Upwelling in Marginal Seas and Its Association with Climate Change Scenario—A Comparative Review
Abstract
:1. Introduction
2. Characteristics of Wind-Driven Upwelling
Marginal Sea | Location of Upwelling | Time Occurring | Author |
---|---|---|---|
South China Sea | Taiwan Strait | Southwest Monsoon (June to August) | [30,31] |
Southern Vietnam | Southwest Monsoon (June to August) | [25,26] | |
Hainan Island | Southwest Monsoon (June to August) | [32,33] | |
East Coast of Peninsular Malaysia | Southwest Monsoon (June to August) | [22,23,24] | |
Northwest Luzon | Northeast Monsoon (December to March) | [16,17,18] | |
Northwest Sabah | Northeast Monsoon (December to March) | [19,20,21] | |
Andaman Sea | Andaman Sea | Northeast Monsoon (December to March) | [34] |
Arabian Sea | Somali and Oman | Southwest Monsoon (June to September) | [35,36,37,38] |
Southwest India | Southwest Monsoon (May to September) | [39,40] | |
Indian Ocean | Southern Java | Southeast Monsoon (June to October) | [41,42,43] |
Baltic Sea | Gulf of Finland | Summer (June to September) | [28,44] |
3. Upwelling and Climate/Atmosphere Variability
4. Climate Change versus Upwelling
5. Eastern Boundary Upwelling System (EBUS)
6. Upwelling under Climate Change in Marginal Sea
7. Methods for Defining Upwelling under Climate Change
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alheit, J.; Bakun, A. Population synchronies within and between ocean basins: Apparent teleconnections and implications as to physical-biological linkage mechanisms. J. Mar. Syst. 2010, 79, 267–285. [Google Scholar] [CrossRef]
- Finney, B.P.; Alheit, J.; Emeis, K.C.; Field, D.B.; Gutiérrez, D.; Struck, U. Paleoecological studies on variability in marine fish populations: A long-term perspective on the impacts of climatic change on marine ecosystems. J. Mar. Syst. 2010, 79, 316–326. [Google Scholar] [CrossRef]
- Dang, X.; Chen, X.; Bai, Y.; He, X.; Chen, C.T.A.; Li, T.; Pan, D.; Zhang, Z. Impact of ENSO events on phytoplankton over the Sulu Ridge. Mar. Environ. Res. 2020, 157, 104934. [Google Scholar] [CrossRef]
- Pauly, D.; Christensen, V. Primary production required to sustain global fisheries. Nature 1995, 374, 255–257. [Google Scholar] [CrossRef]
- Botsford, L.W.; Lawrence, C.A.; Dever, E.P.; Hastings, A.; Largier, J. Effects of variable winds on biological productivity on continental shelves in coastal upwelling systems. Deep. Res. Part II Top. Stud. Oceanogr. 2006, 53, 3116–3140. [Google Scholar] [CrossRef]
- Iles, A.C.; Gouhier, T.C.; Menge, B.A.; Stewart, J.S.; Haupt, A.J.; Lynch, M.C. Climate-driven trends and ecological implications of event-scale upwelling in the California Current System. Glob. Chang. Biol. 2012, 18, 783–796. [Google Scholar] [CrossRef]
- Sylla, A.; Mignot, J.; Capet, X.; Gaye, A.T. Weakening of the Senegalo–Mauritanian upwelling system under climate change. Clim. Dyn. 2019, 53, 4447–4473. [Google Scholar] [CrossRef]
- Maranón, E.; Fernández, E. Changes in phytoplankton ecophysiology across a coastal upwelling front. J. Plankton Res. 1995, 17, 1999–2008. [Google Scholar] [CrossRef]
- Chhak, K.; Di Lorenzo, E. Decadal variations in the California Current upwelling cells. Geophys. Res. Lett. 2007, 34, L14604. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wang, X.H. Progress on upwelling studies in the China seas. Rev. Geophys. 2016, 54, 653–673. [Google Scholar] [CrossRef]
- Lehmann, A.; Myrberg, K. Upwelling in the Baltic Sea—A review. J. Mar. Syst. 2008, 74, S3–S12. [Google Scholar] [CrossRef]
