Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry
Abstract
1. Introduction
2. Results
2.1. Cariniana pyriformis Exhibited Hypertolerance to Excess Cadmium
2.2. Cariniana pyriformis and Terminalia superba Showed Hyperaccumulation and Marked Allocation of Cadmium to the Stem
2.3. Cariniana pyriformis Showed High Photosynthetic Resilience Against Cadmium Toxicity but a Greater Susceptibility Related to Leaf Respiration
2.4. Correlation Analysis Revealed a Strong Negative Correlation Between Photosynthetic Variables and the Percentage of Cadmium Allocation in Leaves
3. Discussion
4. Materials and Methods
4.1. Plant Material and Experimental Conditions
4.2. Cadmium Content and Cadmium Tolerance Index
4.3. Photosynthesis
4.4. Experimental Design and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFSs | Agroforestry systems |
CAFSs | Agroforestry systems with cacao |
PPFD | Photosynthetic photons flux density |
Amax | Maximum CO2 assimilation not limited by light |
LUE | Maximum photosynthetic light use efficiency |
Rdark | Mitochondrial respiration in the dark |
gSw | Stomatal conductance |
WUEl | Leaf level water use efficiency |
References
- Vanderschueren, R.; Argüello, D.; Blommaert, H.; Montalvo, D.; Barraza, F.; Maurice, L.; Schreck, E.; Schulin, R.; Lewis, C.; Vazquez, J.L.; et al. Mitigating the Level of Cadmium in Cacao Products: Reviewing the Transfer of Cadmium from Soil to Chocolate Bar. Sci. Total Environ. 2021, 781, 146779. [Google Scholar] [CrossRef]
- Vanderschueren, R.; Wantiez, L.; Blommaert, H.; Flores, J.; Chavez, E.; Smolders, E. Revealing the Pathways of Cadmium Uptake and Translocation in Cacao Trees (Theobroma cacao L.): A 108Cd Pulse-Chase Experiment. Sci. Total Environ. 2023, 869, 161816. [Google Scholar] [CrossRef] [PubMed]
- Laila, K.; Zug, M.; Alfredo, H.; Yupanqui, H.; Meyberg, F.; Cierjacks, J.S.; Cierjacks, A. Cadmium Accumulation in Peruvian Cacao (Theobroma cacao L.) and Opportunities for Mitigation. Water Air Soil Pollut. 2019, 230, 72. [Google Scholar] [CrossRef]
- Oliveira, B.R.M.; de Almeida, A.A.F.; Santos, N.d.A.; Pirovani, C.P. Tolerance Strategies and Factors That Influence the Cadmium Uptake by Cacao Tree. Sci. Hortic. 2022, 293, 110733. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Xiao, Y.; Liu, Q.; Zhao, F.; Li, X.; Tang, L.; Liao, X. Migration and Transformation of Cd in Four Crop Rotation Systems and Their Potential for Remediation of Cd-Contaminated Farmland in Southern China. Sci. Total Environ. 2023, 885, 163893. [Google Scholar] [CrossRef]
