Extreme Precipitation Events During the Wet Season of the South America Monsoon: A Historical Analysis over Three Major Brazilian Watersheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Madeira River Basin
2.1.2. Paraná River Basin
2.1.3. São Francisco River Basin
2.2. Data
2.3. Validation of the Precipitation Data
2.4. Extreme Weather Events
2.5. Extreme Climate Events
3. Results and Discussion
3.1. Basic Statistical Analysis
3.2. Extreme Daily Precipitation Events and Trend Analysis
3.3. Extreme Climate Events
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lenters, J.D.; Cook, K.H. Simulation and diagnosis of the regional summertime precipitation climatology of South America. J. Clim. 1995, 8, 2988–3005. [Google Scholar] [CrossRef]
- Zhou, J.; Lau, K.M. Does a monsoon climate exist over South America? J. Clim. 1998, 11, 1020–1040. [Google Scholar] [CrossRef]
- Jones, C. and Carvalho, L.M. Active and break phases in the South American monsoon system. J. Clim. 2002, 15, 905–914. [Google Scholar] [CrossRef]
- Marengo, J.A.; Liebmann, B.; Grimm, A.M.; Misra, V.; Silva Dias, P.L.; Cavalcanti, I.F.A.; Carvalho, L.M.V.; Berbery, E.H.; Ambrizzi, T.; Vera, C.S.; et al. Recent developments on the South American monsoon system. Int. J. Climatol. 2012, 32, 1–21. [Google Scholar] [CrossRef]
- Ferreira, G.W.S.; Reboita, M.S. A new look into the South America precipitation regimes: Observation and forecast. Atmosphere 2022, 13, 873. [Google Scholar] [CrossRef]
- Reboita, M.S.; Teodoro, T.A.; Ferreira, G.W.S.; Souza, C.A. Ciclo de vida do sistema de monção da América do Sul: Clima presente e futuro. Rev. Bras. Geogr. FÍS. 2022, 15, 343–358. [Google Scholar] [CrossRef]
- Coelho, C.A.S.; Oliveira, C.P.; Ambrizzi, T.; Reboita, M.S.; Carpenedo, C.B.; Campos, J.L.P.S.; Tomaziello, A.C.N.; Pampuch, L.A.; Custódio, M.S.; Dutra, L.M.M.; et al. The 2014 southeast Brazil austral summer drought: Regional scale mechanisms and teleconnections. Clim. Dyn. 2016, 46, 3737–3752. [Google Scholar] [CrossRef]
- Marengo, J.A.; Williams, E.R.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A. Extreme seasonal climate variations in the Amazon Basin: Droughts and floods. Interact. Biosph. Atmos. Hum. Land Use Amaz. Basin 2016, 227, 55–76. [Google Scholar] [CrossRef]
- Marengo, J.A.; Borma, L.S.; Rodríguez, D.A.; Pinho, P.; Soares, W.R.; Alves, L.M. Recent extremes of drought and flooding in Amazonia: Vulnerabilities and human adaptation. Am. J. Clim. Change 2013, 2, 87–96. [Google Scholar] [CrossRef]
- Santos, E.B.; Freitas, E.D.; Rafee, S.A.A.; Fujita, T.; Rudke, A.P.; Martins, L.D.; Martins, J.A. Spatio-temporal variability of wet and drought events in the Paraná River basin—Brazil and its association with the El Niño—Southern Oscillation phenomenon. Int. J. Climatol. 2021, 41, 4879–4897. [Google Scholar] [CrossRef]
- Freitas, A.A.; Drumond, A.; Carvalho, V.S.B.; Reboita, M.S.; Silva, B.C.; Uvo, C.B. Drought assessment in São Francisco river basin, Brazil: Characterization through SPI and associated anomalous climate patterns. Atmosphere 2022, 13, 41. [Google Scholar] [CrossRef]
- Freitas, A.A.; Reboita, M.S.; Carvalho, V.S.B.; Drumond, A.; Ferraz, S.E.T.; Silva, B.C.; Rocha, R.P. Atmospheric and oceanic patterns associated with extreme drought events over the Paraná Hydrographic Region, Brazil. Climate 2023, 11, 12. [Google Scholar] [CrossRef]
- IPCC. Annex II: Glossary. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, S.E., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2897–2930. [Google Scholar]
- Silva, V.B.; Kousky, V.E. The South American monsoon system: Climatology and variability. Mod. Climatol. 2012, 123, 152. Available online: https://www.whoi.edu/cms/files/silva_kousky_217705.pdf (accessed on 17 June 2024).