- Bakun, A. Global Climate Change and Intensification of Coastal Ocean Upwelling. Science 1990, 247, 198–201. [Google Scholar] [CrossRef] [Green Version]
- Rossi, V.; Morel, Y.; Garçon, V. Effect of the wind on the shelf dynamics: Formation of a secondary upwelling along the continental margin. Ocean. Model. 2010, 31, 51–79. [Google Scholar] [CrossRef]
- Pickett, M.H.; Paduan, J.D. Ekman transport and pumping in the California Current based on the U.S. Navy’s high-resolution atmospheric model (COAMPS). J. Geophys. Res. Ocean. 2003, 108, 3327. [Google Scholar] [CrossRef]
- Kämpf, J.; Chapman, P. The Functioning of Coastal Upwelling Systems. In Upwelling Systems of the World; Springer International Publishing: Cham, Switzerland, 2016; pp. 31–62. [Google Scholar]
- Shaw, P.T.; Chao, S.Y.; Liu, K.K.; Pai, S.C.; Liu, C.T. Winter upwelling off Luzon in the northeastern South China Sea. J. Geophys. Res. 1996, 101, 16435–16448. [Google Scholar] [CrossRef]
- Udarbe-Walker, M.J.B.; Villanoy, C.L. Structure of potential upwelling areas in the Philippines. Deep. Res. Part I Oceanogr. Res. Pap. 2001, 48, 1499–1518. [Google Scholar] [CrossRef]
- Wang, J.J.; Tang, D.L.; Sui, Y. Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait. J. Mar. Syst. 2010, 83, 141–149. [Google Scholar] [CrossRef]
- Abdul-Hadi, A.; Mansor, S.; Pradhan, B.; Tan, C.K. Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon—A remote sensing study. Environ. Monit. Assess. 2013, 185, 3977–3991. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Ling, Z.; Chen, C. Winter coastal upwelling off northwest Borneo in the South China Sea. Acta Oceanol. Sin. 2015, 34, 3–10. [Google Scholar] [CrossRef]
- Satar, M.N.; Akhir, M.F.; Kok, P.H.; Daud, N.R. Upwelling in the northwest Sabah during the northeast monsoon and its relaion with El-Niño. Res. Mar. Sci. 2020, 5, 681–698. [Google Scholar]
- Akhir, M.F.; Daryabor, F.; Husain, M.L.; Tangang, F.; Qiao, F. Evidence of Upwelling along Peninsular Malaysia during Southwest Monsoon. Open. J. Mar. Sci. 2015, 5, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Kok, P.H.; Akhir, M.F.M.; Tangang, F.; Husain, M.L. Spatiotemporal trends in the southwest monsoon wind-driven upwelling in the southwestern part of the South China Sea. PLoS ONE 2017, 12, e0171979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, P.H.; Wijeratne, S.; Akhir, M.F.; Pattiaratchi, C.; Chung, J.X.; Roseli, N.H.; Daud, N.R. Modeling approaches in the investigation of upwelling along the east coast of Peninsular Malaysia: Its driven mechanisms. Reg. Stud. Mar. Sci. 2022, 55, 102562. [Google Scholar] [CrossRef]
- Kuo, N.J.; Zheng, Q.; Ho, C.R. Response of Vietnam coastal upwelling to the 1997–1998 ENSO event observed by multisensor data. Remote Sens. Environ. 2004, 89, 106–115. [Google Scholar] [CrossRef]
- Dippner, J.W.; Nguyen, K.V.; Hein, H.; Ohde, T.; Loick, N. Monsoon-induced upwelling off the Vietnamese coast. Ocean. Dyn. 2007, 57, 46–62. [Google Scholar] [CrossRef]
- Wyrtki, K. Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959–1961. Naga Rep. 1961, 2, 164–169. [Google Scholar]
- Suursaar, Ü. Winter upwelling in the Gulf of Finland, Baltic Sea. Oceanologia 2021, 63, 356–369. [Google Scholar] [CrossRef]
- Umasangaji, H.; Ramili, Y. Mini review: Characteristics of upwelling in several coastal areas in the world. IOP Conf. Ser. Earth Environ. Sci. 2021, 890, 012004. [Google Scholar] [CrossRef]
