Improving Daily CMIP6 Precipitation in Southern Africa Through Bias Correction— Part 2: Representation of Extreme Precipitation
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. The Study Area
2.2. Data and Methods
2.2.1. Observational Data
2.2.2. CMIP6 Climate Models
2.3. Methods
2.3.1. Bias Correction
2.3.2. Extreme Precipitation Indices
2.3.3. Performance Evaluation Statistical Metrics
3. Results and Discussion
3.1. Geographical Pattern of Mean Extreme Precipitation
3.1.1. Maximum Consecutive Dry Days (CDD) and Wet Days (CWD)
3.1.2. Total Number of Rainy Days (RR1) and Heavy (R10mm) and Extremely Heavy Precipitation Days (R20mm)
3.1.3. Maximum One-Day Precipitation (RX1day), Simple Daily Precipitation Intensity (SDII), and Extremely Wet Days (R95p)
3.2. Performance of Bias-Corrected and Native MME of CMIP6 GCMs in Simulating Extreme Precipitation Observed by CHIRPS, GPCC, and MSWEP
3.2.1. Geographical Distribution of Biases
3.2.2. Region-Wide Aggregated Performance of CMIP6 Models
3.2.3. Ranking of CMIP6 Models
4. Conclusions
- Given the variability in model performance relative to different observational datasets (CHIRPS, GPCC, and MSWEP), the use of multiple reference datasets is vital for robust model evaluation and bias correction.
- No single technique (QDM, QDM95, or SDM) outperformed the others across all indices and datasets. The selection of bias correction methods should consider the characteristics of the extremes being studied. For example, QDM95 may be more suitable for high-impact events such as Rx1day, while SDM offers improved spatial pattern fidelity.
- While MMEs reduce individual model errors, their skill varies by metric, reference dataset, and correction technique. High-performing models like Earth3-Veg and MRI-ESM2 sometimes outperform the MME, suggesting that ensemble mean approaches should be used cautiously. Knutti et al. [84] cautioned against overreliance on MMEs and advocated for performance-based selection.
- Persistent biases over high-altitude regions even after correction indicate the need for improved physical representations in GCMs. Enhanced resolutions and improved parameterizations of convective and orographic processes are essential, echoing the findings of Giorgi et al. [89], Déqué et al. [90], and Ban et al. [91].The inability of conventional techniques to fully address biases in some indices suggests the need for hybrid or adaptive approaches. These may include regional tuning or the integration of machine learning methods. Recent studies such as those by Vrac and Friederichs [92] and Gutmann et al. [93] advocate for data-driven and adaptive correction schemes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Easterling, D.R.; Evans, J.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–426. [Google Scholar] [CrossRef]
- Lu, L.-C.; Chiu, S.-Y.; Chiu, Y.-H.; Chang, T.-H. Sustainability efficiency of climate change and global disasters based on greenhouse gas emissions from the parallel production sectors—A modified dynamic parallel three-stage network dea model. J. Environ. Manag. 2022, 317, 115401. [Google Scholar] [CrossRef] [PubMed]
