Molecular and Genetic Characterization of Newly Released CIMMYT Inbred Maize Lines
Abstract
1. Introduction
2. Results
2.1. Distribution and Statistical Analysis of SNP Markers on Chromosomes
2.2. Heterozygosity and Missing Rates in 109 CML Germplasms
2.3. Linkage Disequilibrium Analysis
2.4. Structure Analysis
2.5. Cluster Analysis

2.6. Principal Component Analysis (PCA)
2.7. Analysis of Population Genetic Differentiation
| Group 1 | Group 2 | Group 3 | Temperate Germplasm | Tropical Germplasm | |
|---|---|---|---|---|---|
| Group 1 | - | ||||
| Group 2 | 0.052 | - | |||
| Group 3 | 0.048 | 0.043 | - | ||
| Temperate germplasms a | 0.167 | 0.148 | 0.117 | - | |
| Tropical germplasms b | - | - | - | 0.131 | - |
3. Discussion
3.1. Characterization of Genetic Diversity of Tropical Maize Germplasm and Its Breeding Value
3.2. Genetic Structure of CIMMYT Lines
3.3. Genetic Characterization of Temperate Elite Inbred Lines and Breeding Utilization of Tropical Germplasm
4. Materials and Methods
4.1. Plant Material
4.2. SNP Genotyping
4.3. SNP Characteristics
4.4. Linkage Disequilibrium (LD)
4.5. Population Structure Analysis
4.6. PCA
4.7. Cluster Analysis
4.8. Population Distance
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodman, M.M. The history and evolution of maize. Plant Sci. 1988, 7, 197–201. [Google Scholar] [CrossRef]
- Yoshihiro, M.; Yves, V.; Major, M.; Jesus, S.; Edward, B.; John, D. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. USA 2002, 99, 6080–6084. [Google Scholar]
- Yang, N.; Wang, Y.; Liu, X.; Jin, M.; Miguel, V.; Erin, C.; Chen, L.; Brian, P.; Gui, S.; Fan, X.; et al. Two teosintes made modern maize. Science 2023, 382, eadg8940. [Google Scholar] [CrossRef]
- Varshney, R.K.; Bohra, A.; Roorkiwal, M.; Barmukh, R.; Cowling, W.A.; Chitikineni, A.; Siddique, K.H.M. Fast-forward breeding for a food-secure world. Trends Genet. 2021, 37, 1124–1136. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; San Vicente, F.; Huang, K.; Dhliwayo, T.; Costich, D.E.; Semagn, K.; Sudha, N.; Olsen, M.; Prasanna, B.M.; Zhang, X.; et al. Molecular characterization of CIMMYT maize inbred lines with genotyping-by-sequencing SNPs. Theor. Appl. Genet. 2016, 129, 753–765. [Google Scholar] [CrossRef]
- Tian, T.; Wang, S.; Yang, S.; Yang, Z.; Liu, S.; Wang, Y.; Gao, H.; Zhang, S.; Yang, X.; Jiang, C.; et al. Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm. Nat. Genet. 2023, 55, 496–506. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, G.; Li, J.; Yan, J.; Li, H.; Yang, X. Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theor. Appl. Genet. 2018, 131, 1207–1221. [Google Scholar] [CrossRef]
- Guo, R.; Li, T.; Zhang, Q.; Wang, J.; Guo, J.; Wang, L.; Song, L.; Yan, Y.; Zhang, D.; Wei, J.; et al. Genetic and Molecular Characterization of Maize Landraces from Central China. Agronomy 2024, 14, 1278. [Google Scholar] [CrossRef]
- Shu, G.; Cao, G.; Li, N.; Wang, A.; Wei, F.; Li, T.; Yi, L.; Xu, Y.; Wang, Y. Genetic variation and population structure in China summer maize germplasm. Sci. Rep. 2021, 11, 8012. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Chen, J.; Petroli, C.D.; Pacheco, A.; Zhang, X.; San Vicente, F.; Hearne, S.J.; Dhliwayo, T. The genetic structure of CIMMYT and U.S. inbreds and its implications for tropical maize breeding. Crop. Sci. 2021, 61, 1666–1681. [Google Scholar] [CrossRef]
