Effects of Zinc on Metallicolous and Non-Metallicolous Populations of Noccaea caerulescens
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Zinc Effects on Plant Biomass and Water Content
2.3. Zinc Effects on Transpiration Rate
2.4. Determination of Zn, Fe, Mn, Cu, Mg, Ca, and K Accumulation in Plants
2.5. Zinc Localization Assay
2.6. Determination of Photosynthetic Pigments
2.7. Statistical Data Processing
3. Results
3.1. Zinc Effects on Plant Growth
3.2. Zinc Effects on the Water Content, Contents of Photosynthetic Pigments, and Transpiration Rate
3.3. Accumulation and Distribution of Zn in Roots and Shoots
3.4. Effect of Zn on the Contents of Mineral Elements
4. Discussion
4.1. Plant Tolerance to Zn
4.2. Zn Accumulation in Roots and Shoots
4.3. Zinc Distribution over the Root and Shoot Tissues
4.4. Zn Uptake, Transport, and Detoxification
4.5. Zinc-Induced Changes in the Contents of Mineral Elements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Kaur, H.; Garg, N. Zinc toxicity in plants: A review. Planta 2021, 253, 129. [Google Scholar] [CrossRef] [PubMed]
- Hanikenne, M.; Bouché, F. Iron and zinc homeostasis in plants: A matter of trade-offs. J. Exp. Bot. 2023, 74, 5426–5430. [Google Scholar] [CrossRef]
- Rout, G.R.; Das, P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 2003, 23, 3–11. [Google Scholar] [CrossRef]
- Tsonev, T.; Lidon, F.J.C. Zinc in plants—An overview. Emir. J. Food. Agric. 2012, 24, 322–333. [Google Scholar]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of zinc absorption in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Biotechnol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Noulas, C.; Tziouvalekas, M.; Karyotis, T. Zinc in soils, water and food crops. J. Trace Elem. Med. Biol. 2018, 49, 252–260. [Google Scholar] [CrossRef]
- Balafrej, H.; Bogusz, D.; Abidine Triqui, Z.-E.; Guedira, A.; Bendaou, N.; Smouni, A.; Fahr, M. Zinc hyperaccumulation in plants: A Review. Plants 2020, 9, 562. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Sinclair, S.A.; Krämer, U. The zinc homeostasis network of land plants. Biochim. Biophys. Acta Mol. Cell Res. 2012, 1823, 1553–1567. [Google Scholar] [CrossRef]
- Wang, K.; Ding, Y.; Cai, C.; Chen, Z.; Zhu, C. The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. Physiol. Plant. 2019, 165, 690–700. [Google Scholar] [CrossRef]
- Noman, A.; Aqeel, M.; Khalid, N.; Islam, W.; Sanaullah, T.; Anwar, M.; Khan, S.; Ye, W.; Lou, Y. Zinc finger protein transcription factors: Integrated line of action for plant antimicrobial activity. Microb. Pathog. 2019, 132, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Sagardoy, R.; Morales, F.; López-Millán, A.-F.; Abadía, A.; Abadía, J. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol. 2009, 11, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Srivastava, S.; Solomon, S.; Shrivastava, A.K.; Chandra, A. Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol. Plant. 2010, 32, 979–986. [Google Scholar] [CrossRef]
- Glińska, S.; Gapińska, M.; Michlewska, S.; Skiba, E.; Kubicki, J. Analysis of Triticum aestivum seedling response to the excess of zinc. Protoplasma 2016, 253, 367–377. [Google Scholar] [CrossRef]
- Gai, A.P.C.; dos Santos, D.S.; Vieira, E.A. Effects of zinc excess on antioxidant metabolism, mineral content and initial growth of Handroanthus impetiginosus (Mart. ex DC.) Mattos and Tabebuia roseoalba (Ridl.) Sandwith. Environ. Exp. Bot. 2017, 144, 88–99. [Google Scholar] [CrossRef]
- van Dijk, J.R.; Kranchev, M.; Blust, R.; Cuypers, A.; Vissenberg, K. Arabidopsis root growth and development under metal exposure presented in an adverse outcome pathway framework. Plant Cell Environ. 2022, 45, 737–750. [Google Scholar] [CrossRef]
- Aydin, S.S.; Gökçe, E.; Büyük, İ.; Aras, S. Characterization of stress induced by copper and zinc on cucumber (Cucumis sativus L.) seedlings by means of molecular and population parameters. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2012, 746, 49–55. [Google Scholar] [CrossRef]
