Individual Genomic Distinctness of Rice Germplasm as Measured with an Average Pairwise Dissimilarity of Genome-Wide SNPs and Structural Variants
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition of Published Rice Genomic Data
2.2. Data Processing
2.3. APD Analysis
2.4. Associating APD Estimates with Other Genetic Estimates
2.5. Impact of Variant Number on APD Estimation
3. Results
3.1. Variability of APD Estimates in Four Data Sets
3.2. Associations Between APD Estimates and Other Genetic Estimates
3.3. The Effects of Variant Numbers on APD Estimation
4. Discussion
5. Concluding Remarks
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, Y.B. Redundancy and distinctness in flax germplasm as revealed by RAPD dissimilarity. Plant Gen. Res. 2006, 4, 117–124. [Google Scholar] [CrossRef]
- Fu, Y.B.; Cober, E.R.; Morrison, M.J.; Marsolais, F.; Peterson, G.W.; Horbach, C. Patterns of genetic variation in a soybean germplasm collection as characterized with genotyping-by-sequencing. Plants 2021, 10, 1611. [Google Scholar] [CrossRef]
- Weir, B.S. Genetic Data Analysis: Methods for Discrete Population Genetic Data; Sinauer Associates: Sunderland, MA, USA, 1990; p. 377. [Google Scholar]
- Brown, A.H.D. Indicators of Genetic Diversity, Genetic Erosion and Genetic Vulnerability for Plant Genetic Resources for Food and Agriculture; FAO, United Nations: Rome, Italy, 2008; p. 27. Available online: https://www.fao.org/fileadmin/templates/agphome/documents/PGR/SoW2/PGRFA_Indicators_Thematic_Study.pdf (accessed on 28 November 2025).
- Weir, B.S.; Goudet, J. A unified characterization of population structure and relatedness. Genetics 2017, 206, 2085–2103. [Google Scholar] [CrossRef]
- Diederichsen, A.; Kusters, P.M.; Kessler, D.; Bainas, Z.; Gugel, R.K. Assembling a core collection from the flax world collection maintained by Plant Gene Resources of Canada. Genet. Resour. Crop Evol. 2013, 60, 1479–1485. [Google Scholar] [CrossRef]
- Fu, Y.B.; Cober, E.R.; Morrison, M.J.; Marsolais, F.; Zhou, R.; Xu, N.; Gahagan, A.C.; Horbach, C. Variability in maturity, oil and protein concentration, and genetic distinctness among soybean accessions conserved at Plant Gene Resources of Canada. Plants 2022, 11, 3525. [Google Scholar] [CrossRef]
- Chavarriaga-Aguirre, P.; Maya, M.M.; Tohme, J.; Duque, M.C.; Iglesias, C.; Bonierbale, M.W.; Kresovich, S.; Kochert, G. Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. Mol. Breed. 1999, 5, 263–273. [Google Scholar] [CrossRef]
- Dean, R.E.; Dahlberg, J.A.; Hopkins, M.S.; Mitchell, S.E.; Kresovich, S. Genetic redundancy and diversity among ‘Orange’ accessions in the US national sorghum collection as assessed with simple sequence repeat (SSR) markers. Crop Sci. 1999, 39, 1215–1221. [Google Scholar] [CrossRef]
- Kisha, T.J.; Cramer, C.S. Determining redundancy of short-day onion accessions in a germplasm collection using microsatellite and targeted region amplified polymorphic markers. J. Am. Soc. Hortic. 2011, 136, 129–134. [Google Scholar] [CrossRef]
- Motilal, L.A.; Zhang, D.; Mischke, S.; Meinhardt, L.W.; Umaharan, P. Microsatellite-aided detection of genetic redundancy improves management of the International Cocoa Genebank, Trinidad. Tree Genet. Genomes 2013, 9, 1395–1411. [Google Scholar] [CrossRef]
- Pritchard, J.; Stephens, M.; Donnelly, P. Influence of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef]
- Fu, Y.B. Assessing genetic distinctness and redundancy of plant germplasm conserved ex situ based on published genomic SNP data. Plants 2023, 12, 1476. [Google Scholar] [CrossRef]
