Mapping Financial Contagion in Emerging Markets: The Role of the VIX and Geopolitical Risk in BRICS Plus Spillovers
Abstract
1. Introduction
2. Literature Review
3. Data and Empirical Methodology
3.1. Data and Descriptive Statistics Summary
3.2. Empirical Methodology
4. Empirical Results
4.1. TVP-VAR at the Median Quantile
4.1.1. BRICS Plus and the VIX2



4.1.2. BRICS Plus and the GPRD (See Note 2)



4.2. Quantile Connectedness Results
4.2.1. Total and Net Dynamic Connectedness Between BRICS Plus and VIX Across Different Quantiles










4.2.2. Total and Net Dynamic Connectedness Between BRICS Plus and GPRD Across Different Quantiles










4.3. Time Frequency Connectedness
4.3.1. Time-Frequency Connectedness Between BRICS Plus and VIX


4.3.2. Time-Frequency Connectedness Between BRICS Plus and GPRD


5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BRICS | Brazil, Russia, India, China, South Africa |
| GFEVD | Generalized Forecast Error Variance Decomposition |
| GPR | Geopolitical Risk |
| GPRD | Geopolitical Risk Index |
| H | Covariance matrix of residuals |
| NET | Total Net Directional Connectedness |
| NPDC | Net Pairwise Directional Connectedness |
| NPT | Normalized Pairwise Net spillover |
| TCI | Total Connectedness Index |
| TVP-VAR | Time-Varying Parameter Vector Autoregression |
| VIX | Volatility Index |
| Φt | Time-varying coefficient matrix in TVP-VAR model |
| Τ | Quantile level in Quantile Connectedness (e.g., 0.05, 0.50, 0.95) |
Appendix A. Robustness Tests Using Different Rolling Windows (200 and 150 Days)
Appendix A.1. Results for the BRICS Plus Countries and the GPRD
Appendix A.1.1. Results Using Rolling Windows = 200 Days


| SSE | RTSI | BSE.30 | BVSP | JTOPI | TASI. | ADX | EGX.30 | MERV | GPRD | FROM | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| SSE | 79.45 | 2.29 | 3.19 | 2.42 | 6.06 | 1.54 | 1.07 | 1.49 | 1.53 | 0.95 | 20.55 |
| RTSI | 1.55 | 69.39 | 3.99 | 6.01 | 7.29 | 2.82 | 2.24 | 1.71 | 4.39 | 0.60 | 30.61 |
| BSE.30 | 2.55 | 4.72 | 65.39 | 5.39 | 8.41 | 4.09 | 2.82 | 2.20 | 3.40 | 1.02 | 34.61 |
| BVSP | 1.55 | 5.34 | 3.35 | 67.14 | 5.98 | 2.22 | 1.93 | 1.54 | 10.44 | 0.51 | 32.86 |
| JTOPI | 4.41 | 6.98 | 7.28 | 6.76 | 61.63 | 3.38 | 2.35 | 2.37 | 4.12 | 0.73 | 38.37 |
| TASI. | 1.70 | 3.92 | 4.15 | 3.14 | 4.48 | 72.34 | 5.06 | 2.56 | 2.10 | 0.55 | 27.66 |
| ADX | 0.98 | 2.63 | 2.85 | 2.94 | 3.06 | 5.91 | 77.26 | 2.11 | 1.53 | 0.74 | 22.74 |
| EGX.30 | 1.38 | 2.28 | 2.79 | 2.04 | 3.32 | 2.82 | 2.52 | 80.24 | 1.81 | 0.80 | 19.76 |
| MERV | 0.92 | 4.55 | 1.86 | 11.06 | 3.60 | 1.75 | 1.27 | 1.75 | 72.67 | 0.58 | 27.33 |
| GPRD | 1.31 | 1.20 | 1.17 | 0.89 | 1.22 | 0.93 | 2.09 | 1.10 | 1.44 | 88.64 | 11.36 |
| TO | 16.35 | 33.91 | 30.62 | 40.65 | 43.45 | 25.46 | 21.35 | 16.83 | 30.76 | 6.48 | 265.85 |
| Inc.Own | 95.80 | 103.31 | 96.01 | 107.79 | 105.07 | 97.80 | 98.61 | 97.07 | 103.43 | 95.12 | cTCI/TCI |
| NET | −4.20 | 3.31 | −3.99 | 7.79 | 5.07 | −2.20 | −1.39 | −2.93 | 3.43 | −4.88 | 29.54/26.59 |
| NPT | 2.00 | 7.00 | 5.00 | 9.00 | 7.00 | 3.00 | 3.00 | 2.00 | 7.00 | 0.00 |
Appendix A.1.2. Results Using Rolling Windows = 150 Days
| SSE | RTSI | BSE.30 | BVSP | JTOPI | TASI. | ADX | EGX.30 | MERV | GPRD | FROM | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| SSE | 78.42 | 2.38 | 3.16 | 2.50 | 5.94 | 1.63 | 1.20 | 1.71 | 1.74 | 1.32 | 21.58 |
| RTSI | 1.72 | 67.89 | 3.96 | 5.92 | 7.45 | 3.03 | 2.49 | 1.87 | 4.74 | 0.95 | 32.11 |
| BSE.30 | 2.58 | 4.75 | 64.13 | 5.41 | 8.16 | 4.31 | 2.95 | 2.61 | 3.69 | 1.40 | 35.87 |
| BVSP | 1.65 | 5.50 | 3.36 | 66.07 | 5.92 | 2.31 | 2.05 | 1.75 | 10.56 | 0.82 | 33.93 |
| JTOPI | 4.33 | 7.17 | 7.17 | 6.74 | 60.98 | 3.48 | 2.39 | 2.49 | 4.27 | 0.97 | 39.02 |
| TASI. | 1.91 | 4.09 | 4.24 | 3.15 | 4.51 | 70.85 | 4.99 | 2.94 | 2.51 | 0.81 | 29.15 |
| ADX | 1.19 | 2.83 | 2.88 | 3.03 | 3.10 | 5.83 | 75.93 | 2.33 | 1.79 | 1.08 | 24.07 |
| EGX.30 | 1.70 | 2.40 | 3.17 | 2.28 | 3.31 | 3.04 | 2.74 | 78.14 | 2.15 | 1.08 | 21.86 |
| MERV | 1.12 | 4.68 | 2.11 | 11.02 | 3.76 | 2.01 | 1.48 | 2.19 | 70.88 | 0.75 | 29.12 |
| GPRD | 1.67 | 1.64 | 1.53 | 1.36 | 1.52 | 1.40 | 2.41 | 1.43 | 1.78 | 85.26 | 14.74 |