- Gibba, P.; Sylla, M.B.; Okogbue, E.C.; Gaye, A.T.; Nikiema, M.; Kebe, I. State-of-the-art climate modeling of extreme precipitation over Africa: Analysis of CORDEX added-value over CMIP5. Theor. Appl. Climatol. 2019, 137, 1041–1057. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Park, Y. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Hove, L.; Kambanje, C. Lessons from the el nino–induced 2015/16 drought in the southern africa region. In Current Directions in Water Scarcity Research; Elsevier: Amsterdam, The Netherlands, 2019; Volume 2, pp. 33–54. [Google Scholar]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of climate models. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 741–866. [Google Scholar]
- Chikowore, G.; Nhavira, J.; Munhande, C.; Mashingaidze, T.; Sibanda, M. Natural disasters and development opportunities: Cyclone idai, challenges, integration and development alternatives in Zimbabwe and sub-Saharan Africa in the new millennium. Fountain J. Interdiscip. Stud. 2019, 3, 1–14. [Google Scholar]
- Macamo, C. After idai: Insights from mozambique for climate resilient coastal infrastructure. Policy Insights Afr. Perspect. Glob. Insights 2021, 110, 1–22. [Google Scholar]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Wehner, M.; Lee, J.; Risser, M.; Ullrich, P.; Gleckler, P.; Collins, W.D. Evaluation of extreme sub-daily precipitation in high-resolution global climate model simulations. Philos. Trans. R. Soc. A 2021, 379, 20190545. [Google Scholar] [CrossRef]
- Erlich, C.; McDonald, A.; Schuddeboom, A.; Vishwanathan, G.; Renwick, J.; Rana, S. Positive correlation between wet-day frequency and intensity linked to universal precipitation drivers. Nat. Geosci. 2023, 16, 410–415. [Google Scholar]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. J. R. Meteorol. Soc. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Hossein, P.; Tabari, H.; Willems, P. Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over europe. J. Hydrol. 2020, 590, 125249. [Google Scholar]
- Sun, C.; Liang, X.-Z. Improving us extreme precipitation simulation: Sensitivity to physics parameterizations. Clim. Dyn. 2020, 54, 4891–4918. [Google Scholar] [CrossRef]
- Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G. Response of precipitation extremes to idealized global warming in an aqua-planet climate model: Towards a robust projection across different horizontal resolutions. Tellus A Dyn. Meteorol. Oceanogr. 2011, 63, 876–883. [Google Scholar] [CrossRef]
- Crétat, J.; Vizy, E.K.; Cook, K.H. How well are daily intense rainfall events captured by current climate models over africa? Clim. Dyn. 2014, 42, 2691–2711. [Google Scholar] [CrossRef]
- Huang, B.; Liu, Z.; Liu, S.; Duan, Q. Investigating the performance of cmip6 seasonal precipitation predictions and a grid based model heterogeneity oriented deep learning bias correction framework. J. Geophys. Atmos. 2023, 128, e2023JD039046. [Google Scholar] [CrossRef]
- Mishra, A.K.; Dubey, A.K.; Dinesh, A.S. Diagnosing whether the increasing horizontal resolution of regional climate model inevitably capable of adding value: Investigation for indian summer monsoon. Clim. Dyn. 2023, 60, 1925–1945. [Google Scholar] [CrossRef]
- Casanueva, A.; Herrera, S.; Iturbide, M.; Lange, S.; Jury, M.; Dosio, A.; Maraun, D.; Gutiérrez, J.M. Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch. Atmos. Sci. Lett. 2020, 21, e978. [Google Scholar] [CrossRef]