- Chen, Z. Genomic and epigenetic insights into the molecular bases of heterosis. Nat. Rev. Genet. 2013, 14, 471–482. [Google Scholar] [CrossRef]
- Jiang, S.; Cheng, Q.; Yan, J.; Fu, R.; Wang, X. Genome optimization for improvement of maize breeding. Theor. Appl. Genet. 2019, 133, 1491–1502. [Google Scholar] [CrossRef]
- Reif, J.C.; Melchinger, A.E.; Xia, X.C.; Warburton, M.L.; Hoisington, D.A.; Vasal, S.K.; Beck, D.; Bohn, M.; Frisch, M. Use of SSRs for establishing heterotic groups in subtropical maize. Theor. Appl. Genet. 2003, 107, 947–957. [Google Scholar] [CrossRef]
- Bedoya, C.A.; Dreisigacker, S.; Hearne, S.; Franco, J.; Mir, C.; Prasanna, B.M.; Taba, S.; Charcosset, A.; Warburton, M.L. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. PLoS ONE 2017, 12, e0173488. [Google Scholar] [CrossRef]
- Romay, M.C.; Millard, M.J.; Glaubitz, J.C.; Peiffer, J.A.; Swarts, K.L.; Casstevens, T.M.; Elshire, R.J.; Acharya, C.B.; Mitchell, S.E.; Flint-Garcia, S.A.; et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 2013, 14, R55. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Li, L.; Lan, H.; Ren, Z.; Liu, D.; Wu, L.; Liu, H.; Jaqueth, J.; Li, B.; et al. Characterizing the populationstructure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genom. 2016, 17, 697. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Shi, Y.; Song, Y.; Wang, T.; Huang, Y.; Li, Y. Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor. Appl. Genet. 2014, 127, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Shah, T.; Warburton, M.L.; Buckler, E.S.; McMullen, M.D.; Crouch, J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 2009, 4, e8451. [Google Scholar]
- Harjes, C.; Rocheford, T.; Bai, L.; Brutnell, T.; Kandianis, C.B.; Sowinski, S.G.; Stapleton, A.E.; Vallabhaneni, R.; Williams, M.; Wurtzel, E.T.; et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 2008, 319, 330–333. [Google Scholar] [CrossRef]
- Ma, P.; Zhang, H.; Shui, H.; Zhang, X.; Wang, X.; Gao, S.; Zhang, H.; Nie, Z.; Qing, C.; Lu, T.; et al. Unveiling the heterosis pattern of modern maize breeding in Southwest China through population structure and genetic diversity analysis. BMC Plant Biol. 2025, 25, 477. [Google Scholar] [CrossRef]
- Tarter, J.; Goodman, M.; Holland, J. Recovery of exotic alleles in semiexotic maize inbreds derived from crosses between Latin American accessions and a temperate line. Theor. Appl. Genet. 2004, 109, 609–661. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef]
- Liu, K.; Goodman, M.M.; Muse, S.; Smith, J.S.C.; Buckler, E.S.; Doebley, J. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 2003, 165, 2117–2128. [Google Scholar] [CrossRef]
- Tel-zur, N.; Abbo, S.; Myslabodski, D.; Mizrahi, Y. Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Theor. Appl. Genet. 1999, 17, 243–254. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y. Buck-ler ES TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Yang, X.; Gao, S.; Xu, S.; Zhang, Z.; Prasanna, B.M.; Li, L.; Li, J.; Yan, J. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol. Breed. 2011, 28, 511–526. [Google Scholar] [CrossRef]
- Hubisz, M.J.; Falush, D.; Stephens, M.; Pritchard, J.K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 2009, 9, 1322–1332. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Wright, S. The genetical structure of populations. Ann. Eugen. 1951, 15, 323–354. [Google Scholar] [CrossRef]