- Seregin, I.V.; Ivanova, T.V.; Voronkov, A.S.; Kozhevnikova, A.D.; Schat, H. Zinc-and nickel-induced changes in fatty acid profiles in the zinc hyperaccumulator Arabidopsis halleri and non-accumulator Arabidopsis lyrata. Plant Physiol. Biochem. 2023, 197, 107640. [Google Scholar] [CrossRef]
- Jin, X.F.; Yang, X.E.; Islam, E.; Liu, D.; Mahmood, Q.; Li, H.; Li, J. Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance. Plant Physiol. Biochem. 2008, 46, 997–1006. [Google Scholar] [CrossRef]
- Zhukovskaya, N.V.; Kozhevnikova, A.D.; Lunkova, N.F.; Lykova, T.Y.; Kartashov, A.V.; Ivanov, V.B.; Schat, H.; Seregin, I.V. The mechanisms of zinc-induced root growth inhibition in the zinc hyperaccumulator Noccaea caerulescens and the non-accumulator Microthlaspi perfoliatum. Plant Soil 2025, 509, 561–592. [Google Scholar] [CrossRef]
- Cherif, J.; Derbel, N.; Nakkach, M.; von Bergmann, H.; Jemal, F.; Lakhdar, Z.B. Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress. J. Photochem. Photobiol. B Biol. 2010, 101, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Todeschini, V.; Lingua, G.; D’Agostino, G.; Carniato, F.; Roccotiello, E.; Berta, G. Effects of high zinc concentration on poplar leaves: A morphological and biochemical study. Environ. Exp. Bot. 2011, 71, 50–56. [Google Scholar] [CrossRef]
- Ivanov, V.B.; Zhukovskaya, N.V. Effect of heavy metals on root growth and the use of roots as test objects. Russ. J. Plant Physiol. 2021, 68, S1–S25. [Google Scholar] [CrossRef]
- Kozhevnikova, A.D.; Seregin, I.V.; Aarts, M.G.M.; Schat, H. Intra-specific variation in zinc, cadmium and nickel hypertolerance and hyperaccumulation capacities in Noccaea caerulescens. Plant Soil 2020, 452, 479–498. [Google Scholar] [CrossRef]
- Brooks, R.R.; Lee, J.; Reeves, R.D.; Jaffré, T. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 1977, 7, 49–57. [Google Scholar] [CrossRef]
- Reeves, R.D.; Baker, A.J.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; van der Ent, A. A Global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018, 218, 407–411. [Google Scholar] [CrossRef]
- Manara, A.; Fasani, E.; Furini, A.; DalCorso, G. Evolution of the metal hyperaccumulation and hypertolerance traits. Plant Cell Environ. 2020, 43, 2969–2986. [Google Scholar] [CrossRef]
- Verhoest, L.; Drouet, T.; Noret, N. Use of phytoextraction with Noccaea caerulescens to limit the transfer of cadmium and zinc to subsequent rocket crops. Sci. Total Environ. 2024, 950, 175238. [Google Scholar] [CrossRef]
- Chaney, R.L.; Baker, A.J.M.; Morel, J.L. The Long Road to Developing Agromining/Phytomining. In Agromining: Farming for Metals. Mineral Resource Reviews; van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, M.-O., Morel, J.L., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–22. [Google Scholar] [CrossRef]
- Li, Z.-R.; Wang, J.-X.; An, L.-Z.; Tan, J.-B.; Zhan, F.-D.; Wu, J.; Zu, Y.-Q. Effect of root exudates of intercropping Vicia faba and Arabis alpina on accumulation and sub-cellular distribution of lead and cadmium. Int. J. Phytoremediation 2019, 21, 4–13. [Google Scholar] [CrossRef]
- Sachs, J. Handbuch der Experimental Physiologie der Pflanzen. In Handbuch der Physiologischen Botanik; Hofmeister, W., Ed.; Engelmann: Leipzig, Germany, 1865; Volume IV, pp. 153–154. [Google Scholar]
- van der Ent, A.; Rylott, E.L. Inventing hyperaccumulator plants: Improving practice in phytoextraction research and terminology. Int. J. Phytoremediation 2024, 26, 1379–1382. [Google Scholar] [CrossRef]
- Purwadi, I.; Erskine, P.D.; Casey, L.W.; van der Ent, A. Recognition of trace element hyperaccumulation based on empirical datasets derived from XRF scanning of herbarium specimens. Plant Soil 2023, 492, 429–438. [Google Scholar] [CrossRef]
- Assunção, A.G.L.; Schat, H.; Aarts, M.G.M. Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol. 2003, 159, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Krämer, U. Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef]