- Yang, M.H.; Fu, Y.B. AveDissR: An R function for assessing genetic distinctness and genetic redundancy. Appl. Plant Sci. 2017, 5, 1700018. [Google Scholar] [CrossRef] [PubMed]
- Cober, E.R.; Hou, A.; Lackey, S.; Samafar, B.; Hedinezhad, M. AAC Springfield soybean. Can. J. Plant Sci. 2025, 105, 1–3. [Google Scholar] [CrossRef]
- Jamali, S.H.; Cockram, J.; Hickey, L.T. Insights into deployment of DNA markers in plant variety protection and registration. Theor. Appl. Genet. 2019, 132, 1911–1929. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, T.J.; Annicchiarico, P.; Julier, B.; Ghesquière, M. A proposal for enhanced EU herbage VCU and DUS testing procedures. Grass Forage Sci. 2020, 75, 227–241. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Franguelli, N.; Ferrari, B.; Campanella, G.; Gualanduzzi, S.; Crosta, M.; Delogu, C.; Spataro, G.; Nazzicari, N. Molecular markers enhance substantially the distinctness of alfalfa varieties for registration and protection. Plant Genome 2025, 18, e20556. [Google Scholar] [CrossRef]
- Abbate, L.; Mercati, F.; Di Noto, G.; Heuertz, M.; Carimi, F.; Fatta del Bosco, S.; Schicchi, R. Genetic distinctiveness highlights the conservation value of a Sicilian manna ash germplasm collection assigned to Fraxinus angustifolia (Oleaceae). Plants 2020, 9, 1035. [Google Scholar] [CrossRef]
- Diaz-Martin, Z.; Fant, J.; Havens, K.; Cinea, W.; Tucker Lima, J.M.; Griffith, M.P. Current management practices do not adequately safeguard endangered plant species in conservation collections. Biol. Conserv. 2023, 280, 109955. [Google Scholar] [CrossRef]
- Yuan, Y.; Bayer, P.E.; Batley, J.; Edwards, D. Current status of structural variation studies in plants. Plant Biotechnol. J. 2021, 19, 2153–2163. [Google Scholar] [CrossRef]
- Saxena, R.K.; Edwards, D.; Varshney, R.K. Structural variations in plant genomes. Brief. Funct. Genom. 2014, 13, 296–307. [Google Scholar] [CrossRef]
- Hämälä, T.; Wafula, E.K.; Guiltinan, M.J.; Ralph, P.E.; dePamphilis, C.W.; Tiffin, P. Genomic structural variants constrain and facilitate adaptation in natural populations of Theobroma cacao, the chocolate tree. Proc. Natl. Acad. Sci. USA 2021, 118, e2102914118. [Google Scholar] [CrossRef]
- Hu, M.; Wan, P.; Chen, C.; Tang, S.; Chen, J.; Wang, L.; Chakraborty, M.; Zhou, Y.; Chen, J.; Gaut, B.S.; et al. Accurate, scalable structural variant genotyping in complex genomes at population scales. Mol. Biol. Evol. 2025, 42, msaf180. [Google Scholar] [CrossRef]
- Wang, W.; Mauleon, R.; Hu, Z.; Chebortarov, D.; Tai, S.; Wu, Z.; Li, M.; Zheng, T.; Fuentes, R.R.; Zhang, F.; et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 2018, 557, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, R.R.; Chebotarov, D.; Duitama, J.; Smith, S.; De la Hoz, J.F.; Mohiyuddin, M.; Wing, R.A.; McNally, K.L.; Tatarinova, T.; Grigoriev, A.; et al. Structural variants in 3000 rice genomes. Genome Res. 2019, 29, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 2012, 28, 3326–3328. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org (accessed on 17 October 2025).
- Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 1958, 38, 1409–1438. [Google Scholar]
- Anaconda Software Distribution. Anaconda. Available online: https://anaconda.com (accessed on 17 October 2025).
- Pebesma, E.; Bivand, R. Classes and methods for spatial data in R. R News 2005, 5, 9–13. Available online: https://CRAN.R-project.org/doc/Rnews/ (accessed on 30 November 2025).
