Educational Approaches to Bioprocess Engineering Using DIY Bioreactors for Scientific Literacy
Abstract
:1. Introduction
1.1. STEM Challenges
1.2. The Importance of Inquiry-Based Learning
1.3. Bridging the Gap with a DIY Bioreactor
- i
- Construction of educational approaches to increase STEM expertise of future generations in a research-oriented context of bioprocess engineering and biotechnology;
- ii
- Successful transfer of research-based bioprocess engineering experiments to school experiments with DIY bioreactors and low-cost sensors that reproduce trends of process-relevant state variables that are comparable to those achieved with conventional laboratory equipment;
- iii
- Experimental protocol to determine the volumetric mass transfer coefficient (kLa) and mixing time of different apparatuses of the DIY bioreactor in a low-level experiment in order to discuss optimization steps in the industrial process;
- iv
- Successful cultivation of microalga Microchloropsis gaditana for comparison of different cultivation conditions in the DIY bioreactor;
- v
- Didactic analysis and integration of the developed experiments into science education curricula to promote scientific literacy.
2. Theoretical Background
2.1. Science Outreach
2.2. Microorganisms as Factories of the Future
2.3. Cultivation and Process-Relevant State Variables in the Bioreactor
- i
- Homogenization and mixing time: The mixing time is the time required to achieve a pre-defined grade of homogeneity in the liquid.
- ii
- Volumetric mass transfer coefficient (kLa) value: The kLa describes the rate at which a gas, for example, oxygen or carbon dioxide, is transferred from the gas phase to the liquid phase of a bioreactor.
2.3.1. Homogenization and Mixing Time
2.3.2. Oxygen Transfer Efficiency and Volumetric Oxygen Mass Transfer Coefficient
3. Experimental Section
- i
- Transfer of theoretical trends of mixing time in a stirred-tank bioreactor (Minifors Infors HT) to a DIY bioreactor with variation of the state variables of gassing and stirring, measured with a low-cost sensor;
- ii
- Transfer of theoretical trends of kLa in a Minifors bioreactor (Infors HT) to a DIY bioreactor with variation of the state variables of gassing and stirring, measured with a low-cost sensor;
- iii
- Determination of the effects on kLa in the DIY bioreactor depending on the type of gassing (gassing stone or sparger → influence of bubble size) with variation of the state variables of gassing and stirring;
- iv
- Cultivation of microalga M. gaditana in the DIY bioreactor with different cultivation conditions in terms of variation of gassing and stirring.
4. Materials and Methods
4.1. DIY Bioreactor
4.2. Mixing Time
4.3. Volumetric Mass Transfer Coefficient (kLa)
4.4. Cultivation
5. Results and Discussion
5.1. Transfer of Bioreactor Characterization
- i
- Stirred only (S);
- ii
- Gassed only (G);
- iii
- Gassed and stirred simultaneously (GS).
5.2. Cultivation
- i
- Cultivation condition of “gassed and stirred simultaneously (GS)”;
- ii
- Cultivation condition of “gassed only (G)”;
- iii
- Cultivation condition of “stirred only (S)”.
5.3. Didactic Comment on the Experiments
5.4. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DIY | Do It Yourself |
STEM | Science, Technology, Engineering, and Mathematics |
SDGs | Sustainable Development Goals |
OD | Optical Density |
BD | Bodydrymass |
References
- acatech & Körber-Stiftung. (2021). MINT nachwuchsbarometer. Available online: https://www.acatech.de/publikation/mint-nachwuchsbarometer-2021 (accessed on 19 February 2025).
- Bartram, B., & Wilke, T. (2018). Aus der forschung in die schule-gestaltung einer lernortübergreifenden summer school zum thema nanotechnologie durch fachdidaktische transferforschung. In K. Fereidooni, K. Hein, & K. Kraus (Eds.), Theorie und praxis im spannungsverhältnis. beiträge für die unterrichtsentwicklung (pp. 67–82). Waxmann. [Google Scholar]
- Bensaude-Vincent, B. (2001). A geneology of the increasing gap between science and the public. Public Understanding of Science, 10, 99–113. [Google Scholar] [CrossRef]
- Bernholt, S., Parchmann, I., & Commons, M. (2009). Kompetenzmodellierung zwischen forschung und unterrichtspraxis. Zeitschrift für Didaktik der Naturwissenschaften, 15, 219–245. [Google Scholar]
- Bettinger, E. (2010). To be or not to be: Major choices in budding scientists. In American universities in a global market (pp. 69–98). University of Chicago Press. [Google Scholar]
- BMBF. (2021). Grundsatzpapier des BMBF zur partizipation. Available online: https://www.bmbf.de/SharedDocs/Downloads/DE/2016/bmbf_grundsatzpapier_partizipation.pdf?__blob=publicationFile&v=4 (accessed on 19 February 2025).