| TO | 17.88 | 35.44 | 31.57 | 41.41 | 43.68 | 27.03 | 22.69 | 19.33 | 33.23 | 9.18 | 281.45 |
| Inc.Own | 96.29 | 103.33 | 95.71 | 107.48 | 104.66 | 97.88 | 98.62 | 97.47 | 104.11 | 94.44 | cTCI/TCI |
| NET | −3.71 | 3.33 | −4.29 | 7.48 | 4.66 | −2.12 | −1.38 | −2.53 | 4.11 | −5.56 | 31.27/28.15 |
| NPT | 2.00 | 6.00 | 3.00 | 9.00 | 7.00 | 4.00 | 4.00 | 3.00 | 7.00 | 0.00 |


Appendix A.2. Results for the BRICS Plus Countries and the VIX
Appendix A.2.1. Results Using Rolling Windows = 200 Days


| VIX | SSE | RTSI | BSE.30 | BVSP | JTOPI | TASI. | ADX | EGX.30 | MERV | FROM | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| VIX | 61.93 | 1.03 | 4.48 | 3.43 | 9.53 | 6.52 | 2.10 | 2.68 | 1.62 | 6.69 | 38.07 |
| SSE | 2.92 | 77.39 | 2.27 | 2.90 | 2.71 | 5.54 | 1.49 | 1.25 | 1.62 | 1.91 | 22.61 |
| RTSI | 5.27 | 1.49 | 65.84 | 3.55 | 5.61 | 6.76 | 2.81 | 2.41 | 1.67 | 4.57 | 34.16 |
| BSE.30 | 7.26 | 2.22 | 4.15 | 61.21 | 5.26 | 7.14 | 4.06 | 2.83 | 2.33 | 3.55 | 38.79 |
| BVSP | 9.48 | 1.52 | 4.85 | 3.16 | 60.24 | 5.43 | 2.16 | 1.84 | 1.57 | 9.75 | 39.76 |
| JTOPI | 8.40 | 3.73 | 6.34 | 6.17 | 6.56 | 56.59 | 3.11 | 2.34 | 2.26 | 4.49 | 43.41 |
| TASI. | 3.52 | 1.59 | 3.84 | 3.97 | 3.41 | 4.24 | 69.38 | 4.65 | 2.72 | 2.67 | 30.62 |
| ADX | 3.57 | 1.14 | 2.73 | 2.71 | 2.92 | 2.95 | 5.57 | 74.34 | 2.29 | 1.77 | 25.66 |
| EGX.30 | 3.81 | 1.56 | 2.21 | 2.85 | 2.24 | 3.18 | 2.77 | 2.70 | 76.63 | 2.05 | 23.37 |
| MERV | 6.79 | 1.08 | 4.35 | 2.02 | 10.36 | 3.63 | 1.88 | 1.33 | 2.03 | 66.54 | 33.46 |
| TO | 51.03 | 15.36 | 35.22 | 30.76 | 48.60 | 45.39 | 25.94 | 22.03 | 18.12 | 37.46 | 329.91 |
| Inc.Own | 112.96 | 92.75 | 101.06 | 91.97 | 108.83 | 101.98 | 95.32 | 96.37 | 94.75 | 104.00 | cTCI/TCI |
| NET | 12.96 | −7.25 | 1.06 | −8.03 | 8.83 | 1.98 | −4.68 | −3.63 | −5.25 | 4.00 | 36.66/32.99 |
| NPT | 8.00 | 1.00 | 5.00 | 2.00 | 9.00 | 6.00 | 3.00 | 3.00 | 1.00 | 7.00 |
Appendix A.2.2. Results Using Rolling Windows = 150 Days


| VIX | SSE | RTSI | BSE.30 | BVSP | JTOPI | TASI. | ADX | EGX.30 | MERV | FROM | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| VIX | 63.01 | 0.83 | 4.45 | 3.25 | 9.49 | 6.67 | 1.96 | 2.49 | 1.44 | 6.41 | 36.99 |
| SSE | 2.57 | 78.86 | 2.09 | 2.76 | 2.62 | 5.62 | 1.33 | 1.12 | 1.46 | 1.58 | 21.14 |
| RTSI | 5.10 | 1.37 | 67.12 | 3.55 | 5.75 | 6.56 | 2.60 | 2.22 | 1.52 | 4.21 | 32.88 |
| BSE.30 | 7.13 | 2.20 | 4.08 | 62.61 | 5.20 | 7.36 | 3.66 | 2.70 | 1.87 | 3.19 | 37.39 |
| BVSP | 9.29 | 1.44 | 4.78 | 3.14 | 61.17 | 5.47 | 2.04 | 1.69 | 1.38 | 9.61 | 38.83 |
| JTOPI | 8.35 | 3.73 | 6.17 | 6.18 | 6.53 | 57.38 | 3.00 | 2.27 | 2.10 | 4.28 | 42.62 |
| TASI. | 3.25 | 1.44 | 3.71 | 3.79 | 3.42 | 4.23 | 70.81 | 4.73 | 2.38 | 2.23 | 29.19 |
| ADX | 3.24 | 0.96 | 2.49 | 2.63 | 2.86 | 2.94 | 5.56 | 75.74 | 2.04 | 1.53 | 24.26 |
| EGX.30 | 3.34 | 1.30 | 2.12 | 2.49 | 1.96 | 3.13 | 2.57 | 2.47 | 78.87 | 1.75 | 21.13 |
| MERV | 6.54 | 0.88 | 4.25 | 1.81 | 10.33 | 3.49 | 1.66 | 1.13 | 1.64 | 68.27 | 31.73 |
| TO | 48.82 | 14.14 | 34.15 | 29.60 | 48.16 | 45.47 | 24.38 | 20.82 | 15.83 | 34.79 | 316.16 |
| Inc.Own | 111.83 | 93.00 | 101.27 | 92.21 | 109.32 | 102.85 | 95.19 | 96.56 | 94.70 | 103.06 | cTCI/TCI |
| NET | 11.83 | −7.00 | 1.27 | −7.79 | 9.32 | 2.85 | −4.81 | −3.44 | −5.30 | 3.06 | 35.13/31.62 |
| NPT | 8.00 | 1.00 | 6.00 | 3.00 | 9.00 | 6.00 | 2.00 | 3.00 | 1.00 | 6.00 |
| 1 | We aligned the daily series across all BRICS Plus markets and global risk indicators, using forward and backward filling where necessary, and restricted the analysis to dates with overlapping trading sessions to ensure consistency. |
| 2 | Our results are robust using different rolling windows (150 and 200 days). All figures and tables are provided in the Appendix A. |
| 3 | Notes: Blue (yellow) nodes represent net transmitter (net recipient) of shocks. Vertices are weighted by averaged net pairwise directional connectedness measures. The size of nodes represents weighted average net total directional connectedness. The network plot results are based on a TVP-VAR model with lag length of order one (BIC) and a 10-step-ahead generalized forecast error variance decomposition. |
