Potentiality of Charcoal as a Dendrochronological and Paleoclimatic Archive: Case Study of Archaeological Charcoal from Southeastern Altai, Russia
Abstract
:1. Introduction
2. Study Area
3. Nomad Iron-Smelting Industry in SE Altai and Natural Prerequisites for the Use of Charcoal in Tree Ring Analysis
- the abundance and concentrated location of charcoal deposits;
- the similar ages of carbonized wood fragments in collections from one site;
- Larix sibirica Ledeb being a single or one of the main forest-forming species;
- the long lifespan of larch trees in the area (400–450 years);
- the prominent climate signals in the radial tree growth record;
- the large number of annual rings even in small charcoal fragments.
4. Operation of Iron-Smelting Hearths in SE Altai: Time Constraints from Archaeological Evidence and Radiocarbon Ages of Charcoal
5. Results
5.1. Preparation of Charcoal Samples for Tree Ring Analysis
5.1.1. Sampling
5.1.2. Sample Preparation
- cutting (breaking) slag samples with a pick hammer, a diamond sanding disc, or a band saw, as in [19]. Altogether, 448 charcoal specimens were extracted in this way;
- grinding and polishing to obtain transverse planes of the largest possible surface area, with clearly visible growth rings, using a belt and disc sander (belt P600 or P1000 and disc P1000) for hard samples;
- cleaning the surfaces of pre-dried samples by vacuuming (up to 5 bar depending on fragility) in order to remove coal dust, which fills tracheids and masks the cell structure. The dried samples should have residual moisture contents of at most 7%, otherwise the dust particles agglutinate, harden upon drying, and impede the cleaning;
- checking the surface quality under a Leica M80 stereo zoom microscope and repeating the grinding, polishing, or cleaning procedures, if necessary.
5.1.3. Digitizing Prepared Sample Surfaces and Measuring Tree Ring Parameters
- Handling digitized data on a screen is safer for the user’s eyes, increases the output, and improves the quality of results. Note that a stereo microscope is required for checking the surfacing quality (see above) and cross checks for some data.
- Digital images provide a full picture of the sample surface and can be scaled, which facilitates tracing the tree ring series.
- Digital images can be processed in different ways (highlighting and tracing features, improving resolution, etc.) using special software, which is impossible on natural sample surfaces.
- Measuring tree ring parameters in digital images is easier and more accurate than on natural surfaces (except for samples with fresh cracks or cleavage that have to be moved and may require re-digitizing or additional surfacing).
- Digital archives are safe, unlike the natural samples exposed to the effects of rotting, beetles, etc.
- Digitized surfaces can be measured again at any time in the future as new opportunities become available due to the rapidly developing dendrochronological techniques.
5.2. Dendrochronological and Radiocarbon Dating of Charcoal from Ancient Iron-Smelting Sites in SE Altai
6. Discussion
6.1. Minimum Number of Tree Rings for Dendrochronological Dating
6.2. Other Factors of Dating Success with Charcoal Used for Tree Ring Chronologies
6.3. Paleoenvironmental and Paleoclimatic Contexts
6.4. Dating Iron Production Sites by Numerical Methods
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Myglan, V.S.; Oidupaa, O.C.; Vaganov, E.A. A 2367-year tree-ringchronology for the Altai-Sayan region (Mongun-Taiga mountain massif). Archaeol. Ethnol. Anthropol. Eurasia 2012, 40, 76–83. [Google Scholar] [CrossRef]
- Agatova, A.R.; Nazarov, A.N.; Nepop, R.K.; Rodnight, H. Holocene glacier fluctuations and climate changes in the southeastern part of the Russian Altai (South Siberia) based on a radiocarbon chronology. Quat. Sci. Rev. 2012, 43, 74–93. [Google Scholar] [CrossRef]
- Kubarev, V.D. Barrows of Ulandryk; Nauka: Novosibirsk, Russia, 1987. (In Russian) [Google Scholar]
- Kubarev, V.D. Barrows of Yustyd; Nauka: Novosibirsk, Russia, 1991. (In Russian) [Google Scholar]
- Derevianko, A.P.; Molodin, V.I. Phenomenon of the Altai Mummies; Institute of Archaeology and Ethnography Press: Novosibirsk, Russia, 2000. (In Russian) [Google Scholar]
- Breuil, H. Les fouilles dans la grotte du Mas d’Azil (Ariège). Bull. Archeol. 1903, 15, 421–436. [Google Scholar]