- Bo, D., Magneschi, L., Bedhomme, M., Billey, E., Deragon, E., Storti, M., Menneteau, M., Richard, C., Rak, C., Lapeyre, M., Lembrouk, M., Conte, M., Gros, V., Tourcier, G., Giustini, C., Falconet, D., Curien, G., Allorent, G., Petroutsos, D., . . . Collin, S. (2021). Consequences of mixotrophy on cell energetic metabolism in microchloropsis gaditana revealed by genetic engineering and metabolic approaches. Frontiers in Plant Science, 12, 628684. [Google Scholar] [CrossRef] [PubMed]
- Bohrmann-Linde, C., Meuter, N., Kremer, R., Pereira, V., & Venzlaff, J. (2021). Forschung trifft Schule. Chemie-Labothek als innovatives, vernetzendes Format Lehrkräftebildung neu gedacht. In M. Kubsch, S. Sorge, J. Arnold, & N. Graulich (Eds.), Lehrkräftebildung neu gedacht. ein praxishandbuch für die lehre in den naturwissenschaften und deren didaktiken (pp. 108–112). Waxmann Verlag. [Google Scholar]
- Boiko, A., Nistor, A., Kudenko, I., & Gras-Velazquez, A. (2019). The attractiveness of science, technology, engineering and mathematics subjects. Results from five countries. European Schoolnet. [Google Scholar]
- Borowitzka, M., Beardall, J., & Raven, J. (2016). The physiology of microalgae. Springer. [Google Scholar]
- Bybee, R. (2013). The case for stem education. Challenges and opportunities. NSTA Press. [Google Scholar]
- Chakdar, H., Jadhav, S., Dhar, D., & Pabbi, S. (2012). Potential applications of blue green algae. Journal of Scientific and Industrial Research, 71, 13–20. [Google Scholar]
- Chmiel, H. (2011). Bioprozesstechnik. Springer. [Google Scholar]
- Crawford, G., Kloepper, K., Meyers, J., & Singiser, R. (2019). Communicating chemistry: An introduction. In Communication in chemistry (pp. 1–15). American Chemical Society. Available online: https://pubs.acs.org/doi/abs/10.1021/bk-2019-1327.ch001 (accessed on 19 February 2025). [CrossRef]
- Çağlaand, Y., Gürlek, C., & Oncel, S. (2020). Potential of microalgal compounds in trending natural cosmetics: A review. Sustainable Chemistry and Pharmacy, 17, 100304. [Google Scholar] [CrossRef]
- Domingo, M., Sharp, S., Freeman, A., Freeman, T., Harmon, K., Wiggs, M., Sathy, V., Panter, A., Oseguera, L., Sun, S., Williams, M., Templeton, J., Folt, C., Barron, E., Hrabowski, F., Maton, K., Crimmins, M., Fisher, C., & Summers, M. (2019). Replicating Meyerhoff for inclusive excellence in STEM. Science, 364(6438), 335–337. [Google Scholar] [CrossRef]
- Doran, P. (2012). Bioprocess engineering principles. Academic Press. [Google Scholar]
- Dufossé, L., Galaup, P., Yaron, A., Arad, S., Blanc, P., Murthy, K., & Ravishankar, G. (2005). Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends in Food Science and Technology, 16(9), 389–406. [Google Scholar] [CrossRef]
- Duit, R., Gropengiesser, H., Kattmann, U., Komorek, M., & Parchmann, I. (2012). The model of educational reconstruction—A framework for improving teaching and learning science. In Science education research and practice in Europe. Retrospective and prospective (pp. 13–37). Sense Publishers. [Google Scholar] [CrossRef]
- Enzingmüller, C., Kampschulte, L., & Parchmann, I. (2019). Science outreach in sonderforschungsbereichen. In C. Maurer (Ed.), Naturwissenschaftliche bildung als grundlage für berufliche und gesellschaftliche teilhabe (p. 548). Universität Regensburg, Gesellschaft für Didaktik der Chemie und Physik. [Google Scholar]
- Gantar, M., & Svirčev, Z. (2008). Microalgae and cyanobacteria: Food for thought. Journal of Phycology, 44(2), 260–268. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F., & Gomez, E. (2008). Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances, 27, 153–176. [Google Scholar] [CrossRef]
- Geuer, L., Erdmann, N., Lorenz, M., Albrecht, H., Schanne, T., Cwienczek, M., Geib, D., Strieth, D., & Ulber, R. (2023). Colorful diversity. modified methods for extraction and quantification of photopigments and phycobiliproteins isolated from phototrophic micro-and macroalgae. Journal of Chemical Education, 100(2), 852–860. [Google Scholar] [CrossRef]