- Tang, D.L.; Kester, D.R.; Ni, I.H.; Kawamura, H.; Hong, H. Upwelling in the Taiwan Strait during the summer monsoon detected by satellite and shipboard measurements. Remote Sens. Environ. 2002, 83, 457–471. [Google Scholar] [CrossRef]
- Hong, H.; Zhang, C.; Shang, S.; Huang, B.; Li, Y.; Li, X.; Zhang, S. Interannual variability of summer coastal upwelling in the Taiwan Strait. Cont. Shelf Res. 2009, 29, 479–484. [Google Scholar] [CrossRef]
- Lü, X.; Qiao, F.; Wang, G.; Xia, C.; Yuan, Y. Upwelling off the west coast of Hainan Island in summer: Its detection and mechanisms. Geophys. Res. Lett. 2008, 35, L02604. [Google Scholar] [CrossRef]
- Su, J.; Pohlmann, T. Wind and topography influence on an upwelling system at the eastern Hainan coast. J. Geophys. Res. Ocean. 2009, 114, C06017. [Google Scholar] [CrossRef] [Green Version]
- Buranapratheprat, A.; Laongmanee, P.; Sukramongkol, N.; Ritthirong, P.; Promjinda, S.; Yanagi, T. Upwelling induced by meso-scale cyclonic eddies in the Andaman Sea. Coast. Mar. Sci. 2010, 34, 68–73. [Google Scholar]
- Shi, W.; Morrison, J.M.; Böhm, E.; Manghnani, V. The Oman upwelling zone during 1993, 1994 and 1995. Deep. Res. Part II Top. Stud. Oceanogr. 2000, 47, 1227–1247. [Google Scholar] [CrossRef]
- Izumo, T.; Montegut, C.B.; Luo, J.J.; Behera, S.K.; Masson, S.; Yamagata, T. The role of the Western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Clim. 2008, 21, 5603–5623. [Google Scholar] [CrossRef] [Green Version]
- Cabarcos, E.; Flores, J.A.; Singh, A.D.; Sierro, F.J. Monsoonal dynamics and evolution of the primary productivity in the eastern Arabian Sea over the past 30 ka. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 411, 249–256. [Google Scholar] [CrossRef]
- Capet, X.; Roullet, G.; Carton, X. Western boundary upwelling dynamics off Oman. Ocean. Dynamics. 2017, 67, 585–595. [Google Scholar]
- Smitha, B.R.; Sanjeevan, V.N.; Vimalkumar, K.G.; Revichandran, C. On the Upwelling off the Southern Tip and along the West Coast of India. J. Coast. Res. 2008, 24, 95–102. [Google Scholar] [CrossRef]
- Shah, P.; Sajeev, R.; Thara, K.J.; George, G.; Shafeeque, M.; Akash, S.; Platt, T. A Holistic Approach to Upwelling and Downwelling along the South-West Coast of India. Mar. Geod. 2019, 42, 64–84. [Google Scholar] [CrossRef]
- Susanto, R.D.; Gordon, L.; Zheng, Q. Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys. Res. Lett. 2001, 28, 1599–1602. [Google Scholar] [CrossRef]
- Horii, T.; Ueki, I.; Syamsudin, F.; Sofian, I.; Ando, K. Intraseasonal coastal upwelling signal along the southern coast of Java observed using Indonesian tidal station data. J. Geophys. Res. Ocean. 2016, 121, 2690–2708. [Google Scholar] [CrossRef]
- Horii, T.; Ueki, I.; Ando, K. Coastal upwelling events along the southern coast of Java during the 2008 positive Indian Ocean Dipole. J. Oceanogr. 2018, 74, 499–508. [Google Scholar] [CrossRef]
- Uiboupin, R.; Laanemets, J. Upwelling characteristics derived from satellite sea surface temperature data in the Gulf of Finland, Baltic sea. Boreal. Environ. Res. 2009, 14, 297–304. [Google Scholar]
- Macias, D.; Landry, M.R.; Gershunov, A.; Miller, A.J.; Franks, P.J.S. Climatic control of upwelling variability along the Western North-American coast. PLoS ONE 2012, 7, e30436. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ting, M. Recent and future changes in the Asian monsoon-ENSO relationship: Natural or forced? Geophys. Res. Lett. 2015, 42, 3502–3512. [Google Scholar] [CrossRef]
- Barber, R.T.; Chavez, F.P. Biological consequences of El Niño. Science 1983, 222, 1203–1210. [Google Scholar] [CrossRef]