- Jakovljević, K.; Mišljenović, T.; van der Ent, A.; Baker, A.J.; Invernón, V.R.; Echevarria, G. “Mining” the herbarium for hyperaccumulators: Discoveries of nickel and zinc (hyper) accumulation in the genus Noccaea (Brassicaceae) through X-ray fluorescence herbarium scanning. Ecol. Res. 2024, 39, 450–459. [Google Scholar] [CrossRef]
- Hanikenne, M.; Nouet, C. Metal hyperaccumulation and hypertolerance: A model for plant evolutionary genomics. Curr. Opin. Plant Biol. 2011, 14, 252–259. [Google Scholar] [CrossRef]
- Stein, R.J.; Höreth, S.; de Melo, J.R.F.; Syllwasschy, L.; Lee, G.; Garbin, M.L.; Clemens, S.; Krämer, U. Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytol. 2017, 213, 1274–1286. [Google Scholar] [CrossRef]
- Gonneau, C.; Genevois, N.; Frérot, H.; Sirguey, C.; Sterckeman, T. Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil 2014, 384, 271–287. [Google Scholar] [CrossRef]
- Sterckeman, T.; Cazes, Y.; Gonneau, C.; Sirguey, C. Phenotyping 60 populations of Noccaea caerulescens provides a broader knowledge of variation in traits of interest for phytoextraction. Plant Soil 2017, 418, 523–540. [Google Scholar] [CrossRef]
- Seregin, I.V.; Kozhevnikova, A.D.; Schat, H. Correlated variation of the Zn accumulation and tolerance capacities among populations and ecotypes of the Zn hyperaccumulator, Noccaea caerulescens. Russ. J. Plant Physiol. 2021, 68, S26–S36. [Google Scholar] [CrossRef]
- Do Nascimento, C.W.A.D.; Lima, L.H.V.; Silva, Y.J.A.B.D.; Biondi, C.M. Ultramafic soils and nickel phytomining opportunities: A review. Bras. Ciênc. Solo. 2022, 46, e0210099. [Google Scholar] [CrossRef]
- Gonneau, C.; Noret, N.; Godé, C.; Frérot, H.; Sirguey, C.; Sterckeman, T.; Pauwels, M. Demographic history of the trace metal hyperaccumulator Noccaea caerulescens (J. Presl and C. Presl) F. K. Mey. in Western Europe. Mol. Ecol. 2017, 26, 904–922. [Google Scholar] [CrossRef]
- Escarré, J.; Lefèbvre, C.; Frérot, H.; Mahieu, S.; Noret, N. Metal concentration and metal mass of metallicolous, non metallicolous and serpentine Noccaea caerulescens populations, cultivated in different growth media. Plant Soil 2013, 370, 197–221. [Google Scholar] [CrossRef]
- Seregin, I.V.; Erlikh, N.T.; Kozhevnikova, A.D. Nickel and zinc accumulation capacities and tolerance to these metals in the excluder Thlaspi arvense and the hyperaccumulator Noccaea caerulescens. Russ. J. Plant Physiol. 2014, 61, 204–214. [Google Scholar] [CrossRef]
- Shen, Z.G.; Zhao, F.J.; McGrath, S.P. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ. 1997, 20, 898–906. [Google Scholar] [CrossRef]
- Reeves, R.D.; Schwartz, C.; Morel, J.L.; Edmondson, J. Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int. J. Phytoremediation 2001, 3, 145–172. [Google Scholar] [CrossRef]
- Meerts, P.; Duchêne, P.; Gruber, W.; Lefèbvre, C. Metal accumulation and competitive ability in metallicolous and non-metallicolous Thlaspi caerulescens fed with different Zn salts. Plant Soil 2003, 249, 1–8. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C.; Schat, H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 2009, 181, 759–776. [Google Scholar] [CrossRef]
- Corso, M.; García de la Torre, V.S. Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants. Metallomics 2020, 12, 840–859. [Google Scholar] [CrossRef]
- Merlot, S.; Garcia de la Torre, V.S.; Hanikenne, M. Physiology and molecular biology of trace element hyperaccumulation. In Agromining: Farming for Metals. Mineral Resource Reviews; van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, M.O., Morel, J.L., Eds.; Springer: Cham, Switzerland, 2021; pp. 155–181. [Google Scholar] [CrossRef]
- Seregin, I.V.; Kozhevnikova, A.D. Low-molecular-weight ligands in plants: Role in metal homeostasis and hyperaccumulation. Photosynth. Res. 2021, 150, 51–96. [Google Scholar] [CrossRef]