- Vu, T.M.; Mishra, A.K. Nonstationary frequency analysis of the recent extreme precipitation events in the United States. J. Hydrol. 2019, 575, 999–1010. [Google Scholar] [CrossRef]
- Van Lanen, H.A.J.; Laaha, G.; Kingston, D.G.; Gauster, T.; Ionita, M.; Vidal, J.P.; Vlnas, R.; Tallaksen, L.M.; Stahl, K.; Hannaford, J.; et al. Hydrology needed to manage droughts: The 2015 European case. Hydrol. Process. 2016, 30, 3097–3104. [Google Scholar] [CrossRef]
- Marengo, J.A.; Tomasella, J.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A. The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Lima, L.S.; Silva, F.E.O.E.; Dorio Anastácio, P.R.; Kolanski, M.M.D.P.; Pires Pereira, A.C.; Menezes, M.S.R.; Macedo, M.N. Severe droughts reduce river navigability and isolate communities in the Brazilian Amazon. Commun. Earth Environ. 2024, 5, 370. [Google Scholar] [CrossRef]
- Lagos-Zúniga, M.; Balmaceda-Huarte, R.; Regoto, P.; Torrez, L.; Olmo, M.; Lyra, A.; Pareja-Quispe, D.; Bettolli, M.L. Extreme indices of temperature and precipitation in South America: Trends and intercomparison of regional climate models. Clim. Dyn. 2022, 62, 4541–4562. [Google Scholar] [CrossRef]
- Cavazos, T.; Bettolli, M.L.; Campbell, D.; Sánchez Rodríguez, R.A.; Mycoo, M.; Arias, P.A.; Rivera, J.; Simões Reboita, M.; Gulizia, C.; Hidalgo, H.G.; et al. Challenges for climate change adaptation in Latin America and the Caribbean region. Front. Clim. 2024, 6, 1392033. [Google Scholar] [CrossRef]
- ANA. Projeto de Gerenciamento Integrado das Atividades Desenvolvidas em Terra na Bacia do Rio São Francisco: Programa de ações estratégicas para o gerenciamento integrado da Bacia do Rio São Francisco e da sua Zona Costeira; PAE: Brasília, Brazil, 2004; p. 50. [Google Scholar]
- ANA. Conjuntura dos recursos hídricos no Brasil: Regiões hidrográficas brasileiras—Edição Especial; ANA: Brasília, Brazil, 2015; p. 164. [Google Scholar]
- ANA. Madeira. 2024. Available online: https://www.gov.br/ana/pt-br/sala-de-situacao/rio-madeira/saiba-mais (accessed on 10 June 2024).
- CEMADEN. 13/04/2018—Previsão de vazão para bacia do Rio Madeira. 2018. Available online: http://www2.cemaden.gov.br/13042018-previsao-de-vazao-para-bacia-do-rio-madeira/ (accessed on 10 June 2024).
- ANA. Plano estratégico de recursos hídricos dos afluentes da margem direita do rio Amazonas: Resumo executivo/Agência Nacional de Águas; ANA: Brasília, Brazil, 2012; p. 146. [Google Scholar]
- Santo Antônio Energia. Saiba Mais Rio Madeira. 2022. Available online: https://www.santoantonioenergia.com.br/wp-content/uploads/2022/08/02_rio_madeira.pdf (accessed on 10 June 2024).
- Eletrobras Furnas. Usina de Santo Antônio. 2024. Available online: https://www.furnas.com.br/subsecao/134/usina-de-santo-antonio?culture=pt (accessed on 10 June 2024).
- JIRAU. A estrutura da usina hidrelétrica Jirau. 2024. Available online: https://www.jirauenergia.com.br/conheca-a-uhe/ (accessed on 10 June 2024).