| 4 |
References
- Adel, N., & Naili, M. (2024). Geopolitical risk and banking performance: Evidence from emerging economies. The Journal of Risk Finance, 25(4), 646–663. [Google Scholar] [CrossRef]
- Ahmad, W., Mishra, A. V., & Daly, K. J. (2018). Financial connectedness of BRICS and global sovereign bond markets. Emerging Markets Review, 37, 1–16. [Google Scholar] [CrossRef]
- Altinkeski, B. K., Dibooglu, S., Cevik, E. I., Kilic, Y., & Bugan, M. F. (2024). Quantile connectedness between VIX and global stock markets. Borsa Istanbul Review, 24(1), 71–79. [Google Scholar] [CrossRef]
- Ando, T., Greenwood-Nimmo, M., & Shin, Y. (2022). Quantile connectedness: Modeling tail behavior in the topology of financial networks. Management Science, 68(4), 2401–2431. [Google Scholar] [CrossRef]
- Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84. [Google Scholar] [CrossRef]
- Asomaning, K. O. (2023). Asymmetric effects in geopolitical risk and foreign reserves accumulation among BRICS countries [Doctoral dissertation, Jack Welch College of Business & Technology, Sacred Heart University]. Available online: https://digitalcommons.sacredheart.edu/wcob_theses/31/ (accessed on 17 February 2023).
- Bajaj, N. K., Aziz, T., Kumari, S., Alenezi, M., & Mathkur, N. M. (2023). The impact of geopolitical risk on financial conditions of emerging economies. The Journal of Asian Finance, Economics and Business, 10(1), 133–143. [Google Scholar] [CrossRef]
- Baruník, J., & Křehlík, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. Journal of Financial Econometrics, 16(2), 271–296. [Google Scholar] [CrossRef]
- Billah, M., Karim, S., Naeem, M. A., & Vigne, S. A. (2022). Return and volatility spillovers between energy and BRIC markets: Evidence from quantile connectedness. Research in International Business and Finance, 62, 101680. [Google Scholar] [CrossRef]
- Bossman, A., Gubareva, M., & Teplova, T. (2023). Economic policy uncertainty, geopolitical risk, market sentiment, and regional stocks: Asymmetric analyses of the EU sectors. Eurasian Economic Review, 13(3), 321–372. [Google Scholar] [CrossRef]
- Bouri, E., Saeed, T., Vo, X. V., & Roubaud, D. (2021). Quantile connectedness in the cryptocurrency market. Journal of International Financial Markets, Institutions and Money, 71, 101302. [Google Scholar] [CrossRef]
- Caldara, D., & Iacoviello, M. (2022). Measuring geopolitical risk. American Economic Review, 112(4), 1194–1225. [Google Scholar] [CrossRef]
- Chatziantoniou, I., Gabauer, D., & Stenfors, A. (2021). Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach. Economics Letters, 204, 109891. [Google Scholar] [CrossRef]
- Dahir, A. M., Mahat, F., Amin Noordin, B. A., & Hisyam Ab Razak, N. (2020). Dynamic connectedness between Bitcoin and equity market information across BRICS countries: Evidence from TVP-VAR connectedness approach. International Journal of Managerial Finance, 16(3), 357–371. [Google Scholar] [CrossRef]
- Desogus, M., & Casu, E. (2024). Contagion and interdependencies between BRICS-plus countries on the markets of commodities and derivative financial instruments. Journal of Business and Social Review in Emerging Economies, 10(2), 269–288. [Google Scholar] [CrossRef]
- Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. Economic Journal, 119, 158–171. [Google Scholar] [CrossRef]
- Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28, 57–66. [Google Scholar] [CrossRef]
- Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119–134. [Google Scholar] [CrossRef]
- Feng, Z., Liu, X., & Yao, Y. (2023). Impact of geopolitical risk on the volatility spillovers among G7 and BRICS stock markets. Procedia Computer Science, 221, 878–884. [Google Scholar] [CrossRef]
- Ganguly, S., & Bhunia, A. (2022). Testing volatility and relationship among BRICS stock market returns. SN Business & Economics, 2(8), 111. [Google Scholar] [CrossRef]
- Gong, X. L., Ning, H. Y., & Xiong, X. (2025). Research on the cross-contagion between international stock markets and geopolitical risks: The two-layer network perspective. Financial Innovation, 11(1), 23. [Google Scholar] [CrossRef]