- Salisbury, K.J.; Jane, F.W. Charcoals from Maiden Castle and their significance in relation to the vegetation and climatic conditions in prehistoric times. J. Ecol. 1940, 28, 310–325. [Google Scholar] [CrossRef]
- Godwin, H.; Tansley, A.G. Prehistoric charcoals as evidence of former vegetation, soil and climate. J. Ecol. 1941, 29, 117–126. [Google Scholar] [CrossRef]
- Hall, E., Jr. Preserving and surfacing rotted wood and charcoal. Tree-Ring Bull. 1946, 12, 26–27. [Google Scholar]
- February, E.C. Archaeological charcoal and dendrochronology to reconstruct past environments of southern Africa. S. Afr. J. Sci. 2000, 96, 111–115. [Google Scholar]
- Marguerie, D.; Hunot, J.Y. Charcoal analysis and dendrology: Data from archaeological sites in north-western France. J. Archaeol. Sci. 2007, 34, 1417–1433. [Google Scholar] [CrossRef]
- Pichler, T.; Nicolussi, K.; Goldenberg, G.; Hanke, K.; Kovács, K.; Thurner, A. Charcoal from a prehistoric copper mine in the Austrian Alps: Dendrochronological and dendrological data, demand for wood and forest utilisation. J. Archaeol. Sci. 2013, 40, 992–1002. [Google Scholar] [CrossRef] [Green Version]
- Gmińska-Nowak, B.; D’Agostino, A.; Özarslan, Y.; Orsi, V.; Christopoulou, A.; Mazzoni, S.; Akkemik, Ü.; Ważny, T. Dendrochronological analysis and radiocarbon dating of charcoal remains from the multi-period site of Uşaklı Höyük, Yozgat, Turkey. J. Archaeol. Sci. Rep. 2021, 38, 103078. [Google Scholar] [CrossRef]
- Rybníček, M.; Kyncl, T.; Vavrčík, H.; Kolář, T. Dendrochronology improves understanding of the charcoal production history. Dendrochronologia 2022, 75, 125994. [Google Scholar] [CrossRef]
- Backmeroff, C.E. Historical land-use and upper timberline dynamics determined by a thousand-year larch chronology made up of charcoal fragments from kilns and ancient trees. In Proceedings of the International Conference on the Future of Dendrochronology, Davos, Switzerland, 22–26 September 2001; pp. 262–263. [Google Scholar]
- Strachan, S.; Biondi, F.; Lindström, S.G.; McQueen, R.; Wigand, P.E. Application of dendrochronology to historical charcoal-production sites in the great basin, United States. Hist. Archaeol. 2013, 47, 103–119. [Google Scholar] [CrossRef]
- Malik, I.; Wistuba, M.; Opała-Owczarek, M.; Franek, M.; Woskowicz-Ślęzak, B.; Mańczyk, G.; Tyrol, C. Historical water-powered ferrous metallurgy reconstructed from tree-rings and lacustrine deposits (Mała Panew basin, southern Poland). Geochronometria 2015, 42, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Blondel, F.; Cabanis, M.; Girardclos, O.; Grenouillet-Paradis, S. Impact of carbonization on growth rings: Dating by dendrochronology experiments on oak charcoals collected from archaeological sites. Quat. Int. 2018, 463, 268–281. [Google Scholar] [CrossRef]
- Brossier, B.; Poirier, P. A new method for facilitating tree-ring measurement on charcoal form archaeological and natural contexts. J. Archaeol. Sci. Rep. 2018, 19, 115–126. [Google Scholar] [CrossRef]
- Kuniholm, P.I. Dendrochronology and other applications of tree-ring studies in archaeology. In The Handbook of Archaeological Sciences; Brothwell, D.R., Pollard, A.M., Eds.; John Wiley & Sons, Ltd.: London, UK, 2001. [Google Scholar]
- Kuniholm, P.I. Archaeological dendrochronology. Dendrochronologia 2002, 20, 63–68. [Google Scholar] [CrossRef]
- Devyatkin, E.V. Cenozoic Deposits and Neotectonics of Southeastern Altai; USSR Academy of Science: Moscow, Russia, 1965. (In Russian) [Google Scholar]
- Novikov, I.S. Morphotectonics of the Altai Mountains; “Geo” Brunch; SB RAS Publisher: Novosibirsk, Ruaais, 2004. (In Russian) [Google Scholar]
- Agatova, A.R.; Nepop, R.K. Pleistocene glaciations of the SE Altai, Russia, based on geomorphological data and absolute dating of glacial deposits in Chagan reference section. Geochronometria 2017, 44, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Agatova, A.; Nepop, R.; Nazarov, A.; Ovchinnikov, I.; Moska, P. Climatically Driven Holocene Glacier Advances in the Russian Altai Based on Radiocarbon and OSL Dating and Tree Ring Analysis. Climate 2021, 9, 162. [Google Scholar] [CrossRef]
- Weatherbase, Kosh-Agach, Russia. Available online: http://www.weatherbase.com/weather/weather.php3?s=95263 (accessed on 19 March 2020).