- INPA. Biodiversidade do médio Madeira: Bases científicas para propostas de conservação; INPA: Manaus, Brazil, 2007; p. 239. [Google Scholar]
- Perigolo, N.A.; Medeiros, M.B.; Simon, M.F. Vegetation types of the upper Madeira River in Rondônia, Brazil. Brittonia 2017, 69, 423–446. [Google Scholar] [CrossRef]
- Muniz, L.S. Análise dos padrões fluviométricos da Bacia do Rio Madeira-Brasil. Master’s Thesis, Universidade Federal do Amazonas, Manaus, Brazil, 2013; p. 146. Available online: https://tede.ufam.edu.br/handle/tede/3961 (accessed on 10 June 2024).
- Ribeiro Neto, A.; Silva, R.C.V.; Collischonn, W.; Tucci, C.E.M. Simulação na bacia Amazônica com dados limitados: Rio Madeira. RBRH 2008, 13, 47–58. [Google Scholar] [CrossRef]
- MMA. Caderno da Região Hidrográfica do Paraná/Ministério do Meio Ambiente; Secretaria de Recursos Hídricos; MMA: Brasília, Brazil, 2006; p. 122. [Google Scholar]
- SNIRH. Atlas Geográfico digital de recursos hídricos do Brasil. 2013. Available online: https://portal1.snirh.gov.br/atlasrh2013/ (accessed on 17 July 2024).
- ANA. Atlas Brasil: Abastecimento urbano de água: Panorama nacional; ANA: Brasília, Brazil, 2010; p. 72. [Google Scholar]
- Itaipu Binacional. Assegurar o acesso confiável, sustentável, moderno e a preço acessível à energia para todas e todos/Itaipu Binacional; Central Hidrelétrica de Itaipu: Paraná, Brazil, 2019; p. 56. Available online: https://www.itaipu.gov.br/sites/default/files/af_df/Estudo_de_caso_Itaipu_ODS_7.pdf (accessed on 17 June 2024).
- Itaipu Binacional. Relatório Anual Itaipu Binacional 2020; Central Hidrelétrica de Itaipu: Paraná, Brazil, 2020; p. 132. Available online: https://www.itaipu.gov.br/sites/default/files/af_df/Relatorio_Anual_2020_v2.pdf (accessed on 17 June 2024).
- Rudke, A.P.; Xavier, A.C.F.; Martins, L.D.; Freitas, E.D.; Uvo, C.B.; Hallak, R.; Souza, R.A.F.; Andreoli, R.V.; Almeida Albuquerque, T.T.; Martins, J.A. Landscape changes over 30 years of intense economic activity in the upper Paraná River basin. Ecol. Informat. 2022, 72, 101882. [Google Scholar] [CrossRef]
- Reboita, M.S.; Marietto, D.M.G.; Souza, A.; Barbosa, M. Caracterização atmosférica quando da ocorrência de eventos extremos de chuva na região sul de Minas Gerais. Rev. Bras. Climatol. 2017, 21, 20–37. [Google Scholar] [CrossRef]
- Escobar, G.C.J.; Reboita, M.S. Relationship between daily atmospheric circulation patterns and South Atlantic Convergence Zone (SACZ) events. AtmÓSfera 2022, 35, 1–25. [Google Scholar] [CrossRef]
- CODEVASF. Plano Nascente: Plano de preservação e recuperação de nascentes da bacia do rio São Francisco; IABS: Brasília, Brazil, 2015; p. 129. [Google Scholar]
- CBHSF. A Bacia. 2024. Available online: https://cbhsaofrancisco.org.br/a-bacia/ (accessed on 8 July 2024).
- IBGE. Vetores Estruturantes da Dimensão Socioeconômica da Bacia Hidrográfica do Rio São Francisco; IBGE: Rio de Janeiro, Brazil, 2009; p. 174. [Google Scholar]
- Silva, D.F.; Brito, J.I.B. Variabilidade do vento na bacia hidrográfica do rio São Francisco durante a ocorrência da ZCAS. AmbiÊNcia 2008, 4, 221–235. Available online: https://revistas.unicentro.br/index.php/ambiencia/article/view/164 (accessed on 17 June 2024).