- Antoine, J.M.R.; Fung, L.A.H.; Grant, C.N. Assessment of the Potential Health Risks Associated with the Aluminium, Arsenic, Cadmium and Lead Content in Selected Fruits and Vegetables Grown in Jamaica. Toxicol. Rep. 2017, 4, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Engbersen, N.; Gramlich, A.; Lopez, M.; Schwarz, G.; Hattendorf, B.; Gutierrez, O.; Schulin, R. Cadmium Accumulation and Allocation in Different Cacao Cultivars. Sci. Total Environ. 2019, 678, 660–670. [Google Scholar] [CrossRef]
- Jaimes-Suárez, Y.Y.; Carvajal-Rivera, A.S.; Galvis-Neira, D.A.; Carvalho, F.E.L.; Rojas-Molina, J. Cacao Agroforestry Systems beyond the Stigmas: Biotic and Abiotic Stress Incidence Impact. Front. Plant Sci. 2022, 13, 921469. [Google Scholar] [CrossRef]
- Hernández-Núñez, H.E.; Gutiérrez-Montes, I.; Bernal-Núñez, A.P.; Gutiérrez-García, G.A.; Suárez, J.C.; Casanoves, F.; Flora, C.B. Cacao Cultivation as a Livelihood Strategy: Contributions to the Well-Being of Colombian Rural Households. Agric. Hum. Values 2022, 39, 201–216. [Google Scholar] [CrossRef]
- Pérez-Zuñiga, J.I.; Rojas-Molina, J.; Zabala-Perilla, A.F. Plant Spacing Assessment in Cacao (Theobroma cacao L.) Agroforestry Systems in the Colombian Pacific Region. Agron. Colomb. 2021, 39, 426–437. [Google Scholar] [CrossRef]
- Amerino, J.; Apedo, C.K.; Anang, B.T. Factors Influencing Adoption of Cacao Agroforestry in Ghana: Analysis Based on Tree Density Choice. Sustain. Environ. 2024, 10, 2296162. [Google Scholar] [CrossRef]
- Zequeira-Larios, C.; Santiago-Alarcon, D.; MacGregor-Fors, I.; Castillo-Acosta, O. Tree Diversity and Composition in Mexican Traditional Smallholder Cacao Agroforestry Systems. Agrofor. Syst. 2021, 95, 1589–1602. [Google Scholar] [CrossRef]
- Deheuvels, O.; Avelino, J.; Somarriba, E.; Malezieux, E. Vegetation Structure and Productivity in Cacao-Based Agroforestry Systems in Talamanca, Costa Rica. Agric. Ecosyst. Environ. 2012, 149, 181–188. [Google Scholar] [CrossRef]
- Esquivel, M.J.; Vilchez-Mendoza, S.; Harvey, C.A.; Ospina, M.A.; Somarriba, E.; Deheuvels, O.; Filho, E.d.M.V.; Haggar, J.; Detlefsen, G.; Cerdan, C.; et al. Patterns of Shade Plant Diversity in Four Agroforestry Systems across Central America: A Meta-Analysis. Sci. Rep. 2023, 13, 8538. [Google Scholar] [CrossRef]
- Asitoakor, B.K.; Vaast, P.; Ræbild, A.; Ravn, H.P.; Eziah, V.Y.; Owusu, K.; Mensah, E.O.; Asare, R. Selected Shade Tree Species Improved Cacao Yields in Low-Input Agroforestry Systems in Ghana. Agric. Syst. 2022, 202, 103476. [Google Scholar] [CrossRef]
- González-Valdivia, N.A.; Cetzal-Ix, W.; Basu, S.K.; Casanova-Lugo, F.; Martínez-Puc, J.F. Diversity of Trees in the Mesoamerican Agroforestry System. In Biodiversity and Conservation of Woody Plants; Springer: Cham, Switzerland, 2017; ISBN 9783319664262. [Google Scholar]