- Assunção, A.G.L.; Bleeker, P.; ten Bookum, W.M.; Vooijs, R.; Schat, H. Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: Evidence from binary metal exposures. Plant Soil 2008, 303, 289–299. [Google Scholar] [CrossRef]
- Ueno, D.; Milner, M.J.; Yamaji, N.; Yokosho, K.; Koyama, E.; Zambrano, M.C.; Kaskie, M.; Ebbs, S.; Kochian, L.V.; Ma, J.F. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J. 2011, 66, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Craciun, A.R.; Meyer, C.-L.; Chen, J.; Roosens, N.; De Groodt, R.; Hilson, P.; Verbruggen, N. Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. J. Exp. Bot. 2012, 63, 4179–4189. [Google Scholar] [CrossRef]
- Halimaa, P.; Lin, Y.-F.; Ahonen, V.H.; Blande, D.; Clemens, S.; Gyenesei, A.; Häikiö, E.; Kärenlampi, S.O.; Laiho, A.; Aarts, M.G.M.; et al. Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation. Environ. Sci. Technol. 2014, 48, 3344–3353. [Google Scholar] [CrossRef]
- Milner, M.J.; Mitani-Ueno, N.; Yamaji, N.; Yokosho, K.; Craft, E.; Fei, Z.; Ebbs, S.; Zambrano, M.C.; Ma, J.; Kochian, L.V. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Plant J. 2014, 78, 398–410. [Google Scholar] [CrossRef]
- Visioli, G.; Gullì, M.; Marmiroli, N. Noccaea caerulescens populations adapted to grow in metalliferous and non-metalliferous soils: Ni tolerance, accumulation and expression analysis of genes involved in metal homeostasis. Environ. Exp. Bot. 2014, 105, 10–17. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; whether toxic or essential for plants and environment-A review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef]
- Franić, M.; Galić, V. As, Cd, Cr, Cu, Hg: Physiological implications and toxicity in plants. In Plant Metallomics and Functional Omics; Sablok, G., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 209–251. [Google Scholar] [CrossRef]
- Meerts, P.; Van Isacker, N. Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol. 1997, 133, 221–231. [Google Scholar] [CrossRef]
- Dechamps, C.; Roosens, N.H.; Hotte, C.; Meerts, P. Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on Cd contaminated soil. Plant Soil 2005, 273, 327–335. [Google Scholar] [CrossRef]
- Dubois, S.; Cheptou, P.-O.; Petit, C.; Meerts, P.; Poncelet, M.; Vekemans, X.; Lefèbvre, C.; Escarré, J. Genetic structure and mating systems of metallicolous and nonmetallicolous populations of Thlaspi caerulescens. New Phytol. 2003, 157, 633–641. [Google Scholar] [CrossRef]
- Trapp, S.; Zambrano, K.C.; Kusk, K.O.; Karlson, U. A phytotoxicity test using transpiration of willows. Arch. Environ. Contam. Toxicol. 2000, 39, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Kozhevnikova, A.D.; Seregin, I.V.; Gosti, F.; Schat, H. Zinc accumulation and distribution over tissues in Noccaea caerulescens in nature and in hydroponics: A comparison. Plant Soil 2017, 411, 5–16. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Plant Cell Membranes; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Barceló, J.; Poschenrieder, C. Plant water relations as affected by heavy metal stress: A review. J. Plant Nutr. 1990, 13, 1–37. [Google Scholar] [CrossRef]
- González, A.; Gil-Díaz, M.M.; Pinilla, P.; Lobo, M.C. Impact of Cr and Zn on growth, biochemical and physiological parameters, and metal accumulation by wheat and barley plants. Water Air Soil Pollut. 2017, 228, 419. [Google Scholar] [CrossRef]
- Küpper, H.; Lombi, E.; Zhao, F.J.; McGrath, S.P. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 2000, 212, 75–84. [Google Scholar] [CrossRef]
- Haines, B.J. Zincophilic root foraging in Thlaspi caerulescens. New Phytol. 2002, 155, 363–372. [Google Scholar] [CrossRef]
- Li, T.; Yang, X.; Lu, L.; Islam, E.; He, Z. Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J. Hazard. Mater. 2009, 169, 734–741. [Google Scholar] [CrossRef]
- Lin, Y.F.; Aarts, M.G.M. The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol. Life Sci. 2012, 69, 3187–3206. [Google Scholar] [CrossRef]