- Adamenko, M.F. Reconstruction of the Dynamics of Thermal Regime in Summer Months and Glaciation of the Altai Mountains in XIV–XX Centuries. Ph.D. Thesis, Novosibirsk, Russia, 1985. (In Russian). [Google Scholar]
- Derevyanko, A.P.; Markin, S.V. Paleolit of the Chuya Depression: Gorny Altai; Nauka: Novosibirsk, Russia, 1987. (In Russian) [Google Scholar]
- Zinyakov, N.M. History of the Ferrous Metallurgy and Blacksmith's Work of the Ancient Altai; Tomsk University Press: Tomsk, Russia, 1988. (In Russian) [Google Scholar]
- Agatova, A.R.; Nepop, R.K.; Korsakov, A.V. Vanishing iron-smelting furnaces of the South Eastern Altai, Russia-Evidences for highly developed metallurgical production of ancient nomads. Quat. Int. 2018, 483, 124–135. [Google Scholar] [CrossRef]
- Vodyasov, E.V.; Zaitceva, O.V.; Vavulin, M.V.; Pushkarev, A.A. The earliest box-shaped iron smelting furnaces in Asia: New data from Southern Siberia. J. Archaeol. Sci. Rep. 2020, 31, 102383. [Google Scholar] [CrossRef]
- Agatova, A.R.; Nepop, R.K.; Slyusarenko, I.Y.; Panov, V.S. New data on iron-smelting sites in the Kuektanar and Turgun valleys, Southeastern Altai. Archaeol. Ethnol. Anthropol. Eurasia 2018, 46, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Myglan, V.S.; Zharnikova, O.A.; Malysheva, N.V.; Gerasimova, O.V.; Vaganov, E.A.; Sidorova, O.V. Tree-ring dating and reconstruction of summer air temperatures in the south of Altai over the last 1500 years. Geogr. I Prir. Resur. 2012, 3, 22–30. [Google Scholar]
- Khavrin, S.V. The oldest metal of the Sayan-Altai area (Copper Age through Early Bronze Age). Izv. Altaiskogo Gos. Univ. 2008, 4-2, 210–216. [Google Scholar]
- Molodin, V.I. (Ed.) Collection of Monuments of the Afanasiev Culture; AZBUKA: Barnaul, Russia, 2014. (In Russian) [Google Scholar]
- Kiryushin, Y.F.; Stepanova, N.F.; Tishkin, A.A. The Scythian Period in the Gorny Altai Region. Part II: Burial Sites of the Pazyryk Culture; Altai University: Barnaul, Russia, 2003. (In Russian) [Google Scholar]
- Kubarev, V.D.; Shulga, P.I. Pazyryk Culture (Chuya and Ursul Burial Mounds); Altai University: Barnaul, Russia, 2007. (In Russian) [Google Scholar]
- Vodyasov, E.V. Ethnoarchaeological research on indigenous iron smelting in Siberia. Sib. Istor. Issled. 2018, 2, 164–180. [Google Scholar]
- Vodyasov, E.V.; Zaitseva, O.V. The earliest iron smelting sites in the Altai Republic: New data from the Yustyd River valley. Sib. Istor. Issled. 2020, 2, 125–147. [Google Scholar] [CrossRef]
- Gavrilova, A.A. Kudyrgue Burial Mound: A Source of Knowledge on the History of Altai Tribes; Nauka: Moscow/Leningrad, Russia, 1965; p. 144. (In Russian) [Google Scholar]
- Ambroz, A.K.; Kovalevskaya, V.B.; Kyzlasov, I.L.; Kyzlasov, L.R.; Mazhitov, N.A.; Mogilnikov, V.A.; Pletnyova, S.A.; Smirnov, A.P.; Fedorov-Davydov, G.A. Steppes of Eurasia in the Medieval Times; Nauka: Moscow, Russia, 1981; p. 304. (In Russian) [Google Scholar]
- Vainshtein, S.I. Some problems in the Ancient Turk history (in relation to archaeological research in Tyva). Sov. Etnogr. 1966, 3, 60–81. [Google Scholar]
- Kyzlasov, L.R. Ancient Tyva: From the Paleolithic to the 9th Century; Moscow University: Moscow, Russia, 1979; p. 133. (In Russian) [Google Scholar]
- Kartsov, V.G. Ladey and Ermolaev ancient settlements. Trans. Mosc. Univ. Archaeol. RANION 1928, IV, 559–567. [Google Scholar]