- Prato, A.I.; Sánchez, S.N.; Zuluaga, J.J.; De Souza, P.V.D. Substrates, Seedling Age and Environment in the Initial Growth of Cariniana pyriformis Miers. Floresta 2020, 50, 1287–1296. [Google Scholar] [CrossRef]
- Rojas-Molina, J.; Caicedo, V.; Jaimes, Y. Dinámica de Descomposición de La Biomasa En Sistemas Agroforestales Con Theobroma cacao L., Rionegro, Santander (Colombia). Agron. Colomb. 2017, 35, 182–189. [Google Scholar] [CrossRef]
- Rojas-Molina, J.; Ortiz-Cabralez, L.; Escobar-Pachajoa, L.; Rojas-Buitrago, M.; Jaimes-Suarez, Y. Decomposition and Release of Nutrients in Biomass Generated by Cacao (Theobroma cacao L.) Pruning in Rionegro, Santander, Colombia. Agron. Mesoam. 2021, 32, 888–900. [Google Scholar] [CrossRef]
- Conceição, S.S.; Cruz, F.J.R.; Lima, E.U.; Lima, V.U.; Teixeira, J.S.S.; Sousa, D.J.P.d.; Yakuwa, T.K.M.; Barbosa, A.V.C.; Neto, C.F.d.O. Cadmium Toxicity and Phytoremediation in Trees—A Review. Aust. J. Crop Sci. 2020, 14, 857–870. [Google Scholar] [CrossRef]
- Brooks, R.R.; Chambers, M.F.; Nicks, L.J.; Robinson, B.H. Phytomining. Trends Plant Sci. 1998, 3, 359–362. [Google Scholar] [CrossRef]
- Fan, K.-C.; Hsi, H.-C.; Chen, C.-W.; Lee, H.-L.; Hseu, Z.-Y. Cadmium Accumulation and Tolerance of Mahogany (Swietenia macrophylla) Seedlings for Phytoextraction Applications. J. Environ. Manag. 2011, 92, 2818–2822. [Google Scholar] [CrossRef]
- Klang-Westin, E.; Eriksson, J. Potential of Salix as Phytoextractor for Cd on Moderately Contaminated Soils. Plant Soil 2003, 249, 127–137. [Google Scholar] [CrossRef]
- Robinson, B.H.; Anderson, C.W.N.; Dickinson, N.M. Phytoextraction: Where’s the Action? J. Geochem. Explor. 2015, 151, 34–40. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of Hyperaccumulators in Phytoextraction of Metals from Contaminated Mining Sites: A Review. Crit. Rev. Environ. Sci. Technol. 2011, 41, 168–214. [Google Scholar] [CrossRef]
- Gramlich, A.; Tandy, S.; Andres, C.; Chincheros Paniagua, J.; Armengot, L.; Schneider, M.; Schulin, R. Cadmium Uptake by Cacao Trees in Agroforestry and Monoculture Systems under Conventional and Organic Management. Sci. Total Environ. 2017, 580, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Argüello, D.; Chavez, E.; Gutierrez, E.; Pittomvils, M.; Dekeyrel, J.; Blommaert, H.; Smolders, E. Soil Amendments to Reduce Cadmium in Cacao (Theobroma cacao L.): A Comprehensive Field Study in Ecuador. Chemosphere 2023, 324, 138318. [Google Scholar] [CrossRef]
- Kaur, B.; Singh, B.; Kaur, N.; Singh, D. Phytoremediation of Cadmium-Contaminated Soil through Multipurpose Tree Species. Agrofor. Syst. 2018, 92, 473–483. [Google Scholar] [CrossRef]
- Galvis, D.A.; Jaimes-Suárez, Y.Y.; Rojas Molina, J.; Ruiz, R.; Carvalho, F.E.L. Cadmium up Taking and Allocation in Wood Species Associated to Cacao Agroforestry Systems and Its Potential Role for Phytoextraction. Plants 2023, 12, 2930. [Google Scholar] [CrossRef]