- Goyal, P., & Soni, P. (2024). Beyond borders: Investigating the impact of the 2023 Israeli–Palestinian conflict on global equity markets. Journal of Economic Studies, 51(8), 1714–1731. [Google Scholar] [CrossRef]
- Gökgöz, H., Ben Salem, S., Bejaoui, A., & Jeribi, A. (2024). Connectedness structure and volatility dynamics between BRICS markets and international volatility indices: An investigation. International Journal of Finance & Economics, 30(3), 2981–3002. [Google Scholar] [CrossRef]
- Gürsoy, S. (2020). Investigation of the relationship between VIX index and BRICS countries stock markets: An econometric application. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 4(2), 397–413. [Google Scholar] [CrossRef]
- Jeribi, A., & Snene Manzli, Y. (2020). Can cryptocurrencies be a safe haven during the novel COVID-19 pandemic? Evidence from the Tunisian Stock Market. Journal of Research in Emerging Markets, 3(1), 14–31. [Google Scholar] [CrossRef]
- Ju, J., Ma, H., Wang, Z., & Zhu, X. (2024). Trade wars and industrial policy competitions: Understanding the US-China economic conflicts. Journal of Monetary Economics, 141, 42–58. [Google Scholar] [CrossRef]
- Khatib, S. F., Abbas, A. F., Igwe, M. N., Yue, S., & Sulimany, H. G. H. (2025). Mind the tides: A systematic review of the geopolitical risk literature. Politics & Policy, 53(3), e70028. [Google Scholar] [CrossRef]
- Klomp, J. (2025). Trump tariffs and the US defense industry. PLoS ONE, 20(1), e0313204. [Google Scholar] [CrossRef] [PubMed]
- Kruel, M., & Ceretta, P. S. (2025). Extreme return spillover between the WTI, the VIX, and Six Latin American stock markets: A quantile connectedness approach. Studies in Nonlinear Dynamics & Econometrics, 29(3), 301–316. [Google Scholar] [CrossRef]
- Lissovolik, Y., & Vinokurov, E. (2019). Extending BRICS to BRICS+: The potential for development finance, connectivity and financial stability. Area Development and Policy, 4(2), 117–133. [Google Scholar] [CrossRef]
- Liu, L., Li, L., Li, D., & Tang, L. (2025). Analysis of geopolitical risk impacts on crude oil volatility with an explainable machine learning approach: China versus the USA. Applied Economics, 1–18. [Google Scholar] [CrossRef]
- Liu, T., & Woo, W. T. (2018). Understanding the US-China trade war. China Economic Journal, 11(3), 319–340. [Google Scholar] [CrossRef]
- Maddodi, S., & Kunte, S. R. (2024). Market resilience in turbulent times: A proactive approach to predicting stock market responses during geopolitical tensions. Journal of Capital Markets Studies, 8(2), 173–194. [Google Scholar] [CrossRef]
- Mensi, W., El Khoury, R., & Kang, S. H. (2025). Dynamic connectedness between oil shocks and BRICS stock markets. Finance Research Letters, 82, 107601. [Google Scholar] [CrossRef]
- Mensi, W., Hammoudeh, S., Reboredo, J. C., & Nguyen, D. K. (2014). Do global factors impact BRICS stock markets? A quantile regression approach. Emerging Markets Review, 19, 1–17. [Google Scholar] [CrossRef]
- Nasouri, A. (2025). The impact of geopolitical risks on equity markets and financial stress: A comparative analysis of emerging and advanced economies. International Journal of Economics & Business Administration, 13(1), 30–41. [Google Scholar] [CrossRef]
- NguyenHuu, T., & Örsal, D. K. (2024). Geopolitical risks and financial stress in emerging economies. The World Economy, 47(1), 217–237. [Google Scholar] [CrossRef]
- Nyakurukwa, K., & Seetharam, Y. (2023). Quantile and asymmetric return connectedness among BRICS stock markets. The Journal of Economic Asymmetries, 27, e00303. [Google Scholar] [CrossRef]
- Obajinmi, O. J., & Garba, D. (2025). BRICS expansion and its challenges to the global economic order. FUDMA Journal of Humanities, Social Science and Creative Arts, 1(AHBSI), 80–88. [Google Scholar] [CrossRef]
- Panda, P., & Thiripalraju, M. (2018). Return and volatility spillovers among stock markets: BRICS countries experience. Afro-Asian Journal of Finance and Accounting, 8(2), 148–166. [Google Scholar] [CrossRef]
- Panda, P., Vasudevan, S., & Panda, B. (2021). Dynamic connectedness among BRICS and major countries stock markets. Journal of Public Affairs, 21(3), e2265. [Google Scholar] [CrossRef]
- Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. The Review of Economic Studies, 72(3), 821–852. [Google Scholar] [CrossRef]
- Rizvi, S. K. A., Naqvi, B., Mirza, N., & Umar, M. (2022). Safe haven properties of green, Islamic, and crypto assets and investor’s proclivity towards treasury and gold. Energy Economics, 115, 106396. [Google Scholar] [CrossRef]
- Salisu, A. A., Lasisi, L., & Tchankam, J. P. (2022a). Historical geopolitical risk and the behaviour of stock returns in advanced economies. The European Journal of Finance, 28(9), 889–906. [Google Scholar] [CrossRef]
- Salisu, A. A., Ogbonna, A. E., Lasisi, L., & Olaniran, A. (2022b). Geopolitical risk and stock market volatility in emerging markets: A GARCH–MIDAS approach. The North American Journal of Economics and Finance, 62, 101755. [Google Scholar] [CrossRef]
- Sarwar, G. (2012). Is VIX an investor fear gauge in BRIC equity markets? Journal of Multinational Financial Management, 22(3), 55–65. [Google Scholar] [CrossRef]
- Sarwar, G., & Khan, W. (2017). The effect of US stock market uncertainty on emerging market returns. Emerging Markets Finance and Trade, 53(8), 1796–1811. [Google Scholar] [CrossRef]
- Shahzad, S. J. H., Bouri, E., Rehman, M. U., & Roubaud, D. (2022). The hedge asset for BRICS stock markets: Bitcoin, gold or VIX. The World Economy, 45(1), 292–316. [Google Scholar] [CrossRef]
- Shahzad, U., Mohammed, K. S., Tiwari, S., Nakonieczny, J., & Nesterowicz, R. (2023). Connectedness between geopolitical risk, financial instability indices and precious metals markets: Novel findings from Russia Ukraine conflict perspective. Resources Policy, 80, 103190. [Google Scholar] [CrossRef]
- Shaik, M., Jamil, S. A., Hawaldar, I. T., Sahabuddin, M., Rabbani, M. R., & Atif, M. (2023). Impact of geo-political risk on stocks, oil, and gold returns during GFC, COVID-19, and Russian–Ukraine War. Cogent Economics & Finance, 11(1), 2190213. [Google Scholar] [CrossRef]
- Sharma, A. (2024). Geopolitical risk and BRICS volatilities. Critical Letters in Economics & Finance, 2(1), 1. [Google Scholar] [CrossRef]
- Sharma, G., Kayal, P., & Pandey, P. (2019). Information linkages among BRICS countries: Empirical evidence from implied volatility indices. Journal of Emerging Market Finance, 18(3), 263–289. [Google Scholar] [CrossRef]
- Snene Manzli, Y., & Jeribi, A. (2024a). Shelter in uncertainty: Evaluating gold and bitcoin as safe havens against G7 stock market indices during global crises. Scientific Annals of Economics and Business, 71(3), 417–447. [Google Scholar] [CrossRef]
- Snene Manzli, Y., & Jeribi, A. (2024b). Connectedness between gold-backed cryptocurrencies and the G7 stock market indices during global crises: Evidence from the quantile vector autoregression approach. Journal of Alternative Finance, 1(2), 131–157. [Google Scholar] [CrossRef]
- Vyas-Doorgapersad, S. (2022). The role of BRICS in global governance to promote economic development. Africa’s Public Service Delivery and Performance Review, 10(1), a633. [Google Scholar] [CrossRef]
- Wang, Q., Wei, Y., Wang, Y., & Liu, Y. (2022). On the safe-haven ability of bitcoin, gold, and commodities for international stock markets: Evidence from spillover index analysis. Discrete Dynamics in Nature and Society, 9520486, 1–16. [Google Scholar] [CrossRef]
- Whaley, R. E. (2000). The investor fear gauge. The Journal of Portfolio Management, 26(3), 12–17. [Google Scholar] [CrossRef]
- Yeboah, S. D., Agyei, S. K., Korsah, D., Fumey, M. P., Akorsu, P. K., & Adela, V. (2025). Geopolitical risk and exchange rate dynamics in Sub-Saharan Africa’s emerging economies. Future Business Journal, 11(1), 78. [Google Scholar] [CrossRef]
- York, E. (2025). Trump tariffs: The economic impact of the trump trade war. Tax Foundation. United States of America. Available online: https://coilink.org/20.500.12592/1mgy4ov (accessed on 7 July 2025).
- Zhang, H., & Giouvris, E. (2022). Measures of volatility, crises, sentiment and the role of US ‘Fear’Index (VIX) on herding in BRICS (2007–2021). Journal of Risk and Financial Management, 15(3), 134. [Google Scholar] [CrossRef]