- Koichiro, T.; Glen, S.; Sudhir, K. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Yu, G.; Lam, T.T.Y.; Zhu, H.; Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 2018, 35, 3041–3043. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; Depristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.H.D. The estimation of Wright’s fixation index from genotypic frequencies. Genetica 1970, 41, 399–406. [Google Scholar] [CrossRef] [PubMed]






| Minor Allele Frequency | Proportion Missing | Proportion Heterozygous | Shannon Index | |
|---|---|---|---|---|
| Chr1 | 0.253 | 0.031 | 0.027 | 0.516 |
| Chr2 | 0.258 | 0.033 | 0.027 | 0.523 |
| Chr3 | 0.255 | 0.027 | 0.021 | 0.518 |
| Chr4 | 0.262 | 0.031 | 0.03 | 0.531 |
| Chr5 | 0.25 | 0.029 | 0.03 | 0.515 |
| Chr6 | 0.257 | 0.034 | 0.029 | 0.525 |
| Chr7 | 0.26 | 0.032 | 0.027 | 0.525 |
| Chr8 | 0.267 | 0.032 | 0.03 | 0.532 |
| Chr9 | 0.255 | 0.03 | 0.028 | 0.516 |
| Chr10 | 0.251 | 0.035 | 0.034 | 0.51 |
| Average | 0.257 | 0.027 | 0.025 | 0.521 |
| Geographic-Ecological Type | Representative Varieties (Count) |
|---|---|
| Middle Altitude/Sub-Tropical Africa (51) | CML504, CML505, CML506, CML507, CML508, CML509, CML510, CML511, CML513, CML514, CML520, CML521, CML522, CML523, CML536, CML537, CML538, CML539, CML540, CML541, CML542, CML543, CML544, CML545, CML546, CML547, CML548, CML559, CML560, CML568, CML566, CML567, CML570, CML571, CML572, CML584, CML585, CML586, CML587, CML588, CML589, CML590, CML591, CML592, CML593, CML609A, CML604A, CML608B, CML606, CML607B, CML610A |
| Lowland tropical-Latin America (20) | CML530, CML531, CML532, CML533, CML534, CML535, CML549, CML550, CML551, CML552, CML553, CML554, CML555, CML556, CML557, CML573, CML574, CML575, CML576, CML577, |
| Lowland tropical (11) | CML500, CML502, CML515, CML516, CML596, CML597, CML598, CML599, CML600, CML601, CML602 |
| Subtropical tropical (6) | CML486, CML512, CML517, CML518, CML519, CML603 |
| Highland tropical (6) | CML524, CML525, CML527, CML529, CML528, CML594, |
| Lowland tropical-Asia (13) | CML562, CML563, CML564, CML565, CML578, CML579, CML580, CML581, CML582, CML612B, CML613A, CML614B, CML615A |
| Highland tropical Eastern Africa (2) | CML561, CML611B, |
| Temperate Germplasm (6) | PH6WC, PH4CV, Ji42, CHANG 7-2, Ji1877F, Z58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.; Wang, J.; Yan, Y.; Zhang, Q.; Wang, L.; Song, L.; Wei, J.; Li, X.; Zhang, D.; Guo, J.; et al. Molecular and Genetic Characterization of Newly Released CIMMYT Inbred Maize Lines. Plants 2025, 14, 3866. https://doi.org/10.3390/plants14243866
Fan H, Wang J, Yan Y, Zhang Q, Wang L, Song L, Wei J, Li X, Zhang D, Guo J, et al. Molecular and Genetic Characterization of Newly Released CIMMYT Inbred Maize Lines. Plants. 2025; 14(24):3866. https://doi.org/10.3390/plants14243866
Chicago/Turabian StyleFan, Haihong, Jianghao Wang, Yuanyuan Yan, Quanguo Zhang, Liwei Wang, Liang Song, Jianfeng Wei, Xinhua Li, Dongmin Zhang, Jinjie Guo, and et al. 2025. "Molecular and Genetic Characterization of Newly Released CIMMYT Inbred Maize Lines" Plants 14, no. 24: 3866. https://doi.org/10.3390/plants14243866
APA StyleFan, H., Wang, J., Yan, Y., Zhang, Q., Wang, L., Song, L., Wei, J., Li, X., Zhang, D., Guo, J., Guo, R., & Song, W. (2025). Molecular and Genetic Characterization of Newly Released CIMMYT Inbred Maize Lines. Plants, 14(24), 3866. https://doi.org/10.3390/plants14243866