- Utida, G.; Cruz, F.W.; Etourneau, J.; Bouloubassi, I.; Schefuß, E.; Vuille, M.; Novello, V.F.; Prado, L.F.; Sifeddine, A.; Klein, V.; et al. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Sci. Rep. 2019, 9, 1698. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.; Kousky, V.E.; Higgins, R.W.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 2008, 113, D04110. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; John Wiley & Sons: Hoboken, NJ, USA, 2015; p. 671. [Google Scholar]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences; Houghton Mifflin: Boston, MA, USA, 2003; Volume 663, p. 748. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 807. [Google Scholar]
- Hallak, R.; Pereira Filho, A.J. Metodologia para análise de desempenho de simulações de sistemas convectivos na região metropolitana de São Paulo com o modelo ARPS: Sensibilidade a variações com os esquemas de advecção e assimilação de dados. Rev. Bras. Meteorol. 2011, 26, 591–608. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Fernandes, D.S.; Heinemann, A.B.; Paz, R.L.; Amorim, A.O.; Cardoso, A.S. Índices Para a Quantificação da Seca; Embrapa Arroz e Feijão-Documentos: Colombo, Brazil, 2009; p. 48. Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/663874 (accessed on 3 July 2024).
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- WMO. Standardized Precipitation Index. In User Guide; WMO: Geneva, Switzerland, 2012; p. 24. [Google Scholar]
- Vergasta, L.A.; Correia, F.W.S.; Chou, S.C.; Nobre, P.; Lyra, A.D.A.; Gomes, W.D.B.; Capistrano, V.; Veiga, J.A.P. Avaliação do Balanço de água na Bacia do Rio Madeira Simulado Pelo Modelo Regional Climático Eta e o Modelo Hidrológico de Grandes Bacias MGB. Rev. Bras. Meteorol. 2021, 36, 153–169. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, X.; Wang, W.; Wang, Y.; Liu, H.; Ma, M.; Tang, G. Global-scale ERA5 product precipitation and temperature evaluation. Ecol. Indic. 2024, 166, 112481. [Google Scholar] [CrossRef]
- Rafee, S.A.A.; Freitas, E.D.; Martins, J.A.; Martins, L.D.; Domingues, L.M.; Nascimento, J.M.; Machado, C.B.; Santos, E.B.; Rudke, A.P.; Fujita, T.; et al. Spatial trends of extreme precipitation events in the Paraná river basin. J. Appl. Meteorol. Climatol. 2020, 59, 443–454. [Google Scholar] [CrossRef]
- Itaipu Binacional. Revista Itaipu Binacional. 2017. Available online: https://www.itaipu.gov.br/sites/default/files/af_df/1702_022_atualizacao_revista_IB_2017_digital_b.pdf (accessed on 17 June 2024).
- Cardoso, C.S.; Quadro, M.F.L. Análise comparativa de dados de precipitação gerados pelo “Climate Prediction Center–CPC” versus dados observados para o Sul do Brasil. Rev. Bras. Geogr. FÍS. 2017, 10, 1180–1198. [Google Scholar] [CrossRef]
- Correia, R.C.; Kiill, L.H.P.; Moura, M.S.B.; Cunha, T.J.F.; Jesus Júnior, L.A.; Araújo, J.L.P. A Região Semiárida Brasileira; Embrapa: Brasília, Brazil, 2011; p. 28. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/916891/a-regiao-semiarida-brasileira (accessed on 17 June 2024).
- Marengo, J.A.; Alves, L.M.; Beserra, E.A.; Lacerda, F.F. Variabilidade e mudanças climáticas no semiárido brasileiro. Rec. HÍDricos Regiões ÁRidas SemiÁRidas 2011, 1, 385–422. Available online: https://www.ccst.inpe.br/publicacao/variabilidade-e-mudancas-climaticas-no-semiarido-brasileiro/ (accessed on 3 July 2024).