- Sunchugashev, Y.I. Ancient Mines and Sites of Early Iron Smelting in the Khakassia-Minusa Basin; Nauka: Moscow, Russia, 1975; p. 173. (In Russian) [Google Scholar]
- Afanasiev, G.E.; Nikolaenko, A.G. The Saltov-type bloomery hearths. Sov. Arkheologiya 1982, 2, 168–175. [Google Scholar]
- Murakami Ya Soenov, V.I.; Trifanova, S.V.; Ebel, A.V.; Bogdanov, E.S.; Solovyev, A.I. The exploration of the ferrous metallurgy sites in Altai in 2017. Bulletin of Tomsk State University. History 2019, 60, 167–174. [Google Scholar]
- Larsson, L. CooRecorder and Cdendro Programs of the CooRecorder/Cdendropackage Version 7.6. 2013. Available online: http://www.cybis.se/forfun/dendro/index.htm (accessed on 27 May 2022).
- Douglass, A.E. Climatic Cycles and Tree-Growth. A Study of the Annual Rings of Trees in Relation to Climate and Solar Activity; Carnegie Inst.: Washington, DC, USA, 1919; Volume 1, p. 127. [Google Scholar]
- Holmes, R.L. Dendrochronological Program Library. Laboratory of Tree Ring Research; The University of Arizona: Tucson, SA, USA, 1984. [Google Scholar]
- Rinn, F. TSAP V3.5. Computer Program for Tree Ring Analysis and Presentation; Frank Rinn Distribution: Heidelberg, Russia, 1996. [Google Scholar]
- Cook, E.R.; Krusic, P.J. A Tree ring Standardization Program Based on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics (ARSTAN). 2008. Available online: http://www.ldeo.columbia.edu/res/fac/trl/public/publicSoftware.html (accessed on 27 May 2022).
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in Dendroclimatology and Hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Buras, A.A. Comment on the expressed population signal. Dendrochronologia 2017, 44, 130–132. [Google Scholar] [CrossRef]
- Bronk Ramsey, C. OxCal 4.4. 4 Calibration Program. 2021. Available online: https://c14.arch.ox.ac.uk/oxcal/OxCal.html (accessed on 15 July 2023).
- Reimer, P.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal2 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Kabukcu, C. Wood charcoal analysis in Archaeology. In Environmental Archaeology: Current Theoretical and Methodological Approaches; Pişkin, E., Marciniak, A., Bartkowiak, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 133–154. [Google Scholar]
- Leney, L.; Casteel, R.W. Simplified procedure for examining charcoal specimens for identification. J. Archaeol. Sci. 1975, 2, 153–159. [Google Scholar] [CrossRef]
- Kabukcu, C.; Chabal, L. Sampling and quantitative analysis methods in anthracology from archaeological contexts: Achievements and prospects. Quat. Int. 2021, 593, 6–18. [Google Scholar] [CrossRef]
- Čufar, K. Dendrochronology and past human activity—A review of advances since 2000. Tree Ring Res. 2007, 63, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Delmás, M. Seeing the forest for the trees: New approaches and challenges for dendroarchaeology in the 21st century. Dendrochronologia 2020, 62, 125731. [Google Scholar] [CrossRef]
- Bilamboz, A. Dealing with heteroconnections and short tree ring series at different levels of dating in the dendrochronology of the Southwest German pile-dwellings. Dendrochronologia 2008, 26, 145–155. [Google Scholar] [CrossRef]
- Kuniholm, P.I. How to Collect Archaeological Wood and Charcoal for Dendrochronological Analysis. In The Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology; Cornell University: Ithaca, NY, USA, 1996; Available online: www.arts.cornell.edu/dendro/howto.html (accessed on 22 June 2022).