| VIX | SSE | RTSI | BSE.30 | BVSP | JTOPI | TASI | ADX | EGX.30 | |
|---|---|---|---|---|---|---|---|---|---|
| Mean | 0.000 | 0.000 | 0.000 | 0.000 ** | 0.000 | 0.000 | 0.000 | 0.000 * | 0.001 ** |
| Std. Dev | 0.984 | 0.993 | 0.911 | 0.022 | 0.106 | 0.256 | 0.290 | 0.070 | 0.020 |
| Variance | 0.006 | 0 | 0.005 | 0 | 0 | 0 | 0 | 0 | 0 |
| Skewness | 1.374 * | −0.600 * | 0.088 * | −1.621 * | −1.187 * | −0.507 * | −1.177 * | −0.339 * | −0.364 * |
| (0.000) | (0.000) | (0.079) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| Ex.K. | 9.076 * | 8.288 * | 998.426 * | 23.412 * | 18.569 * | 7.217 * | 11.114 * | 19.081 * | 6.091 * |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| JB | 9019.709 * | 7034.020 * | 99,976,166.769 * | 56,025.660 * | 35,148.435 * | 5326.183 * | 12,943.024 * | 36,561.630 * | 3773.616 * |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| ERS | −21.439 | −22.241 | −29.599 | −19.919 | −17.876 | −21.991 | −3.498 | −6.113 | −7.744 |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| Q(20) | 29.167 * | 37.806 * | 518.658 * | 55.633 * | 82.607 * | 27.887 * | 76.127 * | 90.535 * | 75.045 * |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
| Q2(20) | 147.167 * | 250.787 * | 600.569 * | 1182.715 * | 2727.373 * | 1731.083 * | 737.183 * | 2697.160 * | 484.138 * |
| (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) |
| Kendall | VIX | SSE | RTSI | BSE.30 | BVSP | JTOPI | TASI | ADX | EGX.30 | GPRD |
|---|---|---|---|---|---|---|---|---|---|---|
| VIX | 1.000 * | −0.036 * | −0.149 * | −0.101 * | −0.250 * | −0.177 * | −0.065 * | −0.062 * | −0.053 * | 0.010 |
| SSE | −0.036 * | 1.000 * | 0.095 * | 0.121 * | 0.055 * | 0.175 * | 0.091 * | 0.062 * | 0.066 * | 0.011 |
| RTSI | −0.149 * | 0.095 * | 1.000 * | 0.155 * | 0.147 * | 0.212 * | 0.135 * | 0.094 * | 0.069 * | −0.002 |
| BSE.30 | −0.101 * | 0.121 * | 0.155 * | 1.000 * | 0.110 * | 0.241 * | 0.148 * | 0.113 * | 0.091 * | 0.001 |
| BVSP | −0.250 * | 0.055 * | 0.147 * | 0.110 * | 1.000 * | 0.173 * | 0.088 * | 0.087 * | 0.031 * | 0.000 |
| JTOPI | −0.177 * | 0.175 * | 0.212 * | 0.241 * | 0.173 * | 1.000 * | 0.141 * | 0.104 * | 0.088 * | −0.008 |
| TASI | −0.065 * | 0.091 * | 0.135 * | 0.148 * | 0.088 * | 0.141 * | 1.000 * | 0.169 * | 0.092 * | −0.002 |
| ADX | −0.062 * | 0.062 * | 0.094 * | 0.113 * | 0.087 * | 0.104 * | 0.169 * | 1.000 * | 0.070 * | 0.009 |
| EGX.30 | −0.053 * | 0.066 * | 0.069 * | 0.091 * | 0.031 ** | 0.088 * | 0.092 * | 0.070 * | 1.000 * | −0.006 |
| GPRD | 0.010 | 0.011 | −0.002 | 0.001 | 0.000 | −0.008 | −0.002 | 0.009 | −0.006 | 1.000 * |
| VIX | SSE | RTSI | BSE.30 | BVSP | JTOPI | TASI | ADX | EGX.30 | FROM | |
|---|---|---|---|---|---|---|---|---|---|---|
| VIX | 64.34 | 1.59 | 5.15 | 4.01 | 10.21 | 6.81 | 2.62 | 3.02 | 2.25 | 35.66 |
| SSE | 3.71 | 75.50 | 2.73 | 3.14 | 3.15 | 5.84 | 2.14 | 1.81 | 1.98 | 24.50 |
| RTSI | 6.38 | 2.01 | 65.13 | 3.92 | 6.35 | 7.28 | 3.55 | 3.00 | 2.38 | 34.87 |
| BSE.30 | 7.44 | 2.59 | 4.43 | 61.77 | 5.57 | 7.30 | 4.60 | 3.23 | 3.07 | 38.23 |
| BVSP | 10.52 | 2.09 | 5.71 | 3.79 | 64.36 | 6.09 | 2.63 | 2.47 | 2.34 | 35.64 |
| JTOPI | 8.92 | 4.12 | 6.78 | 6.60 | 6.95 | 57.18 | 3.75 | 2.83 | 2.87 | 42.82 |
| TASI | 4.13 | 2.09 | 4.29 | 4.37 | 3.78 | 4.81 | 68.24 | 5.06 | 3.24 | 31.76 |
| ADX | 3.95 | 1.61 | 3.11 | 3.24 | 3.32 | 3.20 | 5.83 | 72.78 | 2.95 | 27.22 |
| EGX.30 | 4.75 | 2.19 | 2.71 | 3.62 | 2.92 | 3.78 | 3.30 | 3.15 | 73.58 | 26.42 |
| TO | 49.80 | 18.32 | 34.90 | 32.68 | 42.25 | 45.11 | 28.42 | 24.55 | 21.08 | 297.11 |
| Inc.Own | 114.14 | 93.82 | 100.04 | 94.46 | 106.62 | 102.28 | 96.66 | 97.33 | 94.66 | cTCI/TCI |
| NET | 14.14 | −6.18 | 0.04 | −5.54 | 6.62 | 2.28 | −3.34 | −2.67 | −5.34 | 37.14/33.01 |
| NPT | 8.00 | 1.00 | 5.00 | 3.00 | 7.00 | 6.00 | 4.00 | 2.00 | 0.00 |
| VIX Total | SSE Total | RTSI Total | BSE.30 Total | BVSP Total | JTOPI Total | TASI Total | ADX Total | EGX.30 Total | FROM Total | |
|---|---|---|---|---|---|---|---|---|---|---|
| VIX | 64.34 | 1.59 | 5.15 | 4.01 | 10.21 | 6.81 | 2.62 | 3.02 | 2.25 | 35.66 |
| SSE | 3.71 | 75.50 | 2.73 | 3.14 | 3.15 | 5.84 | 2.14 | 1.81 | 1.98 | 24.50 |