- Clemens, S.; Deinlein, U.; Ahmadi, H.; Höreth, S.; Uraguchi, S. Nicotianamine is a major player in plant Zn homeostasis. Biometals 2013, 26, 623–632. [Google Scholar] [CrossRef]
- Kazemi-Dinan, A.; Thomaschky, S.; Stein, R.J.; Krämer, U.; Müller, C. Zinc and cadmium hyperaccumulation act as deterrents towards specialist herbivores and impede the performance of a generalist herbivore. New Phytol. 2014, 202, 628–639. [Google Scholar] [CrossRef]
- Cabot, C.; Martos, S.; Llugany, M.; Gallego, B.; Tolrà, R.; Poschenrieder, C. A role for zinc in plant defense against pathogens and herbivores. Front. Plant Sci. 2019, 10, 1171. [Google Scholar] [CrossRef] [PubMed]
- Dinh, N.T.; Vu, D.T.; Mulligan, D.; Nguyen, A.V. Accumulation and distribution of zinc in the leaves and roots of the hyperaccumulator Noccaea caerulescens. Environ. Exp. Bot. 2015, 110, 85–95. [Google Scholar] [CrossRef]
- Schwartz, C.; Morel, J.L.; Saumier, S.; Whiting, S.N.; Baker, A.J.M. Root development of the zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant Soil 1999, 208, 103–115. [Google Scholar] [CrossRef]
- Whiting, S.N.; Leake, J.R.; McGrath, S.P.; Baker, A.J.M. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 2000, 145, 199–210. [Google Scholar] [CrossRef]
- Zeng, X.-W.; Ma, L.Q.; Qiu, R.-L.; Tang, Y.-T. Effects of Zn on plant tolerance and non-protein thiol accumulation in Zn hyperaccumulator Arabis paniculata Franch. Environ. Exp. Bot. 2011, 70, 227–232. [Google Scholar] [CrossRef]
- Enstone, D.E.; Peterson, C.A. The apoplastic permeability of root apices. Canad. J. Bot. 1992, 70, 1502–1512. [Google Scholar] [CrossRef]
- Kozhevnikova, A.D.; Erlikh, N.T.; Zhukovskaya, N.V.; Obroucheva, N.V.; Ivanov, V.B.; Seregin, I.V. Nickel and zinc accumulation, distribution and effects on ruderal plants Lepidium ruderale and Capsella bursa-pastoris. Acta Physiol. Plant. 2014, 36, 3291–3305. [Google Scholar] [CrossRef]
- Haslett, B.S.; Reid, R.J.; Rengel, Z. Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots. Ann. Bot. 2001, 87, 379–386. [Google Scholar] [CrossRef]
- Seregin, I.V.; Kozhevnikova, A.D.; Gracheva, V.V.; Bystrova, E.I.; Ivanov, V.B. Tissue zinc distribution in maize seedling roots and its action on growth. Russ. J. Plant Physiol. 2011, 58, 109–117. [Google Scholar] [CrossRef]
- Monsant, A.C.; Wang, Y.; Tang, C. Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon). Plant Soil 2010, 336, 391–404. [Google Scholar] [CrossRef]
- Jakovljević, K.; Mišljenović, T.; Brueckner, D.; Jacquet, J.; Michaudel, G.; van der Ent, A. Elemental localization in inflorescences of the hyperaccumulators Noccaea praecox and Noccaea caerulescens (Brassicaceae). Ecol. Res. 2024, 39, 588–595. [Google Scholar] [CrossRef]
- do Nascimento, C.W.A.; Hesterberg, D.; Tappero, R. Imaging Zn and Ni distributions in leaves of different ages of the hyperaccumulator Noccaea caerulescens by synchrotron-based X-ray fluorescence. J. Haz. Mat. 2021, 408, 124813. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Lombi, E.; Breedon, T.; McGrath, S.P. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ. 2000, 23, 507–514. [Google Scholar] [CrossRef]
- Tian, S.-K.; Lu, L.-L.; Yang, X.-E.; Labavitch, J.M.; Huang, Y.-Y.; Brown, P. Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol. 2009, 182, 116–126. [Google Scholar] [CrossRef]
- Vogel-Mikuš, K.; Simčič, J.; Pelicon, P.; Budnar, M.; Kump, P.; Nečemer, M.; Mesjasz-Przybyłowicz, J.; Przybyłowicz, W.J.; Regvar, M. Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ. 2008, 31, 1484–1496. [Google Scholar] [CrossRef]
- Ma, J.F.; Ueno, D.; Zhao, F.-J.; McGrath, S.P. Subcellular localization of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 2005, 220, 731–736. [Google Scholar] [CrossRef]
- Schneider, T.; Persson, D.P.; Husted, S.; Schellenberg, M.; Gehrig, P.; Lee, Y.; Martinoia, E.; Schjoerring, J.K.; Meyer, S. A Proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) F.K. Meyer. Plant J. 2013, 73, 131–142. [Google Scholar] [CrossRef]