- Backmeroff, C.E.; Di Pasquale, G. Dendrochronological dating of charcoal kilns: A new method for dating historical land use at the upper timberline. In Proceedings of the International Conference on the Future of Dendrochronology 2001, Davos, Switzerland, 22–26 September 2001; pp. 260–261. [Google Scholar]
- Schweingruber, F.H. Tree Rings and Environment: Dendroecology; Paul Haupt AG Bern: Bern, Switzerland, 1996. [Google Scholar]
- Schweingruber, F.H. Microscopic Wood Anatomy; Flück-Wirth: Teufen, Switzerland, 1982. [Google Scholar]
- Slyusarenko, I.Y. Dendrochronological Dating of the Scythian Time Archaeological Sites in Altai. Ph.D. Thesis, Novosibirsk, Russia, 2010. (In Russian). [Google Scholar]
- Hendrickson, M.; Hua, Q.; Pryce, T.O. Using in-slag charcoal as an indicator of ‘terminal’ iron production within the Angkorian Period (10th–13th centuries AD) center of Preah Khan of Kompong Svay, Cambodia. Radiocarbon 2013, 55, 31–47. [Google Scholar] [CrossRef]
- Crew, P. Magnetic mapping and dating of prehistoric and medieval iron-working sites in northwest Wales. Archaeol. Prospect. 2002, 9, 163–182. [Google Scholar] [CrossRef]
- Abrahamsen, N.; Holm Jacobsen, B.; Koppelt, U.; De Lasson, P.; Smekalova, T.; Voss, O. Archaeomagnetic investigations of Iron Age slags in Denmark. Archaeol. Prospect. 2003, 10, 91–100. [Google Scholar] [CrossRef]
- Godfrey-Smith, D.I.; Casey, J.L. Direct thermoluminescence chronology for Early Iron Age smelting technology on the Gambaga Escarpment, Ghana. J. Archaeol. Sci. 2003, 30, 1037–1050. [Google Scholar] [CrossRef]
- Kubarev, V.D.; Zhuravleva, A.D. Ceramic production as practiced by the Xiongnu of Altai. In The paleoeconomy of Siberia; Nauka: Novosibirsk, Russia, 1986; pp. 101–119. (In Russian) [Google Scholar]
- Gutak, Y.M.; Rusanov, G.G. About the age of iron-smelting furnaces in the Kuyakhtanar valley (Gorny Altai). Bull. Sib. State Ind. Univ. 2013, 2, 18–21. (In Russian) [Google Scholar]
- Schiffer, M.B. Radiocarbon dating and the old wood problem: The case of the Hohokam chronology. J. Archaeol. Sci. 1986, 13, 13–30. [Google Scholar] [CrossRef]
- Cook, R.A.; Comstock, A.R. Evaluating the old wood problem in a temperate climate: A fort ancient case study. Am. Antiq. 2014, 79, 763–775. [Google Scholar] [CrossRef]
- Wright, D.K. Accuracy vs. Precision: Understanding Potential Errors from Radiocarbon Dating on African Landscapes. Afr. Archaeol. Rev. 2017, 34, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Wright, D.K.; Hwang, J.; Kim, J.; Oh, Y. The old wood effect revisited: A comparison of radiocarbon dates of wood charcoal and short-lived taxa from Korea. Archaeol. Anthropol. Sci. 2018, 11, 3435–3448. [Google Scholar] [CrossRef]
- Myglan, V.S.; Barinov, V.V.; Taynik, A.V.; Oidupaa, O.C. The constructing of a stepper tree-ring chronology network in the Tuva Republic in Russia. In TRACE 2016, Tree Rings in Archaeology, Climatology and Ecology; Malik, I., Kojs, P., Brauning, A., Eds.; University of Silesia: Bialowieza, Poland, 2016. [Google Scholar]