- Tabari, H.; Paz, S.M.; Buekenhout, D.; Willems, P. Comparison of statistical downscaling methods for climate change impact analysis on precipitation-driven drought. Hydrol. Earth Syst. Sci. 2021, 25, 3493–3517. [Google Scholar] [CrossRef]
- Jaiswal, R.; Mall, R.; Singh, N.; Lakshmi Kumar, T.; Niyogi, D. Evaluation of bias correction methods for regional climate models: Downscaled rainfall analysis over diverse agroclimatic zones of india. Earth Space Sci. 2022, 9, e2021EA001981. [Google Scholar] [CrossRef]
- Gumindoga, W.; Rientjes, T.H.; Haile, A.T.; Makurira, H.; Reggiani, P. Performance of bias-correction schemes for cmorph rainfall estimates in the zambezi river basin. Hydrol. Earth Syst. Sci. 2019, 23, 2915–2938. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over north america. Water Resour. Res. 2013, 49, 4187–4205. [Google Scholar] [CrossRef]
- Ayugi, B.; Tan, G.; Ruoyun, N.; Babaousmail, H.; Ojara, M.; Wido, H.; Mumo, L.; Ngoma, N.H.; Nooni, I.K.; Ongoma, V. Quantile mapping bias correction on rossby centre regional climate models for precipitation analysis over Kenya, East Africa. Water 2020, 12, 801. [Google Scholar] [CrossRef]
- Hamadalnel, M.; Zhu, Z.; Gaber, A.; Iyakaremye, V.; Ayugi, B. Possible changes in sudan’s future precipitation under the high and medium emission scenarios based on bias adjusted gcms. Atmos. Res. 2022, 269, 106036. [Google Scholar] [CrossRef]
- Bellprat, O.; Lott, F.C.; Gulizia, C.; Parker, H.R.; Pampuch, L.A.; Pinto, I.; Ciavarella, A.; Stott, P.A. Unusual past dry and wet rainy seasons over southern africa and south america from a climate perspective. Weather Clim. Extrem. 2015, 9, 36–46. [Google Scholar] [CrossRef]
- Sian, K.T.C.L.K.; Hagan, D.F.T.; Ayugi, B.O.; Nooni, I.K.; Ullah, W.; Babaousmail, H.; Ongoma, V. Projections of precipitation extremes based on bias-corrected coupled model intercomparison project phase 6 models ensemble over southern africa. Int. J. Climatol. 2022, 42, 8269–8289. [Google Scholar] [CrossRef]
- Samuel, S.; Mengistu Tsidu, G.; Dosio, A.; Mphale, K. Assessment of historical and future mean and extreme precipitation over sub-saharan africa using nex-gddp-cmip6: Part i—Evaluation of historical simulation. Int. J. Climatol. 2025, 45, e8672. [Google Scholar] [CrossRef]
- Samuel, S.; Dosio, A.; Mphale, K.; Faka, D.N.; Wiston, M. Comparison of multimodel ensembles of global and regional climate models projections for extreme precipitation over four major river basins in southern africa—Assessment of the historical simulations. Clim. Change 2023, 176, 57. [Google Scholar] [CrossRef]
- Muller, A.; Reason, C.; Fauchereau, N. Extreme rainfall in the namib desert during late summer 2006 and influences of regional ocean variability. Int. J. Climatol. J. R. Meteorol. 2008, 28, 1061–1070. [Google Scholar] [CrossRef]
- Rapolaki, R.S.; Reason, C.J. Tropical storm chedza and associated floods over south-eastern africa. Nat. Hazards 2018, 93, 189–217. [Google Scholar] [CrossRef]
- McBride, C.M.; Kruger, A.C.; Dyson, L. Changes in extreme daily rainfall characteristics in south africa: 1921–2020. Weather Clim. 2022, 38, 100517. [Google Scholar]
- Addisuu, A.A.; Mengistu Tsidu, G.; Basupi, L.V. Improving Daily CMIP6 Precipitation in Southern Africa Through Bias Correction—Part 1: Spatiotemporal Characteristics. Climate, 2025; accepted for publication. [Google Scholar]