- Jacox, M.G.; Fiechter, J.; Moore, A.M.; Edwards, C.A. ENSO and the California Current coastal upwelling response. J. Geophys. Res. Ocean. 2015, 120, 1691–1702. [Google Scholar] [CrossRef]
- Jing, Z.; Qi, Y.; Du, Y. Upwelling in the continental shelf of northern South China Sea associated with 1997–1998 El Niño. J. Geophys. Res. Ocean. 2011, 116, C0203. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Jin, F.F.; Stuecker, M.F.; Turner, A.G. Impact of different El Niño types on the El Niño/IOD relationship. Geophys. Res. Lett. 2015, 42, 8570–8576. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Gouhier, T.C.; Menge, B.A.; Ganguly, A.R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 2015, 518, 390–394. [Google Scholar] [CrossRef]
- Rykaczewski, R.R.; Dunne, J.P.; Sydeman, W.J.; García-Reyes, M.; Black, B.A.; Bograd, S.J. Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 2015, 42, 6424–6431. [Google Scholar] [CrossRef]
- Sydeman, W.J.; García-Reyes, M.; Schoeman, D.S.; Rykaczewski, R.R.; Thompson, S.A.; Black, B.A.; Bograd, S.J. Climate change and wind intensification in coastal upwelling ecosystems. Science 2014, 345, 77–80. [Google Scholar] [CrossRef]
- Xiu, P.; Chai, F.; Curchitser, E.N.; Castruccio, F.S. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. Sci. Rep. 2018, 8, 2866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arellano, B.; Rivas, D. Coastal upwelling will intensify along the Baja California coast under climate change by mid-21st century: Insights from a GCM-nested physical-NPZD coupled numerical ocean model. J. Mar. Syst. 2019, 199, 103207. [Google Scholar] [CrossRef]
- Casabella, N.; Lorenzo, M.N.; Taboada, J.J. Trends of the Galician upwelling in the context of climate change. J. Sea Res. 2014, 93, 23–27. [Google Scholar] [CrossRef]
- Sousa, M.C.; Ribeiro, A.; Des, M.; Gomez-Gesteira, M.; deCastro, M.; Dias, J.M. NW Iberian Peninsula coastal upwelling future weakening: Competition between wind intensification and surface heating. Sci. Total. Environ. 2020, 703, 134808. [Google Scholar] [CrossRef] [PubMed]
- Varela, R.; Rodríguez-Díaz, L.; de Castro, M.; Gómez-Gesteira, M. Influence of Canary upwelling system on coastal SST warming along the 21st century using CMIP6 GCMs. Glob. Planet. Chang. 2022, 208, 103692. [Google Scholar] [CrossRef]
- Xu, L.; Ji, C.; Kong, D.; Guo, M. Abrupt change in Vietnam coastal upwelling as a response to global warming. J. Quat. Sci. 2021, 36, 488–495. [Google Scholar] [CrossRef]
- Zhang, P.; Cheng, H.; Edwards, R.L.; Chen, F.; Wang, Y.; Yang, X.; Liu, J.; Tan, M.; Wang, X.; Liu, J.; et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 2008, 322, 940–942. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Peng, Z.; Shen, C.C.; Zhou, R.; Song, S.; Shi, Z.; Chen, T.; Wei, G.; DeLong, K.L. Recent 121-year variability of western boundary upwelling in the northern South China Sea. Geophys. Res. Lett. 2013, 40, 3180–3183. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Xie, L.L.; Zong, X.L.; Yi, X.F.; Li, M. The interannual variation and long-term trend of Qiongdong Upwelling. Oceanol. Limnol. Sin. 2016, 47, 43–51. [Google Scholar]
- Su, J.; Xu, M.; Pohlmann, T.; Xu, D.; Wang, D. A western boundary upwelling system response to recent climate variation (1960–2006). Cont. Shelf Res. 2013, 57, 3–9. [Google Scholar] [CrossRef]