- Lux, A.; Martinka, M.; Vaculík, M.; White, P.J. Root Responses to Cadmium in the Rhizosphere: A Review. J. Exp. Bot. 2011, 62, 21–37. [Google Scholar] [CrossRef]
- Sterckeman, T.; Thomine, S. Mechanisms of Cadmium Accumulation in Plants. CRC Crit. Rev. Plant Sci. 2020, 39, 322–359. [Google Scholar] [CrossRef]
- Lieth, J.H.; Reynolds, J.F. The Nonrectangular Hyperbola as a Photosynthetic Light Response Model: Geometrical Interpretation and Estimation of the Parameter. Photosynthetica 1987, 21, 363–365. [Google Scholar]
- Lane, P.; Gomez, E.; Chavez, W. A Poly Crisis in Cacao. In Proceedings of the 18th International Technology, Education and Development Conference, Valencia, Spain, 4–6 March 2024; Volume 1, pp. 4406–4413. [Google Scholar] [CrossRef]
- Gil, J.P.; López-Zuleta, S.; Quiroga-Mateus, R.Y.; Benavides-Erazo, J.; Chaali, N.; Bravo, D. Cadmium Distribution in Soils, Soil Litter and Cacao Beans: A Case Study from Colombia. Int. J. Environ. Sci. Technol. 2022, 19, 2455–2476. [Google Scholar] [CrossRef]
- Hernández-Nuñez, H.E.; Suárez, J.C.; Andrade, H.J.; Acosta, J.R.S.; Núñez, R.D.; Gutiérrez, D.R.; Gutiérrez, G.A.; Gutiérrez-Montes, I.; Casanoves, F. Interactions between Climate, Shade Canopy Characteristics and Cacao Production in Colombia. Front. Sustain. Food Syst. 2024, 8, 1295992. [Google Scholar] [CrossRef]
- Salazar, J.C.S.; Melgarejo, L.M.; Casanoves, F.; Di Rienzo, J.A.; DaMatta, F.M.; Armas, C. Photosynthesis Limitations in Cacao Leaves under Different Agroforestry Systems in the Colombian Amazon. PLoS ONE 2018, 13, e0206149. [Google Scholar] [CrossRef]
- Blaylock, M.J. Field Demonstrations of Phytoremediation of Lead-Contaminated Soils. In Phytoremediation of Contaminated Soil and Water, edited by Norman Terry and Gary Banuelos, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000; 12p. [Google Scholar]
- León-Moreno, C.; Rojas-Molina, J.; Castilla-Campos, C. Physicochemical Characteristics of Cacao (Theobroma cacao L.) Soils in Colombia: Are They Adequate to Improve Productivity? Agron. Colomb. 2019, 37, 52–62. [Google Scholar] [CrossRef]
- Bedair, H.; Ghosh, S.; Abdelsalam, I.M.; Keerio, A.A.; AlKafaas, S.S. Potential Implementation of Trees to Remediate Contaminated Soil in Egypt. Environ. Sci. Pollut. Res. 2022, 29, 78132–78151. [Google Scholar] [CrossRef] [PubMed]
- Pouresmaieli, M.; Ataei, M.; Forouzandeh, P.; Azizollahi, P.; Mahmoudifard, M. Recent Progress on Sustainable Phytoremediation of Heavy Metals from Soil. J. Environ. Chem. Eng. 2022, 10, 108482. [Google Scholar] [CrossRef]