- NOAA National Geophysical Data Center. 2-Minute Gridded Global Relief Data (ETOPO2) v2; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2006. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; Van Dijk, A.I.J.M.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily Evaluation of 26 Precipitation Datasets Using Stage-IV Gauge-Radar Data for the CONUS. Hydrol. Earth Syst. Sci. 2019, 23, 207–224. [Google Scholar] [CrossRef]
- Mekonnen, K.; Velpuri, N.M.; Leh, M.; Akpoti, K.; Owusu, A.; Tinonetsana, P.; Hamouda, T.; Ghansah, B.; Paranamana, T.P.; Munzimi, Y. Accuracy of satellite and reanalysis rainfall estimates over africa: A multi-scale assessment of eight products for continental applications. J. Hydrol. Reg. Stud. 2023, 49, 101514. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef]
- Karl, T.R.; Easterling, D.R. Climate extremes: Selected review and future research directions. Clim. Change 1999, 42, 309–325. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.; Zhang, X.; Zwiers, F.; Bronaugh, D. Climate extremes indices in the cmip5 multimodel ensemble: Part 1. model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Chervenkov, H.; Slavov, K. Etccdi climate indices for assessment of the recent climate over southeast europe. In Advances in High Performance Computing: Results of the International Conference on “High Performance Computing” Borovets, Bulgaria, 2019; Springer: Berlin/Heidelberg, Germany, 2021; pp. 398–412. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the cmip5 multimodel ensemble: Part 2. future climate projections. J. Geophys. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Akinsanola, A.; Kooperman, G.; Pendergrass, A.; Hannah, W.; Reed, K. Seasonal representation of extreme precipitation indices over the united states in cmip6 present-day simulations. Environ. Res. Lett. 2020, 15, 094003. [Google Scholar] [CrossRef]
- Rabezanahary Tanteliniaina, M.F.; Zhai, J.; Andrianarimanana, M.H. Performance evaluation of cmip6 in simulating extreme precipitation in madagascar. Theor. Appl. Climatol. 2024, 155, 4089–4100. [Google Scholar] [CrossRef]
- Usman, M.T.; Reason, C. Dry spell frequencies and their variability over southern africa. Clim. Res. 2004, 26, 199–211. [Google Scholar] [CrossRef]
- Thoithi, W.; Blamey, R.C.; Reason, C.J. Dry spells, wet days, and their trends across southern africa during the summer rainy season. Geophys. Res. Lett. 2021, 48, e2020GL091041. [Google Scholar] [CrossRef]
- Faye, A.; Akinsanola, A.A. Evaluation of extreme precipitation indices over west africa in cmip6 models. Clim. Dyn. 2022, 58, 925–939. [Google Scholar] [CrossRef]
- Klutse, N.A.B.; Quagraine, K.A.; Nkrumah, F.; Quagraine, K.T.; Berkoh-Oforiwaa, R.; Dzrobi, J.F.; Sylla, M.B. The climatic analysis of summer monsoon extreme precipitation events over west africa in cmip6 simulations. Earth Syst. Environ. 2021, 5, 25–41. [Google Scholar] [CrossRef]
- Chongue, L.A.; Nishii, K. The influence of tropical and subtropical modes of climate variability on precipitation in mozambique. Int. Climatol. 2024, 44, 2993–3005. [Google Scholar] [CrossRef]
- Dunning, C.M.; Black, E.C.; Allan, R.P. The onset and cessation of seasonal rainfall over africa. J. Geophys. Res. Atmos. 2016, 121, 11–405. [Google Scholar] [CrossRef]
- Nicholson, S.E. The itcz and the seasonal cycle over equatorial africa. Bull. Am. Meteorol. Soc. 2018, 99, 337–348. [Google Scholar] [CrossRef]