| RTSI | 6.38 | 2.01 | 65.13 | 3.92 | 6.35 | 7.28 | 3.55 | 3.00 | 2.38 | 34.87 |
| BSE.30 | 7.44 | 2.59 | 4.43 | 61.77 | 5.57 | 7.30 | 4.60 | 3.23 | 3.07 | 38.23 |
| BVSP | 10.52 | 2.09 | 5.71 | 3.79 | 64.36 | 6.09 | 2.63 | 2.47 | 2.34 | 35.64 |
| JTOPI | 8.92 | 4.12 | 6.78 | 6.60 | 6.95 | 57.18 | 3.75 | 2.83 | 2.87 | 42.82 |
| TASI | 4.13 | 2.09 | 4.29 | 4.37 | 3.78 | 4.81 | 68.24 | 5.06 | 3.24 | 31.76 |
| ADX | 3.95 | 1.61 | 3.11 | 3.24 | 3.32 | 3.20 | 5.83 | 72.78 | 2.95 | 27.22 |
| EGX.30 | 4.75 | 2.19 | 2.71 | 3.62 | 2.92 | 3.78 | 3.30 | 3.15 | 73.58 | 26.42 |
| TO | 49.80 | 18.32 | 34.90 | 32.68 | 42.25 | 45.11 | 28.42 | 24.55 | 21.08 | 297.11 |
| Inc.Own | 114.14 | 93.82 | 100.04 | 94.46 | 106.62 | 102.28 | 96.66 | 97.33 | 94.66 | cTCI/TCI |
| Net | 14.14 | −6.18 | 0.04 | −5.54 | 6.62 | 2.28 | −3.34 | −2.67 | −5.34 | 37.14/33.01 |
| NPDC | 8.00 | 1.00 | 5.00 | 3.00 | 7.00 | 6.00 | 4.00 | 2.00 | 0.00 |
| VIX 1–5 | SSE 1–5 | RTSI 1–5 | BSE.30 1–5 | BVSP 1–5 | JTOPI 1–5 | TASI 1–5 | ADX 1–5 | EGX.30 1–5 | FROM 1–5 | |
|---|---|---|---|---|---|---|---|---|---|---|
| VIX | 59.24 | 1.49 | 4.71 | 3.75 | 9.59 | 6.37 | 2.38 | 2.84 | 2.00 | 33.14 |
| SSE | 3.32 | 68.96 | 2.43 | 2.86 | 2.79 | 5.16 | 1.90 | 1.69 | 1.73 | 21.89 |
| RTSI | 5.56 | 1.79 | 58.67 | 3.57 | 5.59 | 6.51 | 3.28 | 2.71 | 2.16 | 31.17 |
| BSE.30 | 6.22 | 2.38 | 3.83 | 55.45 | 4.82 | 6.30 | 4.01 | 2.86 | 2.67 | 33.10 |
| BVSP | 9.48 | 1.93 | 5.18 | 3.42 | 58.53 | 5.36 | 2.32 | 2.19 | 2.07 | 31.96 |
| JTOPI | 7.71 | 3.81 | 6.19 | 6.04 | 6.01 | 51.93 | 3.35 | 2.59 | 2.52 | 38.22 |
| TASI | 3.53 | 1.86 | 3.62 | 3.87 | 3.22 | 4.07 | 59.77 | 4.61 | 2.78 | 27.55 |
| ADX | 3.35 | 1.46 | 2.75 | 2.84 | 2.85 | 2.81 | 5.05 | 65.41 | 2.60 | 23.72 |
| EGX.30 | 4.03 | 1.99 | 2.38 | 3.12 | 2.58 | 3.21 | 2.78 | 2.70 | 64.68 | 22.78 |
| TO | 43.20 | 16.72 | 31.10 | 29.47 | 37.47 | 39.78 | 25.06 | 22.19 | 18.54 | 263.53 |
| Inc.Own | 102.44 | 85.68 | 89.77 | 84.92 | 96.00 | 91.72 | 84.83 | 87.60 | 83.21 | cTCI/TCI |
| Net | 10.06 | −5.18 | −0.07 | −3.63 | 5.51 | 1.57 | −2.49 | −1.53 | −4.24 | 32.94/29.28 |
| NPDC | 7.00 | 1.00 | 5.00 | 2.00 | 8.00 | 6.00 | 4.00 | 3.00 | 0.00 |
| VIX 5-Inf | SSE 5-Inf | RTSI 5-Inf | BSE.30 5-Inf | BVSP 5-Inf | JTOPI 5-Inf | TASI 5-Inf | ADX 5-Inf | EGX.30 5-Inf | FROM 5-Inf | |
|---|---|---|---|---|---|---|---|---|---|---|
| VIX | 5.10 | 0.10 | 0.43 | 0.26 | 0.62 | 0.44 | 0.24 | 0.18 | 0.24 | 2.51 |
| SSE | 0.39 | 6.53 | 0.30 | 0.28 | 0.36 | 0.68 | 0.23 | 0.12 | 0.25 | 2.61 |
| RTSI | 0.82 | 0.22 | 6.46 | 0.35 | 0.76 | 0.76 | 0.28 | 0.29 | 0.22 | 3.70 |
| BSE.30 | 1.22 | 0.21 | 0.59 | 6.33 | 0.75 | 1.00 | 0.59 | 0.36 | 0.40 | 5.13 |
| BVSP | 1.04 | 0.16 | 0.53 | 0.37 | 5.83 | 0.73 | 0.31 | 0.28 | 0.27 | 3.68 |
| JTOPI | 1.21 | 0.31 | 0.59 | 0.56 | 0.94 | 5.24 | 0.41 | 0.23 | 0.35 | 4.61 |
| TASI | 0.59 | 0.24 | 0.67 | 0.50 | 0.55 | 0.74 | 8.47 | 0.45 | 0.46 | 4.21 |
| ADX | 0.60 | 0.15 | 0.36 | 0.40 | 0.46 | 0.40 | 0.79 | 7.37 | 0.35 | 3.50 |
| EGX.30 | 0.72 | 0.20 | 0.33 | 0.50 | 0.35 | 0.57 | 0.53 | 0.45 | 8.90 | 3.64 |
| TO | 6.60 | 1.60 | 3.81 | 3.21 | 4.78 | 5.32 | 3.36 | 2.36 | 2.54 | 33.58 |
| Inc.Own | 11.70 | 8.13 | 10.27 | 9.54 | 10.62 | 10.56 | 11.83 | 9.73 | 11.44 | cTCI/TCI |
| Net | 4.08 | −1.01 | 0.11 | −1.91 | 1.10 | 0.72 | −0.85 | −1.14 | −1.10 | 4.20/3.73 |
| NPDC | 8.00 | 2.00 | 5.00 | 3.00 | 7.00 | 6.00 | 3.00 | 1.00 | 1.00 |
| SSE Total | RTSI Total | BSE.30 Total | BVSP Total | JTOPI Total | TASI Total | ADX Total | EGX.30 Total | GPRD Total | FROM Total | |
|---|---|---|---|---|---|---|---|---|---|---|
| SSE | 76.38 | 2.95 | 3.40 | 2.97 | 6.08 | 2.28 | 1.83 | 2.20 | 1.92 | 23.62 |
| RTSI | 2.34 | 67.33 | 4.29 | 6.70 | 7.89 | 3.78 | 3.30 | 2.67 | 1.69 | 32.67 |
| BSE.30 | 3.01 | 4.96 | 64.39 | 5.72 | 8.33 | 4.76 | 3.41 | 3.35 | 2.07 | 35.61 |
| BVSP | 2.24 | 6.56 | 4.13 | 70.50 | 6.62 | 2.82 | 2.91 | 2.60 | 1.62 | 29.50 |
| JTOPI | 4.65 | 7.53 | 7.53 | 7.15 | 61.34 | 4.30 | 2.82 | 3.01 | 1.67 | 38.66 |
| TASI | 2.51 | 4.58 | 4.59 | 3.61 | 5.17 | 69.15 | 5.42 | 3.48 | 1.49 | 30.85 |
| ADX | 1.70 | 3.28 | 3.38 | 3.63 | 3.40 | 6.25 | 73.68 | 3.03 | 1.65 | 26.32 |