- Mayerová, M.; Petrová, Š.; Madaras, M.; Lipavský, J.; Šimon, T.; Vaněk, T. Non-Enhanced Phytoextraction of Cadmium, Zinc, and Lead by High-Yielding Crops. Environ. Sci. Pollut. Res. 2017, 24, 14706–14716. [Google Scholar] [CrossRef]
- Tiwari, J.; Kumar, A.; Kumar, N. Phytoremediation Potential of Industrially Important and Biofuel Plants: Azadirachta Indica and Acacia Nilotica. In Phytoremediation Potential of Bioenergy Plants; Springer: Singapore, 2017; pp. 211–254. [Google Scholar] [CrossRef]
- Soliman, W.S.; Sugiyama, S. Phytoremediation and Tolerance Capacity of Moringa to Cadmium and Its Relation to Nutrients Content. Poll. Res. 2016, 35, 23–27. [Google Scholar]
- Zhang, W.; Cai, Y.; Tu, C.; Ma, L.Q. Arsenic Speciation and Distribution in an Arsenic Hyperaccumulating Plant. Sci. Total Environ. 2002, 300, 167–177. [Google Scholar] [CrossRef]
- Ramírez-Flores, V.A.; Aranda Delgado, L.; Rico-Gray, V. Cambio de Uso de Suelo, Manejo Forestal y Sus Implicaciones En Las Interacciones Bióticas Asociadas a Cedrela odorata Linnaeus, Meliaceae. Cuad. De Biodivers. 2018, 55, 11–27. [Google Scholar]
- Dios, J.D.; Solorio, B.; García, O.T.; Germán, J.; Garnica, F.; Acosta, M.; Rueda, A. Ecuaciones Alométricas Para Estimar Biomasa y Carbono Aéreos de Cedrela odorata L. En Plantaciones Forestales Carbon from Cedrela odorata L. in Forest Plantations Introducción. Rev. Mex. Cienc. For. 2021, 12. [Google Scholar] [CrossRef]
- Arevalo-Hernandez, C.O.; Arevalo-Gardini, E.; Barraza, F.; Farfán, A.; He, Z.; Baligar, V.C. Growth and Nutritional Responses of Wild and Domesticated Cacao Genotypes to Soil Cd Stress. Sci. Total Environ. 2020, 763, 144021. [Google Scholar] [CrossRef] [PubMed]
- Mensah, E.O.; Ræbild, A.; Asare, R.; Amoatey, C.A.; Markussen, B.; Owusu, K.; Asitoakor, B.K.; Vaast, P. Combined Effects of Shade and Drought on Physiology, Growth, and Yield of Mature Cacao Trees. Sci. Total Environ. 2023, 2, 165657. [Google Scholar] [CrossRef]
- Jubany-Marí, T.; Munné-Bosch, S.; López-Carbonell, M.; Alegre, L. Hydrogen Peroxide Is Involved in the Acclimation of the Mediterranean Shrub, Cistus albidus L., to Summer Drought. J. Exp. Bot. 2009, 60, 107–120. [Google Scholar] [CrossRef]
- He, L.; Dai, Z.; Liu, X.; Tang, C.; Xu, J. Chemosphere Effect of Alkaline Lignin on Immobilization of Cadmium and Lead in Soils and the Associated Mechanisms. Chemosphere 2021, 281, 130969. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, K. Molecular Mechanisms of Plant Adaptive Responses to Heavy Metals Stress. Cell Biol. Int. 2021, 45, 258–272. [Google Scholar] [CrossRef]
- Neves, G.Y.S.; Marchiosi, R.; Ferrarese, M.L.L.; Siqueira-Soares, R.C.; Ferrarese-Filho, O. Root Growth Inhibition and Lignification Induced by Salt Stress in Soybean. J. Agron. Crop Sci. 2010, 196, 467–473. [Google Scholar] [CrossRef]