- Ho, S.S.; Urban, A.E.; Mills, R.E. Structural variation in the sequencing era. Nat. Rev. Genet. 2020, 21, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Lemay, M.-A.; de Ronne, M.; Bélanger, R.; Belzile, F. K-mer-based GWAS enhances the discovery of causal variants and candidate genes in soybean. Plant Genome 2023, 16, e20374. [Google Scholar] [CrossRef] [PubMed]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef]
- Peterson, G.W.; Dong, Y.; Horbach, C.; Fu, Y.B. Genotyping-by-sequencing for plant genetic diversity analysis: A lab guide for SNP genotyping. Diversity 2014, 6, 665–680. [Google Scholar] [CrossRef]
- Fu, Y.B. Genetically distinct rice lines for specific characters as revealed by gene-associated average pairwise dissimilarity. Crops 2024, 4, 636–650. [Google Scholar] [CrossRef]
- von Takach, B.; Cameron, S.F.; Cremona, T.; Eldridge, M.D.B.; Fisher, D.O.; Hohnen, R.; Jolly, C.J.; Kelly, E.; Phillips, B.L.; Radford, I.J.; et al. Conservation prioritisation of genomic diversity to inform management of a declining mammal species. Biol. Conserv. 2024, 291, 110467. [Google Scholar] [CrossRef]
- Crossman, C.A.; Hamilton, P.K.; Brown, M.W.; Conger, L.A.; George, R.C.; Jackson, K.A.; Radvan, S.N.; Frasier, T.R. Effects of inbreeding on reproductive success in endangered North Atlantic right whales. R. Soc. Open Sci. 2024, 11, 240490. [Google Scholar] [CrossRef] [PubMed]



| Sample.ID | Genetic Stock | Origin | APD | SD | Sample.ID | Genetic Stock | Origin | APD | SD |
|---|---|---|---|---|---|---|---|---|---|
| indica-SNP | japonica-SNP | ||||||||
| CX401 | TOG 7291 | Burkina Faso | 0.328 | 0.011 | IRIS_313-10459 | PI 160862-1:: | China | 0.303 | 0.021 |
| B039 | IRAT 10 | Cote d’Ivoire | 0.309 | 0.015 | IRIS_313-10444 | Fortuna colorado:: | Central America | 0.295 | 0.025 |
| B221 | Fanhaopi | China | 0.301 | 0.013 | IRIS_313-10872 | ARC 11802:: | India | 0.294 | 0.021 |
| IRIS_313-11269 | ARC 14632:: | India | 0.295 | 0.007 | CX307 | HP 121 | China | 0.289 | 0.033 |
| IRIS_313-11260 | ARC 13591:: | India | 0.288 | 0.009 | CX243 | IR 47686-6-2-1-1 | Philippines | 0.287 | 0.029 |
| CX542 | RR2-6 | China | 0.283 | 0.013 | IRIS_313-10771 | GOGO RAJAPAN:: | Indonesia | 0.286 | 0.017 |
| IRIS_313-11176 | SXC 216:: | India | 0.283 | 0.010 | CX367 | Haogelao | China | 0.285 | 0.025 |
| IRIS_313-11242 | OR 117-8:: | India | 0.282 | 0.011 | IRIS_313-8872 | 571:: | Thailand | 0.282 | 0.021 |
| IRIS_313-10787 | KWATIK PUTIH:: | Indonesia | 0.281 | 0.011 | IRIS_313-11380 | CA ONG (WHITE):: | Philippines | 0.279 | 0.023 |
| IRIS_313-10705 | Padi pulot melayang:: | Malaysia | 0.281 | 0.006 | IRIS_313-11008 | PULUT CENRANA:: | Indonesia | 0.278 | 0.028 |
| CX4 | 93072 | China | 0.279 | 0.013 | IRIS_313-10841 | KETAN NANGKA:: | Indonesia | 0.272 | 0.035 |
| IRIS_313-10825 | KEMA 5:: | Sierra Leone | 0.277 | 0.010 | CX106 | SAL BUI BAO | Viet Nam | 0.266 | 0.038 |
| IRIS_313-8935 | ARC 18061:: | India | 0.275 | 0.015 | CX282 | Lijiangxintuanheigu | China | 0.265 | 0.025 |
| B247 | Jinnante B | China | 0.274 | 0.013 | IRIS_313-8137 | SAGRES:: | Portugal | 0.261 | 0.034 |
| IRIS_313-11098 | KOLUBA:: | Sierra Leone | 0.269 | 0.018 | B047 | Zhenfu 8 | South Korea | 0.258 | 0.046 |