- Ricachenevsky, F.K.; Punshon, T.; Salt, D.E.; Fett, J.P.; Guerinot, M.L. Arabidopsis thaliana zinc accumulation in leaf trichomes is correlated with zinc concentration in leaves. Sci. Rep. 2021, 11, 5278. [Google Scholar] [CrossRef]
- Frey, B.; Keller, C.; Zierold, K.; Schulin, R. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 2000, 23, 675–687. [Google Scholar] [CrossRef]
- Küpper, H.; Kochian, L.V. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol. 2010, 185, 114–129. [Google Scholar] [CrossRef]
- Marquès, L.; Cossegal, M.; Bodin, S.; Czernic, P.; Lebrun, M. Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens. New Phytol. 2004, 164, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.S.; Dietz, K.-J.; Mimura, T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ. 2016, 39, 1112–1126. [Google Scholar] [CrossRef] [PubMed]
- Andresen, E.; Peiter, E.; Küpper, H. Trace metal metabolism in plants. J. Exp. Bot. 2018, 69, 909–954. [Google Scholar] [CrossRef]
- Cobbett, C.S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 2000, 123, 825–832. [Google Scholar] [CrossRef]
- Yu, G.; Xiang, J.; Liu, J.; Zhang, X.; Lin, H.; Sunahara, G.I.; Yu, H.; Jiang, P.; Lan, H.; Qu, J. Single-cell atlases reveal leaf cell-type-specific regulation of metal transporters in the hyperaccumulator Sedum alfredii under cadmium stress. J. Hazard. Mater. 2024, 480, 136185. [Google Scholar] [CrossRef]
- Thiébaut, N.; Sarthou, M.; Richtmann, L.; Pergament Persson, D.; Ranjan, A.; Schloesser, M.; Boutet, S.; Rezende, L.; Clemens, S.; Verbruggen, N.; et al. Specific redox and iron homeostasis responses in the root tip of Arabidopsis upon zinc excess. New Phytol. 2025, 246, 1796–1815. [Google Scholar] [CrossRef]
- Assunção, A.G.; Da Costa Martins, P.; De Folter, S.; Vooijs, R.; Schat, H.; Aarts, M.G.M. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 2001, 24, 217–226. [Google Scholar] [CrossRef]
- Kozhevnikova, A.D.; Seregin, I.V.; Schat, H. Translocation of Ni and Zn in Odontarrhena corsica and Noccaea caerulescens: The effects of exogenous histidine and Ni/Zn interactions. Plant Soil 2021, 468, 295–318. [Google Scholar] [CrossRef]
- Halimaa, P.; Blande, D.; Baltzi, E.; Aarts, M.G.M.; Granlund, L.; Keinänen, M.; Kärenlampi, S.O.; Kozhevnikova, A.D.; Peräniemi, S.; Schat, H.; et al. Transcriptional effects of cadmium on iron homeostasis differ in calamine accessions of Noccaea caerulescens. Plant J. 2019, 97, 306–320. [Google Scholar] [CrossRef]
- Korshunova, Y.O.; Eide, D.; Clark, W.G.; Guerinot, M.L.; Pakrasi, H.B. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol. Biol. 1999, 40, 37–44. [Google Scholar] [CrossRef]
- Nishida, S.; Tsuzuki, C.; Kato, A.; Aisu, A.; Yoshida, J.; Mizuno, T. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol. 2011, 52, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Rogers, E.E.; Eide, D.J.; Guerinot, M.L. Altered selectivity in an Arabidopsis metal transporter. Proc. Natl. Acad. Sci. USA 2000, 97, 12356–12360. [Google Scholar] [CrossRef] [PubMed]
- Clemens, S. The cell biology of zinc. J. Exp. Bot. 2022, 73, 1688–1698. [Google Scholar] [CrossRef] [PubMed]
- Lanquar, V.; Grossmann, G.; Vinkenborg, J.L.; Merkx, M.; Thomine, S.; Frommer, W.B. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and Root Chip technology. New Phytol. 2014, 202, 198–208. [Google Scholar] [CrossRef]
- Callahan, D.L.; Baker, A.J.M.; Kolev, S.D.; Wedd, A.G. Metal ion ligands in hyperaccumulating plants. J. Biol. Inorg. Chem. 2006, 11, 2–12. [Google Scholar] [CrossRef]
- Clemens, S. Metal ligands in micronutrient acquisition and homeostasis. Plant Cell Environ. 2019, 42, 2902–2912. [Google Scholar] [CrossRef]
- Kozhevnikova, A.D.; Seregin, I.V.; Erlikh, N.T.; Shevyreva, T.A.; Andreev, I.M.; Verweij, R.; Schat, H. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. New Phytol. 2014, 203, 508–519. [Google Scholar] [CrossRef]
- Lasat, M.M.; Baker, A.J.M.; Kochian, L.V. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol. 1998, 118, 875–883. [Google Scholar] [CrossRef]