- Sousa, R.T.; Paiva, A.L.S.; Carvalho, F.E.L.; Alencar, V.T.C.B.; Silveira, J.A.G. Ammonium Overaccumulation in Senescent Leaves as a Novel Exclusion Mechanism to Avoid Toxicity in Photosynthetically Active Rice Leaves. Environ. Exp. Bot. 2021, 186, 104452. [Google Scholar] [CrossRef]
- Julshamn, K.; Maage, A.; Norli, H.S.; Grobecker, K.H.; Jorhem, L.; Fecher, P.; Dowell, D. Determination of Arsenic, Cadmium, Mercury, and Lead in Foods by Pressure Digestion and Inductively Coupled Plasma/Mass Spectrometry: First Action 2013.06. J. AOAC Int. 2013, 96, 1101–1102. [Google Scholar] [CrossRef]
- Wilkins, D.A. The Measurement of Tolerance to Edaphic Factors by Means of Root Growth. New Phytol. 1978, 80, 623–633. [Google Scholar] [CrossRef]
- Amacher, M.C. Nickel, Cadmium, and Lead. In Methods of Soil Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1996; pp. 739–768. [Google Scholar] [CrossRef]
- Mehra, A.; Cordes, K.B.; Chopra, S.; Fountain, D. Distribution and Bioavailability of Metals in Soils in the Vicinity of a Copper Works in Staffordshire, UK. Chem. Speciat. Bioavailab. 1999, 11, 57–66. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Flexas, J.; Ribas-Carbó, M.; Diaz-Espejo, A.; Galmés, J.; Medrano, H. Mesophyll Conductance to CO2: Current Knowledge and Future Prospects. Plant Cell Environ. 2008, 31, 602–621. [Google Scholar] [CrossRef] [PubMed]
Species | Cadmium | Tolerance Index (%) | ||
---|---|---|---|---|
30 DAEs | 60 DAEs | 90 DAEs | ||
C. pyriformis | T1 | 66 ± 8 Aa | 96 ± 7 Aa | 100 ± 7 Aa |
T2 | 67 ± 6 Aa | 68 ± 21 Aa | 84 ± 5 Aa | |
S. macrophylla | T1 | 83 ± 6 Aa | 84 ± 3 Aa | 97 ± 16 Aa |
T2 | 86 ± 13 Aa | 73 ± 5 Aa | 98 ± 8 Aa | |
C. odorata | T1 | 82 ± 15 Aa | 72 ± 3 Aa | 91 ± 17 Aa |
T2 | 65 ± 5 Aa | 64 ± 7 Aa | 54 ± 13 Ba | |
T. superba | T1 | 78 ± 14 Aa | 68 ± 7 Aa | 80 ± 5 Aa |
T2 | 63 ± 9 Aa | 53 ± 5 Ba | 52 ± 12 Bb |
Time (DAEs) | Cd | C. pyriformis | S. macrophilla | C. odorata | T. superba | |
---|---|---|---|---|---|---|
Leaf Cadmium Content (mg kg−1) | 30 | Reference | 0.03 ± 0.00 aA | 0.40 ± 0.2 aA | 0.25 ± 0.01 bA | 0.43 ± 0.18 aA |
T1 | 0.52 ± 0.11 aA | 2.01 ± 0.12 aA | 5.11 ± 0.35 aA | 1.96 ± 0.35 aA | ||
T2 | 1.96 ± 0.86 aB | 3.96 ± 0.44 aA | 8.92 ± 1.21 aA | 3.62 ± 0.18 aA | ||
60 | Reference | 0.04 ± 0.00 aA | 0.36 ± 0.18 aA | 0.21 ± 0.02 cA | 0.25 ± 0.02 aA | |
T1 | 0.82 ± 0.13 aB | 2.95 ± 1.12 aA | 7.39 ± 0.39 bA | 2.34 ± 0.02 aA | ||
T2 | 2.28 ± 0.08 aB | 4.16 ± 0.45 aB | 15.24 ± 3.5 aA | 4.04 ± 0.48 aB | ||
90 | Reference | 0.04 ± 0 aA | 0.13 ± 0.03 bA | 0.29 ± 0.04 cA | 0.28 ± 0.02 bA | |
T1 | 1.43 ± 0.26 aB | 2.66 ± 0.21 aB | 12.61 ± 0.85 bA | 5.04 ± 0.22 bB | ||
