [Google Scholar]
- Brun, V.; Dupuis, A.; Adrait, A.; Marcellin, M.; Thomas, D.; Court, M.; Vandenesch, F.; Garin, J. Isotope-Labeled protein standards: Toward absolute quantitative proteomics. Mol. Cell. Proteomics 2007, 6, 2139–2149. [Google Scholar] [CrossRef]
- Beynon, R.J.; Doherty, M.K.; Pratt, J.M.; Gaskell, S.J. Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat. Methods 2005, 2, 587–589. [Google Scholar] [CrossRef]
- Wolf-Yadlin, A.; Hautaniemi, S.; Lauffenburger, D.A.; White, F.M. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. USA 2007, 104, 5860–5865. [Google Scholar] [CrossRef]
- Addona, T.A.; Abbatiello, S.E.; Schilling, B.; Skates, S.J.; Mani, D.R.; Bunk, D.M.; Spiegelman, C.H.; Zimmerman, L.J.; Ham, A.-J.L.; Keshishian, H.; et al. Multi-Site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 2009, 27, 633–641. [Google Scholar] [CrossRef]
- Lange, V.; Picotti, P.; Domon, B.; Aebersold, R. Selected reaction monitoring for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2008, 4, 222. [Google Scholar]
- Sherrod, S.D.; Myers, M.V.; Li, M.; Myers, J.S.; Carpenter, K.L.; Maclean, B.; Maccoss, M.J.; Liebler, D.C.; Ham, A.-J.L. Label-Free quantitation of protein modifications by pseudo selected reaction monitoring with internal reference peptides. J. Proteome Res. 2012, 11, 3467–3479. [Google Scholar] [CrossRef]
- Nesvizhskii, A.I. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteomics 2010, 73, 2092–2123. [Google Scholar] [CrossRef]
- Cappadona, S.; Baker, P.R.; Cutillas, P.R.; Heck, A.J.R.; van Breukelen, B. Current challenges in software solutions for mass spectrometry-based quantitative proteomics. Amino Acids 2012, 43, 1087–1108. [Google Scholar] [CrossRef] [Green Version]
- Angel, T.E.; Aryal, U.K.; Hengel, S.M.; Baker, E.S.; Kelly, R.T.; Robinson, E.W.; Smith, R.D. Mass spectrometry-based proteomics: Existing capabilities and future directions. Chem. Soc. Rev. 2012, 41, 3912–3928. [Google Scholar] [CrossRef]
- Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64–71. [Google Scholar]
- Yamashita, M.; Fenn, J.B. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 1984, 88, 4451–4459. [Google Scholar] [CrossRef]
- Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299–2301. [Google Scholar] [CrossRef]
- Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-Assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion. Proc. 1987, 78, 53–68. [Google Scholar] [CrossRef]
- Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153. [Google Scholar] [CrossRef]
- Walther, T.C.; Mann, M. Mass spectrometry-based proteomics in cell biology. J. Cell. Biol. 2010, 190, 491–500. [Google Scholar] [CrossRef]
- Henzel, W.J.; Billeci, T.M.; Stults, J.T.; Wong, S.C.; Grimley, C.; Watanabe, C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 1993, 90, 5011–5015. [Google Scholar] [CrossRef]
- James, P.; Quadroni, M.; Carafoli, E.; Gonnet, G. Protein identification by mass profile fingerprinting. Biochem. Biophys. Res. Commun. 1993, 195, 58–64. [Google Scholar] [CrossRef]
- Mann, M.; Højrup, P.; Roepstorff, P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol. Mass Spectrom. 1993, 22, 338–345. [Google Scholar] [CrossRef]
- Pappin, D.J.; Hojrup, P.; Bleasby, A.J. Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 1993, 3, 327–332. [Google Scholar] [CrossRef]
- Yates, J.R.; Speicher, S.; Griffin, P.R.; Hunkapiller, T. Peptide mass maps: A highly informative approach to protein identification. Anal. Biochem. 1993, 214, 397–408. [Google Scholar] [CrossRef]
- Blueggel, M.; Chamrad, D.; Meyer, H.E. Bioinformatics in proteomics. Curr. Pharmaceut. Biotechnol. 2004, 5, 79–88. [Google Scholar] [CrossRef]
- Eng, J.K.; McCormack, A.L.; Yates, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989. [Google Scholar] [CrossRef]
- Mann, M.; Wilm, M. Error-Tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 1994, 66, 4390–4399. [Google Scholar] [CrossRef]
- Apweiler, R.; Bairoch, A.; Wu, C.H. Protein sequence databases. Curr. Opin. Chem. Biol. 2004, 8, 76–80. [Google Scholar] [CrossRef]
- Nesvizhskii, A.I.; Vitek, O.; Aebersold, R. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods 2007, 4, 787–797. [Google Scholar] [CrossRef]
- Pottiez, G.; Sevin, E.; Cecchelli, R.; Karamanos, Y.; Flahaut, C. Actin, gelsolin and filamin-A are dynamic actors in the cytoskeleton remodelling contributing to the blood brain barrier phenotype. Proteomics 2009, 9, 1207–1219. [Google Scholar] [CrossRef]
- Van Riper, S.K.; de Jong, E.P.; Carlis, J.V.; Griffin, T.J. Mass spectrometry-based proteomics: Basic principles and emerging technologies and directions. Adv. Exp. Med. Biol. 2013, 990, 1–35. [Google Scholar] [CrossRef]
- Tate, S.; Larsen, B.; Bonner, R.; Gingras, A.-C. Label-Free quantitative proteomics trends for protein-protein interactions. J. Proteomics 2013, 81, 91–101. [Google Scholar] [CrossRef]
- Song, W.; Mentink, R.A.; Henquet, M.G.L.; Cordewener, J.H.G.; van Dijk, A.D.J.; Bosch, D.; America, A.H.P.; van der Krol, A.R. N-Glycan occupancy of Arabidopsis N-glycoproteins. J. Proteomics 2013. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Deracinois, B.; Flahaut, C.; Duban-Deweer, S.; Karamanos, Y. Comparative and Quantitative Global Proteomics Approaches: An Overview. Proteomes 2013, 1, 180-218. https://doi.org/10.3390/proteomes1030180
Deracinois B, Flahaut C, Duban-Deweer S, Karamanos Y. Comparative and Quantitative Global Proteomics Approaches: An Overview. Proteomes. 2013; 1(3):180-218. https://doi.org/10.3390/proteomes1030180
Chicago/Turabian StyleDeracinois, Barbara, Christophe Flahaut, Sophie Duban-Deweer, and Yannis Karamanos. 2013. "Comparative and Quantitative Global Proteomics Approaches: An Overview" Proteomes 1, no. 3: 180-218. https://doi.org/10.3390/proteomes1030180
APA StyleDeracinois, B., Flahaut, C., Duban-Deweer, S., & Karamanos, Y. (2013). Comparative and Quantitative Global Proteomics Approaches: An Overview. Proteomes, 1(3), 180-218. https://doi.org/10.3390/proteomes1030180