- Richau, K.H.; Kozhevnikova, A.D.; Seregin, I.V.; Vooijs, R.; Koevoets, P.L.M.; Smith, J.A.C.; Ivanov, V.B.; Schat, H. Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytol. 2009, 183, 106–116. [Google Scholar] [CrossRef]
- Hu, P.-J.; Qiu, R.-L.; Senthilkumar, P.; Jiang, D.; Chen, Z.-W.; Tang, Y.-T.; Liu, F.-J. Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ. Exp. Bot. 2009, 66, 317–325. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Song, H.; Zhao, J.; Shabala, S.; Tian, S.; Yang, X. A novel plasma membrane-based NRAMP transporter contributes to Cd and Zn hyperaccumulation in Sedum alfredii Hance. Environ. Exp. Bot. 2020, 176, 104121. [Google Scholar] [CrossRef]
- Hassinen, V.H.; Tuomainen, M.; Peräniemi, S.; Schat, H.; Kärenlampi, S.O.; Tervahauta, A. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens. J. Exp. Bot. 2009, 60, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Skórzyńska-Polit, E.; Tukiendorf, A. Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul. 2006, 48, 145–155. [Google Scholar] [CrossRef]
- Seregin, I.V.; Kozhevnikova, A.D. Phytochelatins: Sulfur-containing metal(loid)-chelating ligands in plants. Int. J. Mol. Sci. 2023, 24, 2430. [Google Scholar] [CrossRef]
- Schat, H.; Llugany, M.; Vooijs, R.; Hartley-Whitaker, J.; Bleeker, P.M. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J. Exp. Bot. 2002, 53, 2381–2392. [Google Scholar] [CrossRef]
- Salt, D.E.; Baxter, I.; Lahner, B. Ionomics and the study of the plant ionome. Annu. Rev. Plant Biol. 2008, 59, 709–733. [Google Scholar] [CrossRef]
- Baxter, I.; Dilkes, B.P. Elemental profiles reflect plant adaptations to the environment. Science 2012, 336, 1661–1663. [Google Scholar] [CrossRef]
- Wairich, A.; Lima-Melo, Y.; Menguer, P.K.; Ortolan, F.; Ricachenevsky, F.K. Iron, cold iron, is the master of them all: Iron crosstalk with zinc, copper, phosphorus and nitrogen homeostasis. J. Exp. Bot. 2025, eraf106. [Google Scholar] [CrossRef]
- Moustakas, M.; Bayçu, G.; Gevrek, N.; Moustaka, J.; Csatári, I.; Rognes, S.E. Spatiotemporal heterogeneity of photosystem II function during acclimation to zinc exposure and mineral nutrition changes in the hyperaccumulator Noccaea caerulescens. Environ. Sci. Pollut. Res. 2019, 26, 6613–6624. [Google Scholar] [CrossRef]
- Foroughi, S.; Baker, A.J.; Roessner, U.; Johnson, A.A.; Bacic, A.; Callahan, D.L. Hyperaccumulation of zinc by Noccaea caerulescens results in a cascade of stress responses and changes in the elemental profile. Metallomics 2014, 6, 1671–1682. [Google Scholar] [CrossRef]
Parameters | Fe | Mn | Cu | Mg | Ca | K | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wil | Pr | Wil | Pr | Wil | Pr | Wil | Pr | Wil | Pr | Wil | Pr | |
Metal content in roots | ⇑ 9.1 | ⇑ 3.9 | 0 | ⇑ 1.8 | ⇓ 1.8 | 0 | ⇓ 1.2 | ⇓ 1.3 | ⇑ 1.9 | ⇑ 1.5 | ⇑ 1.2 | ⇑ 1.6 |
Metal content in shoots | ⇓ 2.4 | 0 | ⇓ 3.5 | ⇓ 1.4 | 0 | 0 | ⇑ 1.8 | ⇓ 1.3 | ⇓ 1.2 | ⇓ 1.5 | ⇓ 1.1 | ⇓ 1.1 |
Total metal uptake | ⇑ 1.4 | ⇑ 1.4 | ⇓ 3.3 | ⇓ 1.3 | ⇓ 1.4 | 0 | ⇑ 1.8 | ⇓ 1.3 | ⇓ 1.2 | ⇓ 1.5 | 0 | 0 |
Metal, % translocated | ⇓ 3.3 | ⇓ 1.5 | ⇓ 1.1 | ⇓ 1.1 | 0 | 0 | ⇑ 1.1 | 0 | ⇓ 1.1 | ⇓ 1.1 | ⇓ 1.1 | ⇓ 1.1 |
Metal translocation factor | ⇓ 23 | ⇓ 3.0 | ⇓ 2.6 | ⇓ 2.2 | 0 | 0 | ⇑ 2.2 | 0 | ⇓ 2.3 | ⇓ 2.2 | ⇓ 1.4 | ⇓ 1.8 |
Metal contents in the roots of the Noccaea caerulescens Wilwerwiltz population | ||||||||
Zn | Fe | Mn | Cu | Mg | Ca | K | ||
Zn | 0.946 *** | −0.409 | −0.466 | −0.745 ** | 0.814 *** | 0.740 ** | Zn | |
Fe | 0.930 *** | −0.399 | −0.472 | −0.715 ** | 0.916 *** | 0.595 * | Fe | |
Mn | 0.860 *** | 0.779 ** | −0.209 | 0.277 | −0.676 ** | −0.454 | Mn | |
Cu | −0.375 | −0.402 | −0.413 | 0.222 | −0.413 | −0.550 * | Cu | |
Mg | −0.768 ** | −0.748 ** | −0.470 | 0.546 * | −0.585 * | −0.302 | Mg | |
Ca | 0.846 *** | 0.762 ** | 0.705 ** | 0.063 | −0.513 | 0.596 * | Ca | |
K | 0.901 *** | 0.887 *** | 0.740 ** | −0.290 | −0.698 ** | 0.824 *** | K | |
Zn | Fe | Mn | Cu | Mg | Ca | K | ||