- Büntgen, U.; Krusic, P.J.; Piermattei, A.; Coomes, D.A.; Esper, J.; Myglan, V.S.; Kirdyanov, A.V.; Camarero, J.J.; Crivellaro, A.; Körner, C. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 2019, 10, 2171. [Google Scholar] [CrossRef] [Green Version]
- Tainik, A.V.; Myglan, V.S.; Barinov, V.V.; Oidupaa OCh Naumova, O.V. A Network of Reference Tree Ring Chronologies for Forensic-Botanical (Dendrochronological) Expertise and Dating Archaeological Monuments in Tyva. Patent of Russia, No. 2022620160, 12 November 2021. Claim Number: 2021622526 (In Russian). [Google Scholar]
TRC | Site | TRC Length, Years | Number of Samples | Average Number of Rings in the Sample | Multiple Correlation Coefficient | Visible Tree Ring Width, mm | ||
---|---|---|---|---|---|---|---|---|
Minimal | Maximal | Average | ||||||
1ku | Kuektanar/Yustyd | 290 | 106 | 67 | 0.64 | 0.03 | 1.43 | 0.31 |
2ku | Kuektanar/Yustyd | 176 | 9 | 81 | 0.68 | 0.02 | 2.13 | 0.32 |
3ku | Kuektanar/Yustyd | 115 | 13 | 60 | 0.51 | 0.02 | 0.94 | 0.24 |
4u | Yustyd | 76 | 9 | 37 | 0.55 | 0.04 | 1.08 | 0.33 |
5u | Yustyd | 83 | 2 | 58 | 0.78 | 0.05 | 0.57 | 0.27 |
6u | Yustyd | 108 | 2 | 88 | 0.53 | 0.03 | 0.58 | 0.16 |
4k | Kuektanar | 99 | 3 | 82 | 0.41 | 0.04 | 0.46 | 0.17 |
5k | Kuektanar | 117 | 7 | 88 | 0.72 | 0.02 | 1.02 | 0.17 |
6k | Kuektanar | 175 | 4 | 95 | 0.45 | 0.05 (0) * | 0.69 | 0.20 |
total Yustyd and Kuektanar | 1239 | 155 | 68 | 0.58 | 0.02 (0) * | 2.13 | 0.27 |
Lab. Code | Material | Dating Technique | 14C Age | Calibrated Date (2σ) |
---|---|---|---|---|
IGANAMS 7165 | Charcoal | AMS | 1565 ± 20 | 432AD (95.4%) 560AD |
IGANAMS 7166 | Charcoal | AMS | 1720 ± 20 | 254AD (26.9%) 287AD 324AD (68.6%) 406AD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agatova, A.; Nepop, R.; Myglan, V.; Barinov, V.; Tainik, A.; Filatova, M. Potentiality of Charcoal as a Dendrochronological and Paleoclimatic Archive: Case Study of Archaeological Charcoal from Southeastern Altai, Russia. Climate 2023, 11, 150. https://doi.org/10.3390/cli11070150
Agatova A, Nepop R, Myglan V, Barinov V, Tainik A, Filatova M. Potentiality of Charcoal as a Dendrochronological and Paleoclimatic Archive: Case Study of Archaeological Charcoal from Southeastern Altai, Russia. Climate. 2023; 11(7):150. https://doi.org/10.3390/cli11070150
Chicago/Turabian StyleAgatova, Anna, Roman Nepop, Vladimir Myglan, Valentin Barinov, Anna Tainik, and Maja Filatova. 2023. "Potentiality of Charcoal as a Dendrochronological and Paleoclimatic Archive: Case Study of Archaeological Charcoal from Southeastern Altai, Russia" Climate 11, no. 7: 150. https://doi.org/10.3390/cli11070150
APA StyleAgatova, A., Nepop, R., Myglan, V., Barinov, V., Tainik, A., & Filatova, M. (2023). Potentiality of Charcoal as a Dendrochronological and Paleoclimatic Archive: Case Study of Archaeological Charcoal from Southeastern Altai, Russia. Climate, 11(7), 150. https://doi.org/10.3390/cli11070150