- Ratna, S.B.; Ratnam, J.; Behera, S.; Rautenbach, C.; Ndarana, T.; Takahashi, K.; Yamagata, T. Performance assessment of three convective parameterization schemes in wrf for downscaling summer rainfall over south africa. Clim. Dyn. 2014, 42, 2931–2953. [Google Scholar] [CrossRef]
- Weber, T.; Cabos, W.; Sein, D.V.; Jacob, D. Benefits of simulating precipitation characteristics over africa with a regionally-coupled atmosphere—Ocean model. Clim. Dyn. 2023, 60, 1079–1102. [Google Scholar] [CrossRef]
- Rouault, M.; Dieppois, B.; Tim, N.; Hünicke, B.; Zorita, E. Southern Africa Climate Over the Recent Decades: Description, Variability and Trends. In Sustainability of Southern African Ecosystems under Global Change: Science for Management and Policy Interventions; Springer: Berlin/Heidelberg, Germany, 2024; pp. 149–168. [Google Scholar] [CrossRef]
- Jones, P.W. First-and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates; Mon. Weather. Rev. 1999, 127, 2204–2210. [Google Scholar] [CrossRef]
- Herrera, S.; Gutiérrez, J.M.; Ancell, R.; Pons, M.R.; Frías, M.D.; Fernández, J. Development and Analysis of a 50-Year High-Resolution Daily Gridded Precipitation Dataset over Spain (Spain02). Int. J. Climatol. 2012, 32, 74–85. [Google Scholar] [CrossRef]
- Hofstra, N.; Haylock, M.; New, M.; Jones, P.; Frei, C. Comparison of Six Methods for the Interpolation of Daily European Climate Data. J. Geophys. Res. Atmos. 2008, 113, D21. [Google Scholar] [CrossRef]
- Gordon, N.D.; Shaykewich, J. Guidelines on Performance Assessment of Public Weather Services; World Meteorological Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Tyson, P. Atmospheric circulation changes and palaeoclimates of Southern Africa. S. Afr. J. Sci. 1999, 95, 194–201. [Google Scholar]
- Cook, C.; Reason, C.J.; Hewitson, B.C. Wet and dry spells within particularly wet and dry summers in the South African summer rainfall region. Clim. Res. 2004, 26, 17–31. [Google Scholar] [CrossRef]
- Reason, C.; Hachigonta, S.; Phaladi, R. Interannual variability in rainy season characteristics over the limpopo region of Southern Africa. Int. J. Climatol. J. R. Meteorol. 2005, 25, 1835–1853. [Google Scholar] [CrossRef]
- Ogega, O.M.; Koske, J.; Kung’u, J.B.; Scoccimarro, E.; Endris, H.S.; Mistry, M.N. Heavy precipitation events over east africa in a changing climate: Results from cordex rcms. Clim. Dyn. 2020, 55, 993–1009. [Google Scholar] [CrossRef]
- Ayugi, B.; Zhihong, J.; Zhu, H.; Ngoma, H.; Babaousmail, H.; Rizwan, K.; Dike, V. Comparison of cmip6 and cmip5 models in simulating mean and extreme precipitation over east africa. Int. J. Climatol. 2021, 41, 6474–6496. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Zhang, Y. How often does it really rain? Bull. Am. Meteorol. Soc. 2018, 99, 289–298. [Google Scholar] [CrossRef]
- Samuel, S.; Mengistu Tsidu, G.; Dosio, A.; Mphale, K. Exploring the influence of improved horizontal resolution on extreme precipitation in Southern Africa major river basins: Insights from cmip6 highresmip simulations. Clim. Dyn. 2024, 62, 8099–8120. [Google Scholar] [CrossRef]
- Sylla, M.; Giorgi, F.; Coppola, E.; Mariotti, L. Uncertainties in daily rainfall over africa: Assessment of gridded observation products and evaluation of a regional climate model simulation. Int. J. Climatol. 2013, 33, 1805–1817. [Google Scholar] [CrossRef]