- Geuer, L., Liese, G., Roth, M., Liese, A., Schlindwein, A., Perret, S., & Ulber, R. (2023). Experimente aus der kiste. Kultivierung von mikroorganismen. Chemie in unserer Zeit, 57(5), 216–223. [Google Scholar] [CrossRef]
- Gopalakrishnan, V., Crozier, D., Card, K., Chick, L., Krishnan, N., McClure, E., Pelesko, J., Williamson, D., Nichol, D., Mandal, S., Bonomo, R., & Scott, J. (2022). A low-cost, open-source evolutionary bioreactor and its educational use. bioRxiv. [Google Scholar] [CrossRef]
- Hass, V., & Pörtner, R. (2011). Praxis der bioprozesstechnik mit virtuellem praktikum. Spektrum Akademischer Verlag. [Google Scholar]
- Häußler, P., & Hoffmann, L. (1995). Physikunterricht—An den interessen von mädchen und jungen orientiert; Physics instruction—Based on girls’ and boys’ interests. Unterrichtswissenschaft, 23(2), 107–126. [Google Scholar] [CrossRef]
- Hirayama, S., Ueda, R., & Sugata, K. (1996). Evaluation of active oxygen effect on photosynthesis of chlorella vulgaris. Free Radical Research, 25(3), 247–254. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, K., Kuhn, J., & Müller, A. (2018). Using smartphones as experimental tools—Effects on interest, curiosity, and learning in physics education. Journal of Science Education and Technology, 27, 385–403. [Google Scholar] [CrossRef]
- Holbrook, J., & Rannikmae, M. (2007). The nature of science education for enhancing scientific literacy. International Journal of Science Education, 29, 1347–1362. [Google Scholar] [CrossRef]
- Katoh, S., Horiuchi, J., & Yoshida, F. (2015). Biochemical engineering—A textbook for engineers, chemists and biologists. John Wiley and Sons. [Google Scholar]
- Katzenmeyer, M. (2020). Effizienzerhöhung in der kultivierung von mikroalgen—Prozessoptimierung und bioreaktorentwicklung [Ph.D. thesis, KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik des Karlsruher Instituts für Technologie (KIT)]. [Google Scholar]
- Kazbar, A., Cogne, G., Urbain, B., Marec, H., Le-Gouic, B., Tallec, J., Takache, H., Ismail, A., & Pruvost, J. (2019). Effect of dissolved oxygen concentration on microalgal culture in photobioreactors. Algal Research, 39, 101432. [Google Scholar] [CrossRef]
- Klieme, E., Avenarius, H., Blum, W., Döbrich, P., Gruber, H., Prenzel, M., Reiss, K., Riquarts, K., Rost, J., Tenorth, H., & Vollmer, H. (2003). Zur entwicklung nationaler bildungsstandards. Eine expertise; BMBF. [CrossRef]
- KMK. (2004a). Bildungsstandards im fach biologie für den mittleren schulabschluss. KMK. [Google Scholar]
- KMK. (2004b). Bildungsstandards im fach chemie für den mittleren schulabschluss. KMK. [Google Scholar]
- KMK. (2004c). Bildungsstandards im fach physik für den mittleren schulabschluss. KMK. [Google Scholar]
- KMK. (2005). Bildungsstandards der kultusministerkonferenz. Erläuterungen zur konzeption und entwicklung. KMK. [Google Scholar]
- KMK. (2020a). Bildungsstandards im fach biologie für die allgemeine hochschulreife. KMK. [Google Scholar]
- KMK. (2020b). Bildungsstandards im fach chemie für die allgemeine hochschulreife. KMK. [Google Scholar]
- KMK. (2020c). Bildungsstandards im fach physik für die allgemeine hochschulreife. KMK. [Google Scholar]
- Kollmen, J., & Strieth, D. (2022). The beneficial effects of cyanobacterial co-culture on plant growth. Life, 12(2), 223. [Google Scholar] [CrossRef]
- Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27–50. [Google Scholar] [CrossRef]
- Kuhn, J., & Müller, A. (2014). Context-based science education by newspaper story problems: A study on motivation and learning effects. Perspectives in Science, 2(1), 5–21. [Google Scholar] [CrossRef]
- Labudde, P. (2007). Bildungsstandards am gymnasium. Korsett oder katalysator? Hep. [Google Scholar]