- Torres, F.L.R.; Souza Ferreira, G.W.; Kuki, C.A.C.; Vasconcellos, B.T.C.; Freitas, A.A.; Nascimento Silva, P.; Souza, C.A.; Reboita, M.S. Validação de diferentes bases de dados de precipitação nas bacias hidrográficas do Sapucaí e São Francisco. Rev. Bras. Climatol. 2020, 27, 368–404. [Google Scholar] [CrossRef]
- Ovando, A.; Tomasella, J.; Rodriguez, D.A.; Martinez, J.M.; Siqueira-Junior, J.L.; Pinto, G.L.N.; Passy, P.; Vauchel, P.; Noriega, L.; von Randow, C. Extreme flood events in the Bolivian Amazon wetlands. J. Hydrol. Reg. Stud. 2016, 5, 293–308. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Ronchail, J.; Marengo, J.A.; Segura, H. Contrasting North–South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). Clim. Dyn. 2019, 52, 5413–5430. [Google Scholar] [CrossRef]
- Valverde, M.C.; Marengo, J.A. Extreme rainfall indices in the hydrographic basins of Brazil. Open J. Mod. Hydrol. 2014, 4, 10–26. [Google Scholar] [CrossRef]
- Cerón, W.L.; Kayano, M.T.; Andreoli, R.V.; Avila-Diaz, A.; Ayes, I.; Freitas, E.D.; Martins, J.A.; Souza, R.A. Recent intensification of extreme precipitation events in the La Plata Basin in Southern South America (1981–2018). Atmos. Res. 2021, 249, 105299. [Google Scholar] [CrossRef]
- CBHSF. Plano de recursos hídricos da bacia hidrográfica do rio São Francisco; CBHSF: Bahia, Brazil, 2004; p. 337. [Google Scholar]
- Marengo, J.A.; Cunha, A.P.; Alves, L.M. A seca de 2012-15 no semiárido do Nordeste do Brasil no contexto histórico. Rev. ClimanÁLise 2016, 3, 49–54. Available online: http://climanalise.cptec.inpe.br/~rclimanl/revista/pdf/30anos/marengoetal.pdf (accessed on 3 July 2024).
- Cunha, A.P.M.A.; Zeri, M.; Deusdará Leal, K.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme drought events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef]
- Santos, A.L.M.; Gonçalves, W.A.; Andrade, L.D.M.B.; Rodrigues, D.T.; Batista, F.F.; Lima, G.C.; Silva, C.M.S. Space–Time Characterization of Extreme Precipitation Indices for the Semiarid Region of Brazil. Climate 2024, 12, 43. [Google Scholar] [CrossRef]
- Bezerra, H.C. Monitoramento Hidrológico; Boletim No 2—25 January 2012; CPRM—Serviço Geológico do Brasil: Brasília, Brazil, 2012; p. 11. [Google Scholar]
- Espinoza, J.C.; Marengo, J.A.; Ronchail, J.; Carpio, J.M.; Flores, L.N.; Guyot, J.L. The extreme 2014 flood in south-western Amazon basin: The role of tropical-subtropical South Atlantic SST gradient. Environ. Res. Lett. 2014, 9, 124007. [Google Scholar] [CrossRef]
- Tomasella, J.; Borma, L.S.; Marengo, J.A.; Rodriguez, D.A.; Cuartas, L.A.; Nobre, C.A.; Prado, M.C. The droughts of 1996–1997 and 2004–2005 in Amazonia: Hydrological response in the river main-stem. Hydrol. Process. 2011, 25, 1228–1242. [Google Scholar] [CrossRef]
- Laureanti, N.C.; Tavares, P.D.S.; Tavares, M.; Rodrigues, D.C.; Gomes, J.L.; Chou, S.C.; Correia, F.W.S. Extreme Seasonal Droughts and Floods in the Madeira River Basin, Brazil: Diagnosis, Causes, and Trends. Climate 2024, 12, 111. [Google Scholar] [CrossRef]
- Molina-Carpio, J.; Espinoza, J.C.; Vauchel, P.; Ronchail, J.; Gutierrez Caloir, B.; Guyot, J.L.; Noriega, L. Hydroclimatology of the Upper Madeira River basin: Spatio-temporal variability and trends. Hydrol. Sci. J. 2017, 62, 911–927. [Google Scholar] [CrossRef]
- Itaipu Binacional. Chuvas provocam vazão histórica no encontro dos rios Iguaçu e Paraná. 2013. Available online: https://www.itaipu.gov.br/sala-de-imprensa/noticia/chuvas-provocam-vazao-historica-no-encontro-dos-rios-iguacu-e-parana#:~:text=Houve%20registro%20de%20enchentes%20em,foram%20quatro%20acima%20desse%20%C3%ADndice (accessed on 3 July 2024).