- Pinto, I.; Lennard, C.; Tadross, M.; Hewitson, B.; Dosio, A.; Nikulin, G.; Panitz, H.-J.; Shongwe, M.E. Evaluation and projections of extreme precipitation over southern africa from two cordex models. Clim. Change 2016, 135, 655–668. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J.; Lin, W.; Xu, H. Comparison of cmip6 and cmip5 models in simulating climate extremes. Sci. Bull. 2020, 65, 1415–1418. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Maurer, E.P.; Abatzoglou, J.T.; Hegewisch, K.C. Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeorol. 2015, 16, 2421–2442. [Google Scholar] [CrossRef]
- Vrac, M.; Noël, T.; Vautard, R. Bias correction of precipitation through Singularity Stochastic Removal: Because occurrences matter. J. Geophys. Res. Atmos. 2016, 121, 5237–5258. [Google Scholar] [CrossRef]
- Vidrio-Sahagún, C.T.; He, J. The decomposition-based nonstationary flood frequency analysis. J. Hydrol. 2022, 612, 128186. [Google Scholar] [CrossRef]
- Vidrio-Sahagún, C.T.; Ruschkowski, J.; He, J.; Pietroniro, A. A practice-oriented framework for stationary and nonstationary flood frequency analysis. Environ. Model. Softw. 2024, 173, 105940. [Google Scholar] [CrossRef]
- Vidrio-Sahagún, C.T.; He, J.; Pietroniro, A. Improved Correction of Extreme Precipitation through Explicit and Continuous Nonstationarity Treatment and the Metastatistical Approach. Water Resour. Res. 2025, 61, e2024WR037721. [Google Scholar] [CrossRef]
- Agel, L.; Barlow, M. How well do cmip6 historical runs match observed northeast us precipitation and extreme precipitation–related circulation. J. Clim. 2020, 33, 9835–9848. [Google Scholar] [CrossRef]
- Jima, W.L.; Bahaga, T.K.; Mengistu Tsidu, G. Fidelity of cmip6 models in simulating june–september rainfall climatology, spatial and trend patterns over complex topography of greater horn of Africa. Pure Appl. Geophys. 2024, 181, 577–609. [Google Scholar] [CrossRef]
- Ge, F.; Zhu, S.; Luo, H.; Zhi, X.; Wang, H. Future changes in precipitation extremes over southeast asia: Insights from cmip6 multi-model ensemble. Environ. Res. Lett. 2021, 16, 024013. [Google Scholar] [CrossRef]
- Srivastava, A.; Grotjahn, R.; Ullrich, P.A. Evaluation of historical cmip6 model simulations of extreme precipitation over contiguous us regions. Weather Clim. Extrem. 2020, 29, 100268. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A. Impacts of uncertainties in european gridded precipitation observations on regional climate analysis. Int. J. Climatol. 2017, 37, 305–327. [Google Scholar] [CrossRef] [PubMed]
- Gampe, D.; Schmid, J.; Ludwig, R. Impact of reference dataset selection on rcm evaluation, bias correction, and resulting climate change signals of precipitation. J. Hydrometeorol. 2019, 20, 1813–1828. [Google Scholar] [CrossRef]
- Kotlarski, S.; Szabó, P.; Herrera, S.; Räty, O.; Keuler, K.; Soares, P.M.; Cardoso, R.M.; Bosshard, T.; Pagé, C.; Boberg, F.; et al. Observational uncertainty and regional climate model evaluation: A pan-european perspective. Int. J. Climatol. 2019, 39, 3730–3749. [Google Scholar] [CrossRef]
- de Medeiros, F.J.; de Oliveira, C.P.; Avila-Diaz, A. Evaluation of extreme precipitation climate indices and their projected changes for brazil: From cmip3 to cmip6. Weather Clim. Extrem. 2022, 38, 100511. [Google Scholar] [CrossRef]