- Ledbetter, M. (2012). Vision and change in undergraduate biology education: A call to action presentation to faculty for undergraduate neuroscience, July 2011. Journal of Undergraduate Neuroscience Education, 11, A22–A26. [Google Scholar] [PubMed]
- Lyons, T., & Quinn, F. (2010). Choosing science: Understanding the declines in senior high school science enrolments. University of New England. [Google Scholar]
- Miller, J. (1998). The measurement of civic scientific literacy. Public Understanding of Science, 7(3), 203–223. [Google Scholar] [CrossRef]
- Miller, J., & Pardo, R. (2000). Civic scientific literacy and attitude to science and technology: A comparative analysis of the European Union, the United States, Japan, and Canada. In Between understanding and trust. The public, science, and technology (pp. 81–130). Routledge. [Google Scholar]
- Moser, A. (2013). Bioprozeßtechnik—Berechnungsgrundlagen der reaktionstechnik biokatalytischer prozesse. Springer. [Google Scholar]
- Neumann, K., Kauertz, A., Lau, A., Notarp, H., & Fischer, H. (2007). Die Modellierung physikalischer Kompetenz und ihrer Entwicklung. Zeitschrift für Didaktik der Naturwissenschaften, 13, 101–121. [Google Scholar]
- Nienow, A. (1997). On impeller circulation and mixing effectiveness in the turbulent flow regime. Chemical Engineering Science, 52(15), 2557–2565. [Google Scholar] [CrossRef]
- OECD. (2006). Pisa assessing scientific, reading and mathematical literacy a framework for pisa 2006—A framework for pisa 2006. OECD Publishing. [Google Scholar]
- OECD. (2008). Encouraging student interest in science and technology studies. OECD Publishing. [Google Scholar]
- Ohio Department of Education. (2016). Partnership for 21st century skills-core content integration; Ohio Department of Education.
- Olabi, A., Shehata, N., Sayed, E., Rodriguez, C., Anyanwu, R. C., Russell, C., & Abdelkareem, M. (2023). Role of microalgae in achieving sustainable development goals and circular economy. Science of The Total Environment, 854, 158689. [Google Scholar] [CrossRef]
- Parchmann, I., Demuth, R., Ralle, B., Paschmann, A., & Huntemann, H. (2001). Chemie im kontext. begründung und realisierung eines lernens in sinnstiftenden kontexten. Praxis der Naturwissenschaften. Chemie in der Schule, 50(1), 2–7. [Google Scholar]
- Parchmann, I., & Kuhn, J. (2016). Exzellenzstrategie und hochschuldidaktik—(Neue) chancen und herausforderungen für fachdidaktik? CHEMKON, 23(4), 161–162. [Google Scholar] [CrossRef]
- Posten, C. (2009). Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165–177. [Google Scholar] [CrossRef]
- Roberts, R. S., Kastner, J. R., Ahmad, M., & Tedder, D. W. (1992). The effect of agitation on oxygen mass transfer in a fermentor. Chemical Engineering Education, 26(3), 142–163. [Google Scholar]
- Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of europe. European Commission Directorate General for Research Information and Communication Unit. [Google Scholar]
- Saadat, R., Bartram, B., & Wilke, T. (2019). Made to measure: Easy synthesis and characterization of nanocomposites with tailored functionalities for chemistry education. World Journal of Chemical Education, 7(2), 65–71. [Google Scholar] [CrossRef]
- Schecker, H., & Parchmann, I. (2006). Modellierung naturwissenschaftlicher kompetenz. Zeitschrift für Didaktik der Naturwissenschaften, 12, 45–66. [Google Scholar]
- Sjøberg, S., & Schreiner, C. (2019). ROSE (The relevance of science education). The development, key findings and impacts of an international low cost comparative project. Final report, Part 1 (of 2). Oslo University.
- Statistisches Bundesamt. (2010, July). 21311-0012: Studienanfänger: Deutschland, semester, nationalität, geschlecht, studienfach. Available online: https://www-genesis.destatis.de/genesis//online?operation=table&code=21311-0012#astructure (accessed on 27 June 2024).