| IRIS_313-11817 | KHAOSAING:: | Myanmar | 0.269 | 0.010 | IRIS_313-11329 | PADI JALAI BELA:: | Malaysia | 0.254 | 0.032 |
| CX13 | R644 | China | 0.268 | 0.016 | IRIS_313-8127 | POLIZESTI 28:: | Bulgaria | 0.252 | 0.029 |
| IRIS_313-11848 | PULUT BURUNG:: | Malaysia | 0.267 | 0.015 | CX284 | Han 502 | China | 0.251 | 0.028 |
| IRIS_313-11095 | MAK EA NAM:: | Laos | 0.267 | 0.011 | IRIS_313-8323 | REXARK ROGUE:: | USA | 0.249 | 0.036 |
| CX69 | MR 167 | Malaysia | 0.266 | 0.011 | CX11 | Gumei 2 | China | 0.248 | 0.023 |
| IRIS_313-9190 | CODE NO 31323:: | India | 0.265 | 0.010 | IRIS_313-10766 | DJALAWARA:: | Indonesia | 0.246 | 0.035 |
| IRIS_313-9114 | LEUANG 28-1-87:: | Thailand | 0.264 | 0.009 | IRIS_313-10816 | SIDJERO GUNDIL:: | Indonesia | 0.244 | 0.037 |
| IRIS_313-10690 | LARONDJAWI:: | Indonesia | 0.264 | 0.014 | IRIS_313-8027 | ANSEATICO:: | Italy | 0.241 | 0.028 |
| IRIS_313-10484 | Pilit(7480)Sel(ci12007):: | Philippines | 0.263 | 0.017 | CX77 | Lemont | USA | 0.241 | 0.029 |
| IRIS_313-11132 | KALALAN:: | Myanmar | 0.261 | 0.012 | IRIS_313-8032 | PIEMONTE:: | Italy | 0.239 | 0.037 |
| indica-SV | japonica-SV | ||||||||
| B039 | IRAT 10 | Cote d’Ivoire | 0.410 | 0.021 | IRIS_313-7992 | VARY LAVA 90:: | Madagascar | 0.346 | 0.019 |
| CX101 | Hei Mi Chan | China | 0.409 | 0.024 | IRIS_313-8027 | ANSEATICO:: | Italy | 0.317 | 0.028 |
| IRIS_313-11746 | E 2070:: | China | 0.392 | 0.012 | IRIS_313-8637 | BALINGMI:: | Bhutan | 0.297 | 0.031 |
| IRIS_313-11901 | TI NGI:: | Thailand | 0.384 | 0.009 | IRIS_313-15907 | INIA TACUARI:: | Uruguay | 0.284 | 0.030 |
| IRIS_313-11523 | ADIALLO:: | Senegal | 0.371 | 0.019 | IRIS_313-8096 | SR 113:: | Spain | 0.283 | 0.025 |
| IRIS_313-11307 | ARC 15387:: | India | 0.353 | 0.025 | IRIS_313-10059 | DACHEONGBYEO:: | South Korea | 0.282 | 0.023 |
| IRIS_313-11889 | MURGI BRINJ:: | Pakistan | 0.334 | 0.018 | IRIS_313-10840 | YE ZO:: | South Korea | 0.278 | 0.028 |
| CX75 | At 354 | Sri Lanka | 0.326 | 0.020 | CX351 | 053 A-3 | China | 0.277 | 0.042 |
| IRIS_313-11750 | L 10595:: | China | 0.326 | 0.030 | IRIS_313-8090 | MARENY:: | Spain | 0.271 | 0.021 |
| B221 | Fanhaopi | China | 0.321 | 0.016 | IRIS_313-10080 | Hirakawa okute:: | Japan | 0.271 | 0.026 |
| CX97 | Budda | India | 0.321 | 0.013 | IRIS_313-10075 | SANGOKU:: | Japan | 0.271 | 0.031 |
| IRIS_313-8450 | 498-2A BR 8:: | India | 0.316 | 0.023 | IRIS_313-8112 | CHIPKA:: | Bulgaria | 0.270 | 0.039 |
| IRIS_313-8591 | SIAM ER 32:: | Malaysia | 0.315 | 0.029 | IRIS_313-12348 | LOUK NOK:: | Laos | 0.269 | 0.027 |
| CX118 | Yetuozai | China | 0.314 | 0.037 | IRIS_313-15910 | CYPRESS:: | USA | 0.269 | 0.025 |
| IRIS_313-11869 | MA WEI ZHAN:: | China | 0.313 | 0.026 | IRIS_313-12262 | NYAE:: | Laos | 0.267 | 0.028 |
| CX18 | Zaoxian 14 | China | 0.312 | 0.028 | IRIS_313-8039 | LOTO:: | Italy | 0.267 | 0.028 |
| IRIS_313-10671 | ARC 10581:: | India | 0.310 | 0.014 | IRIS_313-12337 | DOK HIEN NOI:: | Laos | 0.267 | 0.029 |
| IRIS_313-11911 | YUN NAN ZHAN:: | China | 0.309 | 0.020 | IRIS_313-8076 | PELDE:: | Australia | 0.267 | 0.022 |
| B013 | Sri Lanka 1 | Sri Lanka | 0.305 | 0.016 | IRIS_313-12352 | MEE:: | Laos | 0.266 | 0.030 |
| IRIS_313-11423 | C 1016-1:: | Philippines | 0.302 | 0.021 | IRIS_313-12350 | Mak kheua kang:: | Laos | 0.266 | 0.029 |