T2 | 5.53 ± 1.48 aC | 6.74 ± 2.03 aC | 35.35 ± 1.14 aA | 13.34 ± 3.66 aB | ||
Stem Cadmium Content (mg kg−1) | 30 | Reference | 0.07 ± 0.01 cA | 0.25 ± 0.03 cA | 0.18 ± 0.01 bA | 0.22 ± 0.04 bA |
T1 | 28.53 ± 19.19 aA | 6.5 ± 0.36 bB | 3.1 ± 0.26 bB | 4.53 ± 0.94 bB | ||
T2 | 18.04 ± 2.35 cA | 17.39 ± 1.7 aA | 10.66 ± 3.77 aC | 13.96 ± 1.81 aA | ||
60 | Reference | 0.67 ± 0.35 cA | 0.16 ± 0.01 cA | 0.24 ± 0.05 cA | 0.23 ± 0.01 cA | |
T1 | 16.17 ± 3.97 bA | 9.09 ± 1.51 bB | 6.6 ± 0.46 bB | 12.42 ± 2.64 bA | ||
T2 | 37.16 ± 4.39 aA | 16.81 ± 3.28 aC | 14.37 ± 4.29 aC | 24.11 ± 1.29 aB | ||
90 | Reference | 0.06 ± 0.01 cA | 0.31 ± 0.08 cA | 0.31 ± 0.03 cA | 0.41 ± 0.06 cA | |
T1 | 21.49 ± 1.27 bA | 13.93 ± 0.67 bD | 20.05 ± 4.78 bB | 26.26 ± 5.71 bA | ||
T2 | 93.66 ± 12.36 aA | 28.84 ± 1.84 aD | 44.9 ± 7.87 aC | 78.77 ± 2.57 aB | ||
Roots Cadmium Content (mg kg−1) | 30 | Reference | 0.45 ± 0.07 cA | 0.51 ± 0.07 cA | 0.27 ± 0.04 cA | 0.71 ± 0.39 cA |
T1 | 82.08 ± 31.12 bC | 65.44 ± 3.9 bD | 135.3 ± 11.99 bA | 100.61 ± 14.57 bB | ||
T2 | 357.95 ± 15.4 aA | 153.57 ± 2.73 aD | 280.72 ± 82.35 aC | 294.61 ± 17.06 aB | ||
60 | Reference | 0.60 ± 0.07 cA | 0.39 ± 0.03 cA | 0.5 ± 0.03 cA | 0.51 ± 0.09 cA | |
T1 | 283.77 ± 52.14 bB | 74.77 ± 8.2 bD | 311.62 ± 17.25 bA | 156.53 ± 8.85 bC | ||
T2 | 776.19 ± 145.91 aA | 149.39 ± 20.21 aD | 666.52 ± 254.28 aB | 384.58 ± 162.92 aC | ||
90 | Reference | 3.01 ± 2.05 cA | 1.78 ± 0.25 cA | 1.15 ± 0.27 cA | 1.01 ± 0.14 cA | |
T1 | 240.23 ± 34.91 bC | 156.61 ± 4.11 bD | 337.93 ± 65.01 bB | 440.34 ± 99.8 bA | ||
T2 | 652.99 ± 18.31 aA | 295.13 ± 42.14 aD | 613.35 ± 71.18 aC | 635.39 ± 121.37 aB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, F.E.L.; Montenegro, A.C.; Escobar-Pachajoa, L.D.; Rojas-Molina, J.; Camacho-Diaz, J.E.; Rengifo-Estrada, G.A. Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry. Plants 2025, 14, 1101. https://doi.org/10.3390/plants14071101
Carvalho FEL, Montenegro AC, Escobar-Pachajoa LD, Rojas-Molina J, Camacho-Diaz JE, Rengifo-Estrada GA. Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry. Plants. 2025; 14(7):1101. https://doi.org/10.3390/plants14071101
Chicago/Turabian StyleCarvalho, Fabricio E. L., Andrea C. Montenegro, Laura D. Escobar-Pachajoa, Jairo Rojas-Molina, Jorge E. Camacho-Diaz, and Gersain A. Rengifo-Estrada. 2025. "Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry" Plants 14, no. 7: 1101. https://doi.org/10.3390/plants14071101
APA StyleCarvalho, F. E. L., Montenegro, A. C., Escobar-Pachajoa, L. D., Rojas-Molina, J., Camacho-Diaz, J. E., & Rengifo-Estrada, G. A. (2025). Phytoextraction and Cd Allocation to the Stem of Woody Species Used in Cacao Agroforestry. Plants, 14(7), 1101. https://doi.org/10.3390/plants14071101