- Hong, B.; Zhang, J. Long-term trends of sea surface wind in the northern south china sea under the background of climate change. J. Mar. Sci. Eng. 2021, 9, 752. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, Q.; Zhou, Q.; Geng, X.; Shi, J.; Guo, X.; Yu, Y.; Yang, Z.; Fan, R. Interannual Variation of Coastal Upwelling around Hainan Island. Front. Mar. Sci. 2023, 10, 1054669. [Google Scholar] [CrossRef]
- Liu, S.; Zuo, J.; Shu, Y.; Ji, Q.; Cai, Y.; Yao, J. The intensified trend of coastal upwelling in the South China Sea during 1982–2020. Front. Mar. Sci. 2023, 10, 1084189. [Google Scholar] [CrossRef]
- Zhang, C. Responses of summer upwelling to recent climate changes in the Taiwan strait. Remote Sens. 2021, 13, 1386. [Google Scholar] [CrossRef]
- Praveen, V.; Ajayamohan, R.S.; Valsala, V.; Sandeep, S. Intensification of upwelling along Oman coast in a warming scenario. Geophys. Res. Lett. 2016, 43, 7581–7589. [Google Scholar] [CrossRef] [Green Version]
- Varela, R.; Álvarez, I.; Santos, F.; DeCastro, M.; Gómez-Gesteira, M. Has upwelling strengthened along worldwide coasts over 1982–2010? Sci. Rep. 2015, 5, 10016. [Google Scholar] [CrossRef] [Green Version]
- DeCastro, M.; Sousa, M.C.; Santos, F.; Dias, J.M.; Gómez-Gesteira, M. How will Somali coastal upwelling evolve under future warming scenarios? Sci. Rep. 2016, 6, 30137. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.K.; Watanabe, T.; Pfeiffer, M.; Hu, H.M.; Shen, C.C.; Yamazaki, A. Corals Reveal an Unprecedented Decrease of Arabian Sea Upwelling During the Current Warming Era. Geophys. Res. Lett. 2021, 48, e2021GL092432. [Google Scholar] [CrossRef]
- Swapna, P.; Jyoti, J.; Krishnan, R.; Sandeep, N.; Griffies, S.M. Multidecadal Weakening of Indian Summer Monsoon Circulation Induces an Increasing Northern Indian Ocean Sea Level. Geophys. Res. Lett. 2017, 44, 10560–10572. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ritika, K.; Terray, P.; Masson, S. The curious case of Indian Ocean warming. J. Clim. 2014, 27, 8501–8509. [Google Scholar] [CrossRef] [Green Version]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N. Drying of Indian subcontinent by rapid Indian ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, A.; Myrberg, K.; Höflich, K. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009. Oceanologia 2012, 54, 369–393. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, A.; Getzlaff, K.; Harlaß, J. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Climate Res. 2011, 46, 185–196. [Google Scholar] [CrossRef]
- Mercado, J.M.; Cortés, D.; Ramírez, T.; Gómez, F. Decadal weakening of the wind-induced upwelling reduces the impact of nutrient pollution in the Bay of Málaga (western Mediterranean Sea). Hydrobiologia 2012, 680, 91–107. [Google Scholar] [CrossRef]
- Vargas-Yáñez, M.; Giráldez, A.; Torres, P.; González, M.; García-Martínez, M.D.C.; Moya, F. Variability of oceanographic and meteorological conditions in the northern Alboran Sea at seasonal, inter-annual and long-term time scales and their influence on sardine (Sardina pilchardus Walbaum 1792) landings. Fish. Oceanogr. 2020, 29, 367–380. [Google Scholar] [CrossRef]
- Santos, F.; Gómez-Gesteira, M.; Varela, R.; Ruiz-Ochoa, M.; Días, J.M. Influence of upwelling on SST trends in La Guajira system. J. Geophys. Res. Ocean. 2016, 121, 2469–2480. [Google Scholar] [CrossRef] [Green Version]
- Varela, R.; Santos, F.; Gómez-Gesteira, M.; Álvarez, I.; Costoya, X.; Días, J.M. Influence of coastal upwelling on SST trends along the south coast of Java. PLoS ONE 2016, 11, e0162122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, M.M.; Mathis, M.; Mayer, B.; Noernberg, M.A.; Pohlmann, T. Possible impacts of anthropogenic climate change to the upwelling in the South Brazil Bight. Climate Dyn. 2020, 55, 651–664. [Google Scholar] [CrossRef]