- Fleischmann, A.S.; Siqueira, V.A.; Wongchuig-Correa, S.; Collischonn, W.; Paiva, R.C.D.D. The great 1983 floods in South American large rivers: A continental hydrological modelling approach. Hydrol. Sci. J. 2020, 65, 1358–1373. [Google Scholar] [CrossRef]
- Cumplido, M.A.; Inocente, M.C.; Medeiros, T.P.; Oliveira, G.S.; Marengo, J.A. Secas e crises hídricas no Sudeste do Brasil: Um histórico comparativo entre os eventos de 2001, 2014 e 2021 com enfoque na bacia do rio Paraná. Rev. Bras. Climatol. 2023, 32, 129–153. [Google Scholar] [CrossRef]
- CBHSF. RP1A —Diagnóstico da Dimensão Técnica e Institucional. In Plano de Recursos Hídricos da Bacia Hidrográfica do rio São Francisco (2016–2025); CBHSF: São Paulo, Brazil, 2015; p. 318. Available online: https://2017.cbhsaofrancisco.org.br/wp-content/uploads/2015/08/V7_usos_diag_v2.pdf (accessed on 8 July 2024).
- Marengo, J.A.; Espinoza, J.C. Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Climatol. 2015, 36. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Espinoza, J.C.; Fu, R.; Schöngart, J.; Jimenez, J.C.; Costa, M.C.; Ribeiro, J.M.; Wongchuig, S.; Zhao, S. The Drought of Amazonia in 2023–2024. Am. J. Clim. Change 2024, 13, 567–597. [Google Scholar] [CrossRef]
- Sorí, R.; Marengo, J.A.; Nieto, R.; Drumond, A.; Gimeno, L. The atmospheric branch of the hydrological cycle over the Negro and Madeira river basins in the Amazon Region. Water 2018, 10, 738. [Google Scholar] [CrossRef]
- Naumann, G.; Podesta, G.; Marengo, J.; Luterbacher, J.; Bavera, D.; Arias Muñoz, C.; Barbosa, P.; Cammalleri, C.; Chamorro, L.; Cuartas, A.; et al. The 2019-2021 Extreme Drought Episode in La Plata Basin; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Vieira, R.M.D.S.P.; Sestini, M.F.; Tomasella, J.; Marchezini, V.; Pereira, G.R.; Barbosa, A.A.; Santos, F.C.; Rodriguez, D.A.; do Nascimento, F.R.; Santana, M.O.; et al. Characterizing spatio-temporal patterns of social vulnerability to droughts, degradation and desertification in the Brazilian northeast. Environ. Sustain. Indic. 2020, 5, 100016. [Google Scholar] [CrossRef]
- Vieira, R.M.D.S.P.; Tomasella, J.; Cunha, A.P.M.D.A.; Barbosa, A.A.; Pompeu, J.; Ferreira, Y.; Santos, F.C.; Alves, L.M.; Ometto, J. Socio-environmental vulnerability to drought conditions and land degradation: An assessment in two northeastern brazilian river basins. Sustainability 2023, 15, 8029. [Google Scholar] [CrossRef]
- Reboita, M.S.; Kuki, C.A.C.; Marrafon, V.H.; Souza, C.A.; Ferreira, G.W.S.; Teodoro, T.; Lima, J.W.M. South America climate change revealed through climate indices projected by GCMs and Eta-RCM ensembles. Clim. Dyn. 2022, 58, 459–485. [Google Scholar] [CrossRef]
- Llopart, M.; Domingues, L.M.; Torma, C.; Giorgi, F.; Rocha, R.P.; Ambrizzi, T.; Reboita, M.S.; Alves, L.M.; Coppola, L.M.; da Silva, M.L.; et al. Assessing changes in the atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains. Clim. Dyn. 2021, 57, 1615–1628. [Google Scholar] [CrossRef]
- Jones, M.W.; Veraverbeke, S.; Andela, N.; Doerr, S.H.; Kolden, C.; Mataveli, G.; Pettinari, M.L.; Le Quéré, C.; Rosan, T.M.; van der Werf, G.R.; et al. Global rise in forest fire emissions linked to climate change in the extratropics. Science 2024, 386, eadl5889. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Tramblay, Y.; Murphy, C.; Ocampo-Melgar, A.; Guan, H.; Spinoni, J.; Marengo, J.; Ghosh, S.; Yang, Y.; Cheval, S.; et al. First Issue of Water Scarcity and Drought. Water Scarcity Drought 2024, 1, 1–5. Available online: https://www.sciltp.com/journals/wsd/article/view/479 (accessed on 3 July 2024).