| IRIS_313-11471 | CULALANSI:: | Philippines | 0.299 | 0.041 | IRIS_313-10776 | KABADOKA:: | Indonesia | 0.264 | 0.026 |
| B012 | 2037 (Rajahamsal) | India | 0.297 | 0.017 | IRIS_313-15904 | JINBUBYEO:: | South Korea | 0.264 | 0.025 |
| CX392 | SARD | _no_info | 0.295 | 0.030 | IRIS_313-12254 | BAN BONG:: | Laos | 0.262 | 0.026 |
| IRIS_313-11558 | NULI:: | Bangladesh | 0.295 | 0.020 | IRIS_313-12332 | DENG NYAY:: | Laos | 0.261 | 0.025 |
| IRIS_313-11887 | IR 19058-107-1:: | Philippines | 0.292 | 0.010 | IRIS_313-8095 | SHSS 53:: | Spain | 0.261 | 0.032 |
| Top Rank (%) | SNP-Based APD Sample Count | SV-Based APD Sample Count | Shared Samples Count | Shared Sample Count (%) |
|---|---|---|---|---|
| 1789 indica samples | ||||
| 1 | 18 | 18 | 2 | 11.1 |
| 5 | 89 | 89 | 9 | 10.1 |
| 10 | 179 | 179 | 29 | 16.2 |
| 15 | 268 | 268 | 58 | 21.6 |
| 20 | 358 | 358 | 86 | 24.0 |
| 25 | 447 | 447 | 130 | 29.1 |
| 30 | 537 | 537 | 187 | 34.8 |
| 854 japonica samples | ||||
| 1 | 9 | 9 | 0 | 0.0 |
| 5 | 43 | 43 | 1 | 2.3 |
| 10 | 85 | 85 | 5 | 5.9 |
| 15 | 128 | 128 | 19 | 14.8 |
| 20 | 171 | 171 | 44 | 25.7 |
| 25 | 214 | 214 | 68 | 31.8 |
| 30 | 256 | 256 | 89 | 34.8 |
| The Number of Random Variants | SNP | SV | ||||
|---|---|---|---|---|---|---|
| Mean | Standard Deviation | Coefficient of Variation | Mean | Standard Deviation | Coefficient of Variation | |
| 1789 indica lines | ||||||
| 1000 | 0.91683 | 0.00797 | 0.00870 | 0.92369 | 0.00719 | 0.00779 |
| 3000 | 0.97079 | 0.00314 | 0.00324 | 0.97177 | 0.00292 | 0.00300 |
| 5000 | 0.98299 | 0.00096 | 0.00098 | 0.98419 | 0.00084 | 0.00086 |
| 10,000 | 0.99085 | 0.00066 | 0.00067 | 0.99179 | 0.00094 | 0.00095 |
| 15,000 | 0.99414 | 0.00066 | 0.00067 | 0.99484 | 0.00038 | 0.00038 |
| 854 japonica lines | ||||||
| 1000 | 0.94226 | 0.00923 | 0.00979 | 0.97989 | 0.00239 | 0.00244 |
| 3000 | 0.97761 | 0.00496 | 0.00507 | 0.99313 | 0.00083 | 0.00083 |
| 5000 | 0.98721 | 0.00213 | 0.00216 | 0.99597 | 0.00051 | 0.00052 |
| 10,000 | 0.99265 | 0.00145 | 0.00146 | 0.99780 | 0.00022 | 0.00022 |
| 15,000 | 0.99548 | 0.00100 | 0.00101 | 0.99860 | 0.00023 | 0.00023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Crown Copyright: @ His majesty the King in Right of Canada, 2025. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.-B. Individual Genomic Distinctness of Rice Germplasm as Measured with an Average Pairwise Dissimilarity of Genome-Wide SNPs and Structural Variants. Plants 2025, 14, 3750. https://doi.org/10.3390/plants14243750
Fu Y-B. Individual Genomic Distinctness of Rice Germplasm as Measured with an Average Pairwise Dissimilarity of Genome-Wide SNPs and Structural Variants. Plants. 2025; 14(24):3750. https://doi.org/10.3390/plants14243750
Chicago/Turabian StyleFu, Yong-Bi. 2025. "Individual Genomic Distinctness of Rice Germplasm as Measured with an Average Pairwise Dissimilarity of Genome-Wide SNPs and Structural Variants" Plants 14, no. 24: 3750. https://doi.org/10.3390/plants14243750
APA StyleFu, Y.-B. (2025). Individual Genomic Distinctness of Rice Germplasm as Measured with an Average Pairwise Dissimilarity of Genome-Wide SNPs and Structural Variants. Plants, 14(24), 3750. https://doi.org/10.3390/plants14243750