- Steel, H., Habgood, R., Kelly, C., & Papachristodoulou, A. (2019). Chi.Bio: An open-source automated experimental platform for biological science research. bioRxiv. [Google Scholar] [CrossRef]
- Stehle, S., & Peters-Burton, E. (2019). Developing student 21 Century skills in selected exemplary inclusive STEM high schools. International Journal of STEM Education, 6, 39. [Google Scholar] [CrossRef]
- Stifterverband. (2022, September 26). Ohne MINT kein fortschritt. Onlinemagazin des Stifterverbandes. [Google Scholar]
- Strieth, D., Ulber, R., & Muffler, K. (2018). Application of phototrophic biofilms: From fundamentals to processes. Bioprocess and Biosystems Engineering, 41, 295–312. [Google Scholar] [CrossRef]
- Trafton, A. (2014). Francis collins: Scientists must engage with the world. Available online: https://news.mit.edu/2014/francis-collins-compton-lecture-1029 (accessed on 19 February 2025).
- Ugwu, C., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028. [Google Scholar] [CrossRef]
- UNESCO. (2017). Cracking the code: Girls’ and women’s education in science, technology, engineering, and mathematics (stem) [final report]. UNESCO Publishing.
- UNESCO. (2018). UNESCO ICT competency framework for teachers. UNESCO. [Google Scholar]
- United Nations. (2015). Transformation unserer Welt: Die Agenda 2030 für nachhaltige Entwicklung. Resolution der Generalversammlung, verabschiedet am 25. September 2015. Available online: https://www.un.org/Depts/german/gv-70/band1/ar70001.pdf (accessed on 19 February 2025).
- Van’t Riet, K. (1979). Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels. Industrial & Engineering Chemistry Process Design and Development, 18(3), 357–364. [Google Scholar] [CrossRef]
- van Vorst, H., Dorschu, A., Fechner, S., Kauertz, A., Krabbe, H., & Sumfleth, E. (2014). Charakterisierung und strukturierung von kontexten im naturwissenschaftlichen unterricht—Vorschlag einer theoretischen modellierung. Zeitschrift für Didaktik der Naturwissenschaften, 21(1), 29–39. Available online: https://app.dimensions.ai/details/publication/pub.1010423780 (accessed on 19 February 2025). [CrossRef]
- Vennix, J., den Brok, P., & Taconis, R. (2017). Perceptions of STEM-based outreach learning activities in secondary education. Learning Environments Research, 20, 21–46. [Google Scholar] [CrossRef]
- von Arx, M., & Bernholt, S. (2015). Ein Kompetenzstrukturmodell für den handlungsaspekt “ordnen, strukturieren, modellieren” im fach chemie. Perspectives in Science, 5, 36–44. [Google Scholar] [CrossRef]
- Wallrath, S., Engl, A., Erdmann, N., Kollmen, J., Strieth, D., & Risch, B. (2023). Mikrocontroller als low-cost technologie: Monitoring von wachstumsparametern bei mikroalgen in einem 3D-gedruckten IoT-photobioreaktor. MNU Journal, 76, 5. [Google Scholar]
- Woithe, J., Müller, A., Schmeling, S., & Kuhn, J. (2022). Motivational outcomes of the science outreach lab S’Cool LAB at CERN: A multilevel analysis. Journal of Research in Science Teaching, 59(6), 930–968. [Google Scholar] [CrossRef]
- Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C., & Li, B. (2020). A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresource Technology, 301, 122804. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geuer, L.; Erdmann, N.; Kollmen, J.; Otteny, A.; Wastian, K.; Wallrath, S.; Engl, A.; Risch, B.; Ulber, R.; Strieth, D. Educational Approaches to Bioprocess Engineering Using DIY Bioreactors for Scientific Literacy. Educ. Sci. 2025, 15, 323. https://doi.org/10.3390/educsci15030323
Geuer L, Erdmann N, Kollmen J, Otteny A, Wastian K, Wallrath S, Engl A, Risch B, Ulber R, Strieth D. Educational Approaches to Bioprocess Engineering Using DIY Bioreactors for Scientific Literacy. Education Sciences. 2025; 15(3):323. https://doi.org/10.3390/educsci15030323
Chicago/Turabian StyleGeuer, Lena, Niklas Erdmann, Jonas Kollmen, Alena Otteny, Katharina Wastian, Simeon Wallrath, Alexander Engl, Björn Risch, Roland Ulber, and Dorina Strieth. 2025. "Educational Approaches to Bioprocess Engineering Using DIY Bioreactors for Scientific Literacy" Education Sciences 15, no. 3: 323. https://doi.org/10.3390/educsci15030323
APA StyleGeuer, L., Erdmann, N., Kollmen, J., Otteny, A., Wastian, K., Wallrath, S., Engl, A., Risch, B., Ulber, R., & Strieth, D. (2025). Educational Approaches to Bioprocess Engineering Using DIY Bioreactors for Scientific Literacy. Education Sciences, 15(3), 323. https://doi.org/10.3390/educsci15030323