Mann–Kendall | |||||||||
---|---|---|---|---|---|---|---|---|---|
Region | ANA | CPC | ERA5 | ||||||
Trend | p-Value | Significant | Trend | p-Value | Significant | Trend | p-Value | Significant | |
Madeira | |||||||||
Basin | D | 0.0444 | Yes | D | 0.9413 | No | I | 0.0189 | Yes |
Upper | D | 0.0052 | Yes | D | 0.4058 | No | D | 0.4294 | No |
Middle | D | 0.5604 | No | I | 0.0795 | No | I | 0.0068 | Yes |
Lower | D | 0.0143 | Yes | D | 0.9161 | No | I | 0.0000 | Yes |
Paraná | |||||||||
Basin | D | 0.0579 | No | D | 0.0009 | Yes | D | 0.0686 | No |
Paranaíba | D | 0.0840 | No | D | 0.0003 | Yes | I | 0.8580 | No |
Grande | D | 0.0027 | Yes | D | 0.0003 | Yes | D | 0.1280 | No |
Tietê | D | 0.0044 | Yes | D | 0.0009 | Yes | D | 0.6265 | No |
Paraná | I | 0.0472 | Yes | I | 0.1741 | No | I | 0.8159 | No |
Paranapanema | D | 0.3367 | No | D | 0.7502 | No | D | 0.3358 | No |
Iguaçu | D | 0.5185 | No | D | 0.3259 | No | I | 0.5330 | No |
São Francisco | |||||||||
Basin | D | 0.0354 | Yes | D | 0.0668 | No | D | 0.3306 | No |
Upper | D | 0.1456 | No | D | 0.0106 | Yes | D | 0.3067 | No |
Middle | D | 0.0920 | No | D | 0.2510 | No | D | 0.6578 | No |
Sub-Middle | D | 0.3559 | No | I | 0.1625 | No | D | 0.2238 | No |
Lower | D | 0.8805 | No | I | 0.0637 | No | D | 0.3760 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, A.A.d.; Carvalho, V.S.B.; Reboita, M.S. Extreme Precipitation Events During the Wet Season of the South America Monsoon: A Historical Analysis over Three Major Brazilian Watersheds. Climate 2024, 12, 188. https://doi.org/10.3390/cli12110188
Freitas AAd, Carvalho VSB, Reboita MS. Extreme Precipitation Events During the Wet Season of the South America Monsoon: A Historical Analysis over Three Major Brazilian Watersheds. Climate. 2024; 12(11):188. https://doi.org/10.3390/cli12110188
Chicago/Turabian StyleFreitas, Aline Araújo de, Vanessa Silveira Barreto Carvalho, and Michelle Simões Reboita. 2024. "Extreme Precipitation Events During the Wet Season of the South America Monsoon: A Historical Analysis over Three Major Brazilian Watersheds" Climate 12, no. 11: 188. https://doi.org/10.3390/cli12110188
APA StyleFreitas, A. A. d., Carvalho, V. S. B., & Reboita, M. S. (2024). Extreme Precipitation Events During the Wet Season of the South America Monsoon: A Historical Analysis over Three Major Brazilian Watersheds. Climate, 12(11), 188. https://doi.org/10.3390/cli12110188