- Tebaldi, C.; Knutti, R. The Use of the Multi-Model Ensemble in Probabilistic Climate Projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2053–2075. [Google Scholar] [CrossRef] [PubMed]
- Knutti, R.; Furrer, R.; Tebaldi, C.; Cermak, J.; Meehl, G.A. Challenges in Combining Projections from Multiple Climate Models. J. Clim. 2010, 23, 2739–2758. [Google Scholar] [CrossRef]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance Metrics for Climate Models. J. Geophys. Res. Atmos. 2008, 113, D06104. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themeßl, M.; et al. Precipitation Downscaling under Climate Change: Recent Developments to Bridge the Gap between Dynamical Models and the End User. Rev. Geophys. 2010, 48, RG3003. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, L.; Xu, Z.; Scott, D.F. Evaluation of Methods for Estimating the Effects of Vegetation Change and Climate Variability on Streamflow. Water Resour. Res. 2010, 46, W03505. [Google Scholar] [CrossRef]
- Ahmed, K.F.; Wang, G.; Silander, J.; Wilson, A.M.; Allen, J.M.; Horton, R.; Anyah, R. Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the US northeast. Glob. Planet. Change 2013, 100, 320–332. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing climate information needs at the regional level: The CORDEX framework. World Meteorol. Organ. (WMO) Bull. 2009, 58, 175. [Google Scholar]
- Déqué, M.; Rowell, D.P.; Lüthi, D.; Giorgi, F.; Christensen, J.H.; Rockel, B.; Jacob, D.; Kjellström, E.; De Castro, M.; Van Den Hurk, B.J.J.M. An Intercomparison of Regional Climate Simulations for Europe: Assessing Uncertainties in Model Projections. Clim. Change 2007, 81, 53–70. [Google Scholar] [CrossRef]
- Ban, N.; Schmidli, J.; Schär, C. Evaluation of the Convection-Resolving Regional Climate Modeling Approach in Decade-Long Simulations. J. Geophys. Res. Atmos. 2014, 119, 7889–7907. [Google Scholar] [CrossRef]
- Vrac, M.; Friederichs, P. Multivariate—Intervariable, spatial, and temporal—bias correction. J. Clim. 2015, 28, 218–237. [Google Scholar] [CrossRef]
- Gutmann, E.; Barstad, I.; Clark, M.; Arnold, J.; Rasmussen, R. The Intermediate Complexity Atmospheric Research Model (ICAR). J. Hydrometeorol. 2016, 17, 957–973. [Google Scholar] [CrossRef]
Categories | Extreme Indices | Full Name | Definition | Units |
---|---|---|---|---|
Absolute indices | RX1day | Maximum 1-day precipitation | Maximum amount of precipitation in 1 day | mm |
Intensity indices | SDII | Simple daily intensity | Total precipitation divided by the number of wet days | mm/day |
CDD | Consecutive dry days | Maximum number of consecutive dry days | days | |
Duration indices | (i.e., daily precipitation < 1 mm) | |||
CWD | Consecutive wet days | Maximum number of consecutive wet days | days | |
(i.e., daily precipitation ≥ 1 mm) | ||||
RR1 | Total rainy days | Total number of day with PR ≥ 1 mm | days | |
R10mm | Number of heavy | Number of days with precipitation ≥ 10 mm | days | |
Threshold indices | precipitation days | |||
R20mm | Number of extremely heavy | Number of days with precipitation ≥ 20 mm | days | |
precipitation days | ||||
Percentile indices | R95p | Extremely wet days | Total wet days precipitation when PR > 95th | mm |
Model | Bias Correction | CHIRPS | GPCC | MSWEP | |||
---|---|---|---|---|---|---|---|
CRI | Rank | CRI | Rank | CRI | Rank | ||