EBUS/ Marginal | Area | Method, Data Source | Data Type (Historical/Future) | Results | Author |
---|---|---|---|---|---|
EBUS | All EBUS | Synthesis of other papers | Historical | Intensifying in California, Benguela, Humbolt. | [53] |
EBUS | California | Modeling (ROMS-CoSiNe), CMIP5 | Both | Intensifying | [54] |
EBUS | California | Modeling (GFDL-CM3), CMIP5 | Both | Intensifying | [55] |
EBUS | Canary-Iberian | Modeling ENSEMBLES, CMIP5 | Both | Intensifying | [56] |
EBUS | Canary-Iberian | Modeling (Delft3D-Flow), CMIP5 | Both | Weakening | [57] |
EBUS | Canary-Iberian | Modeling (GCM), CMIP6 | Both | Intensifying | [58] |
EBUS | Senegalo-Mauritanian | Modeling (GCM), CMIP5 | Both | Weakening | [7] |
SCS | Vietnam | Sediment core | Historical | Intensifying | [59] |
SCS | Hainan Island | Coral core | Historical | Weakening | [61] |
SCS | Hainan Island | Reanalysis wind data | Historical | Weakening | [63] |
SCS | Hainan Island | SST and wind data | Historical | Intensifying | [64] |
SCS | Hainan Island | Wind data | Historical | Intensifying | [65] |
SCS | Hainan Island | SST from MODIS-Aqua and wind data from ECMWF | Historical | Intensifying | [66] |
SCS | Eastern Guangdong, Eastern Hainan, Eastern Vietnam | SST from OSTIA, ERA5, and ORAS5, wind data from CCMP, ERA5, and ORA5 | Historical | Intensifying | [67] |
SCS | Taiwan Strait | SST and wind from AVHRR | Historical | Weakening | [68] |
Arabian Sea | Somali and Oman | Modeling (ROMS), CMIP5 | Both | Weakening in Somali, intensifying in Oman | [69] |
Arabian Sea | Somali | GCM, CMIP5 | Both | Intensifying | [71] |
Arabian Sea | Oman | Coral core | Historical | Weakening | [72] |
Baltic Sea | Whole Baltic Sea | SST (NOAA-AVHRR) | Historical | Weakening in Polish, Latvian and Estonian coasts, intensifying along the Swedish coast of the Baltic Sea and the Finnish coast of the Gulf of Finland | [76] |
Mediterranean Sea | Alboran Sea | Wind from AEMET | Historical | Weakening | [78] |
Mediterranean Sea | Alboran Sea | SST and Wind data from NOAA/OAR/ESRL, Chl-a from NASA Ocean Color | Historical | Weakening | [79] |
Caribbean Sea | La Guajira | SST (NOAA-AVHRR) and wind (NCEP-CFSR) | Historical | Intensifying | [80] |
Eastern Indian Ocean | Southern Java | SST (NOAA-AVHRR) and wind (NCEP-CFSR) | Historical | Weakening | [81] |
Western Atlantic Ocean | South Brazil Bight | Modeling (HAMSOM, CMIP5) | Both | Weakening | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satar, M.N.; Akhir, M.F.; Zainol, Z.; Chung, J.X. Upwelling in Marginal Seas and Its Association with Climate Change Scenario—A Comparative Review. Climate 2023, 11, 151. https://doi.org/10.3390/cli11070151
Satar MN, Akhir MF, Zainol Z, Chung JX. Upwelling in Marginal Seas and Its Association with Climate Change Scenario—A Comparative Review. Climate. 2023; 11(7):151. https://doi.org/10.3390/cli11070151
Chicago/Turabian StyleSatar, Muhammad Naim, Mohd Fadzil Akhir, Zuraini Zainol, and Jing Xiang Chung. 2023. "Upwelling in Marginal Seas and Its Association with Climate Change Scenario—A Comparative Review" Climate 11, no. 7: 151. https://doi.org/10.3390/cli11070151
APA StyleSatar, M. N., Akhir, M. F., Zainol, Z., & Chung, J. X. (2023). Upwelling in Marginal Seas and Its Association with Climate Change Scenario—A Comparative Review. Climate, 11(7), 151. https://doi.org/10.3390/cli11070151