Metal contents in the roots of the Noccaea caerulescens Prayon population | ||||||||
Metal contents in the shoots of the Noccaea caerulescens Wilwerwiltz population | ||||||||
Zn | Fe | Mn | Cu | Mg | Ca | K | ||
Zn | −0.776 ** | −0.803 *** | 0.035 | 0.923 *** | −0.510 | −0.515 | Zn | |
Fe | −0.091 | 0.722 ** | 0.365 | −0.617 * | 0.640 * | 0.622 * | Fe | |
Mn | −0.776 ** | 0.244 | −0.042 | −0.769 ** | 0.401 | 0.423 | Mn | |
Cu | −0.189 | 0.311 | 0.412 | 0.264 | 0.283 | 0.013 | Cu | |
Mg | −0.721 ** | 0.006 | 0.782 *** | −0.001 | −0.429 | −0.490 | Mg | |
Ca | −0.868 *** | 0.261 | 0.626 * | 0.430 | 0.469 | 0.053 | Ca | |
K | −0.271 | 0.302 | 0.456 | 0.468 | −0.035 | 0.385 | K | |
Zn | Fe | Mn | Cu | Mg | Ca | K | ||
Metal contents in the shoots of the Noccaea caerulescens Prayon population | ||||||||
Total metal uptake in the Noccaea caerulescens Wilwerwiltz population | ||||||||
Zn | Fe | Mn | Cu | Mg | Ca | K | ||
Zn | 0.707 ** | −0.828 *** | −0.585 * | 0.913 *** | −0.509 | −0.049 | Zn | |
Fe | 0.681 ** | −0.607 * | −0.669 ** | 0.634 * | −0.148 | 0.069 | Fe | |
Mn | −0.764 ** | −0.509 | 0.463 | −0.795 *** | 0.385 | 0.150 | Mn | |
Cu | −0.095 | 0.203 | 0.217 | −0.631 * | 0.256 | −0.218 | Cu | |
Mg | −0.629 * | −0.554 * | 0.611 * | −0.329 | −0.425 | −0.162 | Mg | |
Ca | −0.899 *** | −0.522 | 0.606 * | 0.258 | 0.503 | −0.057 | Ca | |
K | −0.062 | 0.084 | 0.150 | −0.094 | 0.137 | 0.188 | K | |
Zn | Fe | Mn | Cu | Mg | Ca | K | ||
Total metal uptake in the Noccaea caerulescens Prayon population | ||||||||
Metal translocation factor in the Noccaea caerulescens Wilwerwiltz population | ||||||||
Zn | Fe | Mn | Cu | Mg | Ca | K | ||
Zn | 0.705 ** | 0.561 * | −0.133 | −0.816 *** | 0.683 ** | 0.772 ** | Zn | |
Fe | 0.899 *** | 0.588 * | 0.069 | −0.711 ** | 0.899 *** | 0.543 * | Fe | |
Mn | 0.927 *** | 0.876 *** | −0.478 | −0.760 ** | 0.557 * | 0.347 | Mn | |
Cu | 0.264 | 0.064 | 0.286 | 0.404 | −0.201 | −0.236 | Cu | |
Mg | −0.512 | −0.459 | −0.541 * | 0.083 | −0.701 ** | −0.665 ** | Mg | |
Ca | 0.717 ** | 0.664 ** | 0.563 * | 0.406 | −0.390 | 0.567 * | Ca | |
K | 0.757 ** | 0.780 *** | 0.852 *** | 0.200 | −0.532 | 0.856 *** | K | |
Zn | Fe | Mn | Cu | Mg | Ca | K | ||
Metal translocation factor in the Noccaea caerulescens Prayon population | ||||||||
Percentage of metals translocated in the Noccaea caerulescens Wilwerwiltz population | ||||||||
Zn | Fe | Mn | Cu | Mg | Ca | K | ||
Zn | 0.872 *** | 0.777 ** | −0.199 | −0.615 * | 0.777 ** | 0.781 *** | Zn | |
Fe | 0.926 *** | 0.776 ** | −0.356 | −0.822 *** | 0.859 *** | 0.613 * | Fe | |
Mn | 0.950 *** | 0.926 *** | −0.389 | −0.719 ** | 0.631 * | 0.389 | Mn | |
Cu | 0.700 ** | 0.693 ** | 0.751 ** | 0.458 | −0.361 | −0.201 | Cu | |
Mg | 0.487 | 0.511 | 0.523 | 0.599 * | −0.666 ** | −0.378 | Mg | |
Ca | 0.931 *** | 0.913 *** | 0.883 *** | 0.818 *** | 0.652 * | 0.629 * | Ca | |
K | 0.875 *** | 0.862 *** | 0.882 *** | 0.853 *** | 0.826 *** | 0.959 *** | K | |
Zn | Fe | Mn | Cu | Mg | Ca | K | ||
Percentage of metals translocated in the Noccaea caerulescens Prayon population |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozhevnikova, A.D.; Kartashov, A.V.; Seregin, I.V. Effects of Zinc on Metallicolous and Non-Metallicolous Populations of Noccaea caerulescens. Plants 2025, 14, 1975. https://doi.org/10.3390/plants14131975
Kozhevnikova AD, Kartashov AV, Seregin IV. Effects of Zinc on Metallicolous and Non-Metallicolous Populations of Noccaea caerulescens. Plants. 2025; 14(13):1975. https://doi.org/10.3390/plants14131975
Chicago/Turabian StyleKozhevnikova, Anna D., Alexander V. Kartashov, and Ilya V. Seregin. 2025. "Effects of Zinc on Metallicolous and Non-Metallicolous Populations of Noccaea caerulescens" Plants 14, no. 13: 1975. https://doi.org/10.3390/plants14131975
APA StyleKozhevnikova, A. D., Kartashov, A. V., & Seregin, I. V. (2025). Effects of Zinc on Metallicolous and Non-Metallicolous Populations of Noccaea caerulescens. Plants, 14(13), 1975. https://doi.org/10.3390/plants14131975