CESM2 | Native GCM | 0.15 | 34 | 0.48 | 21 | 0.32 | 28 |
QDM95 | 0.34 | 26 | 0.78 | 5 | 0.55 | 16 | |
QDM | 0.64 | 16 | 0.54 | 17 | 0.50 | 19 | |
SDM | 0.72 | 11 | 0.51 | 20 | 0.48 | 21 | |
CM2-SR5 | Native GCM | 0.14 | 35 | 0.03 | 35 | 0.13 | 36 |
QDM95 | 0.40 | 24 | 0.56 | 16 | 0.68 | 11 | |
QDM | 0.49 | 21 | 0.28 | 25 | 0.64 | 13 | |
SDM | 0.80 | 8 | 0.53 | 18 | 0.34 | 26 | |
CMCC-ESM2 | Native GCM | 0.09 | 37 | 0.09 | 34 | 0.05 | 37 |
QDM95 | 0.36 | 25 | 0.71 | 8 | 0.76 | 8 | |
QDM | 0.52 | 17 | 0.19 | 31 | 0.51 | 18 | |
SDM | 0.76 | 10 | 0.56 | 16 | 0.40 | 14 | |
Earth3 | Native GCM | 0.15 | 34 | 0.15 | 32 | 0.16 | 34 |
QDM95 | 0.47 | 23 | 0.96 | 1 | 0.92 | 2 | |
QDM | 0.79 | 9 | 0.45 | 23 | 0.80 | 7 | |
SDM | 0.95 | 2 | 0.79 | 4 | 0.54 | 17 | |
Earth3-Veg | Native GCM | 0.11 | 32 | 0.10 | 33 | 0.14 | 35 |
QDM95 | 0.52 | 19 | 0.95 | 2 | 0.97 | 1 | |
QDM | 0.84 | 6 | 0.48 | 21 | 0.81 | 6 | |
SDM | 0.98 | 1 | 0.72 | 7 | 0.47 | 22 | |
INM-CM4 | Native GCM | 0.01 | 40 | 0.23 | 29 | 0.03 | 38 |
QDM95 | 0.26 | 29 | 0.64 | 11 | 0.32 | 28 | |
QDM | 0.31 | 27 | 0.22 | 30 | 0.25 | 32 | |
SDM | 0.47 | 23 | 0.34 | 24 | 0.43 | 24 | |
INM-CM5 | Native GCM | 0.02 | 39 | 0.23 | 29 | 0.01 | 39 |
QDM95 | 0.24 | 30 | 0.67 | 10 | 0.30 | 30 | |
QDM | 0.29 | 28 | 0.26 | 26 | 0.21 | 33 | |
SDM | 0.49 | 21 | 0.48 | 21 | 0.41 | 25 | |
MPI-ESM1 | Native GCM | 0.01 | 40 | 0.02 | 36 | 0.14 | 35 |
QDM95 | 0.55 | 18 | 0.63 | 12 | 0.80 | 7 | |
QDM | 0.68 | 13 | 0.15 | 32 | 0.59 | 14 | |
SDM | 0.92 | 3 | 0.58 | 14 | 0.49 | 20 | |
MRI-ESM2 | Native GCM | 0.07 | 38 | 0.25 | 27 | 0.21 | 25 |
QDM95 | 0.36 | 25 | 0.83 | 3 | 0.85 | 4 | |
QDM | 0.63 | 17 | 0.60 | 13 | 0.97 | 1 | |
SDM | 0.88 | 5 | 0.70 | 9 | 0.45 | 23 | |
NorESM2 | Native GCM | 0.23 | 31 | 0.58 | 14 | 0.58 | 15 |
QDM95 | 0.48 | 22 | 0.74 | 6 | 0.65 | 12 | |
QDM | 0.70 | 12 | 0.71 | 8 | 0.71 | 10 | |
SDM | 0.79 | 7 | 0.52 | 19 | 0.33 | 27 | |
TaiESM1 | Native GCM | 0.19 | 30 | 0.04 | 33 | 0.26 | 31 |
QDM95 | 0.51 | 20 | 0.83 | 3 | 0.86 | 3 | |
QDM | 0.65 | 15 | 0.24 | 28 | 0.66 | 12 | |
SDM | 0.82 | 7 | 0.47 | 22 | 0.31 | 29 | |
MME | Native GCM | 0.21 | 32 | 0.51 | 18 | 0.49 | 20 |
QDM95 | 0.66 | 14 | 0.96 | 1 | 0.83 | 5 | |
QDM | 0.90 | 4 | 0.57 | 15 | 0.73 | 9 | |
SDM | 0.95 | 2 | 0.64 | 11 | 0.45 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addisuu, A.A.; Mengistu Tsidu, G.; Basupi, L.V. Improving Daily CMIP6 Precipitation in Southern Africa Through Bias Correction— Part 2: Representation of Extreme Precipitation. Climate 2025, 13, 93. https://doi.org/10.3390/cli13050093
Addisuu AA, Mengistu Tsidu G, Basupi LV. Improving Daily CMIP6 Precipitation in Southern Africa Through Bias Correction— Part 2: Representation of Extreme Precipitation. Climate. 2025; 13(5):93. https://doi.org/10.3390/cli13050093
Chicago/Turabian StyleAddisuu, Amarech Alebie, Gizaw Mengistu Tsidu, and Lenyeletse Vincent Basupi. 2025. "Improving Daily CMIP6 Precipitation in Southern Africa Through Bias Correction— Part 2: Representation of Extreme Precipitation" Climate 13, no. 5: 93. https://doi.org/10.3390/cli13050093
APA StyleAddisuu, A. A., Mengistu Tsidu, G., & Basupi, L. V. (2025). Improving Daily CMIP6 Precipitation in Southern Africa Through Bias Correction— Part 2: Representation of Extreme Precipitation. Climate, 13(5), 93. https://doi.org/10.3390/cli13050093