| EGX.30 | 2.38 | 2.96 | 3.97 | 2.95 | 3.89 | 3.63 | 3.08 | 75.54 | 1.61 | 24.46 |
| GPRD | 2.27 | 2.32 | 2.41 | 2.17 | 2.19 | 2.28 | 2.90 | 2.18 | 81.28 | 18.72 |
| TO | 21.10 | 35.13 | 33.69 | 34.90 | 43.58 | 30.11 | 25.67 | 22.51 | 13.72 | 260.39 |
| Inc.Own | 97.48 | 102.46 | 98.09 | 105.40 | 104.92 | 99.26 | 99.34 | 98.05 | 94.99 | cTCI/TCI |
| Net | −2.52 | 2.46 | −1.91 | 5.40 | 4.92 | −0.74 | −0.66 | −1.95 | −5.01 | 32.55/28.93 |
| NPDC | 3.00 | 5.00 | 3.00 | 8.00 | 7.00 | 4.00 | 5.00 | 1.00 | 0.00 |
| SSE 1–5 | RTSI 1–5 | BSE.30 1–5 | BVSP 1–5 | JTOPI 1–5 | TASI 1–5 | ADX 1–5 | EGX.30 1–5 | GPRD 1–5 | FROM 1–5 | |
|---|---|---|---|---|---|---|---|---|---|---|
| SSE | 69.83 | 2.64 | 3.08 | 2.60 | 5.31 | 2.03 | 1.70 | 1.93 | 1.80 | 21.09 |
| RTSI | 2.08 | 60.60 | 3.87 | 5.86 | 7.04 | 3.48 | 2.93 | 2.40 | 1.58 | 29.23 |
| BSE.30 | 2.71 | 4.22 | 57.44 | 4.84 | 7.10 | 4.13 | 2.96 | 2.90 | 1.91 | 30.77 |
| BVSP | 2.05 | 5.95 | 3.72 | 64.16 | 5.84 | 2.48 | 2.59 | 2.30 | 1.50 | 26.43 |
| JTOPI | 4.29 | 6.83 | 6.87 | 6.12 | 55.66 | 3.85 | 2.56 | 2.65 | 1.55 | 34.71 |
| TASI | 2.21 | 3.87 | 4.07 | 3.07 | 4.36 | 60.71 | 4.94 | 2.99 | 1.36 | 26.86 |
| ADX | 1.53 | 2.88 | 2.95 | 3.09 | 2.96 | 5.42 | 66.12 | 2.66 | 1.51 | 23.00 |
| EGX.30 | 2.13 | 2.59 | 3.45 | 2.55 | 3.26 | 3.06 | 2.62 | 66.32 | 1.47 | 21.14 |
| GPRD | 2.20 | 2.25 | 2.32 | 2.07 | 2.14 | 2.20 | 2.80 | 2.09 | 78.34 | 18.06 |
| TO | 19.20 | 31.22 | 30.32 | 30.19 | 38.00 | 26.65 | 23.10 | 19.93 | 12.67 | 231.30 |
| Inc.Own | 89.03 | 91.82 | 87.77 | 94.35 | 93.66 | 87.36 | 89.22 | 86.26 | 91.01 | cTCI/TCI |
| Net | −1.89 | 1.99 | −0.45 | 3.77 | 3.29 | −0.21 | 0.10 | −1.21 | −5.39 | 28.91/25.70 |
| NPDC | 3.00 | 6.00 | 3.00 | 7.00 | 7.00 | 4.00 | 4.00 | 2.00 | 0.00 |
| SSE 5-Inf | RTSI 5-Inf | BSE.30 5-Inf | BVSP 5-Inf | JTOPI 5-Inf | TASI 5-Inf | ADX 5-Inf | EGX.30 5-Inf | GPRD 5-Inf | FROM 5-Inf | |
|---|---|---|---|---|---|---|---|---|---|---|
| SSE | 6.56 | 0.31 | 0.32 | 0.37 | 0.76 | 0.24 | 0.13 | 0.27 | 0.12 | 2.53 |
| RTSI | 0.27 | 6.74 | 0.42 | 0.84 | 0.86 | 0.30 | 0.38 | 0.26 | 0.12 | 3.44 |
| BSE.30 | 0.29 | 0.74 | 6.95 | 0.88 | 1.23 | 0.63 | 0.45 | 0.44 | 0.16 | 4.83 |
| BVSP | 0.19 | 0.61 | 0.41 | 6.34 | 0.78 | 0.35 | 0.32 | 0.30 | 0.12 | 3.07 |
| JTOPI | 0.36 | 0.70 | 0.66 | 1.03 | 5.68 | 0.45 | 0.26 | 0.36 | 0.11 | 3.94 |
| TASI | 0.30 | 0.71 | 0.52 | 0.55 | 0.82 | 8.44 | 0.48 | 0.48 | 0.13 | 3.98 |
| ADX | 0.17 | 0.40 | 0.43 | 0.54 | 0.45 | 0.83 | 7.56 | 0.37 | 0.14 | 3.32 |
| EGX.30 | 0.24 | 0.37 | 0.52 | 0.39 | 0.63 | 0.57 | 0.45 | 9.22 | 0.14 | 3.32 |
| GPRD | 0.07 | 0.07 | 0.09 | 0.10 | 0.05 | 0.08 | 0.10 | 0.09 | 2.94 | 0.66 |
| TO | 1.90 | 3.91 | 3.37 | 4.70 | 5.58 | 3.45 | 2.56 | 2.58 | 1.05 | 29.10 |
| Inc.Own | 8.45 | 10.64 | 10.32 | 11.05 | 11.26 | 11.90 | 10.12 | 11.79 | 3.98 | cTCI/TCI |
| Net | −0.63 | 0.47 | −1.47 | 1.63 | 1.64 | −0.53 | −0.76 | −0.74 | 0.39 | 3.64/3.23 |
| NPDC | 2.00 | 5.00 | 2.00 | 7.00 | 6.00 | 3.00 | 2.00 | 1.00 | 8.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasraoui, C.; Alsagr, N.; Jeribi, A.; Farhani, S. Mapping Financial Contagion in Emerging Markets: The Role of the VIX and Geopolitical Risk in BRICS Plus Spillovers. Int. J. Financial Stud. 2025, 13, 228. https://doi.org/10.3390/ijfs13040228
Kasraoui C, Alsagr N, Jeribi A, Farhani S. Mapping Financial Contagion in Emerging Markets: The Role of the VIX and Geopolitical Risk in BRICS Plus Spillovers. International Journal of Financial Studies. 2025; 13(4):228. https://doi.org/10.3390/ijfs13040228
Chicago/Turabian StyleKasraoui, Chourouk, Naif Alsagr, Ahmed Jeribi, and Sahbi Farhani. 2025. "Mapping Financial Contagion in Emerging Markets: The Role of the VIX and Geopolitical Risk in BRICS Plus Spillovers" International Journal of Financial Studies 13, no. 4: 228. https://doi.org/10.3390/ijfs13040228
APA StyleKasraoui, C., Alsagr, N., Jeribi, A., & Farhani, S. (2025). Mapping Financial Contagion in Emerging Markets: The Role of the VIX and Geopolitical Risk in BRICS Plus Spillovers. International Journal of Financial Studies, 13(4), 228. https://doi.org/10.3390/ijfs13040228

