Effect of Selenium and Garlic Extract Treatments of Seed-Addressed Lettuce Plants on Biofortification Level, Seed Productivity and Mature Plant Yield and Quality
Abstract
:1. Introduction
2. Results and Discussion
2.1. Seed Quality
2.2. Seed Antioxidant Status
2.2.1. Proline Accumulation
2.2.2. Total Antioxidant Activity and Polyphenol Content
2.2.3. Se Accumulation
2.3. Health-Promoting Properties of Lettuce Seeds
2.4. Biometrical and Biochemical Characteristics of Mature Plants
3. Materials and Methods
3.1. Growing Conditions and Experimental Protocol
3.2. Seed Production
3.3. Lettuce Growth
3.4. Sample Preparation
3.4.1. Dry Matter
3.4.2. Selenium
3.4.3. Total Polyphenols (TPs)
3.4.4. Antioxidant Activity (AOA)
3.4.5. Ascorbic Acid
3.4.6. Proline
3.4.7. Photosynthetic Pigments
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nanduri, K.R.; Dulloo, M.E.; Engels, J.M.M. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Gen. Res. Crop Evol. 2017, 64, 1061–1074. [Google Scholar]
- Kristó, I.; Vályi-Nagy, M.; Rácz, A.; Irmes, K.; Szentpéteri, L.; Jolánkai, M.; Kovács, G.P.; Fodor, M.Á.; Ujj, A.; Valentinyi, K.V. Effects of nutrient supply and seed size on germination parameters and yield in the next crop year of winter wheat (Triticum aestivum L.). Agriculture 2023, 13, 419. [Google Scholar] [CrossRef]
- Golubkina, N.; Zayachkovsky, V.; Sheshnitsan, S.; Skrypnik, L.; Antoshkina, M.; Smirnova, A.; Fedotov, M.; Caruso, G. Prospects of the application of garlic extracts and selenium and silicon compounds for plant protection against herbivorous pests: A review. Agriculture 2022, 12, 64. [Google Scholar] [CrossRef]
- Mohamed, H.I.; Akladious, S.A. Influence of garlic extract on enzymatic and non enzymatic antioxidants in soybean plants Glycine max grown under drought stress. Life Sci. J. 2014, 11, 46–58. [Google Scholar]
- Al-Obady, R.M. Effect of foliar application with garlic extract and Liquorice root extract and salicylic acid on vegetative growth and flowering and flower set of tomato under unheated houses. J. Appl. Sci. Res. 2015, 3, 11–22. [Google Scholar]
- El-Hamied, S.A.A.; El-Amary, E.I. Improving growth and productivity of “pear” trees using some natural plants extracts under north sinai conditions. J. Agric. Veter. Sci. 2015, 8, 1–9. [Google Scholar]
- Han, X.; Cheng, Z.; Meng, H.; Yang, X.; Ahmad, I. Allelopathic effect of decomposed garlic (Allium sativum L.) stalk on lettuce (L. sativa var. crispa L.). Pak. J. Bot. 2013, 45, 225–233. [Google Scholar]
- Ali, M.; Zhi-hui, C.; Hayat, S.; Ahmad, H.; Ghani, M.I.; Tao, L. Foliar spraying of aqueous garlic bulb extract stimulates growth and antioxidant enzyme activity in eggplant (Solanum melongena L.). J. Integr. Agric. 2019, 18, 1001–1013. [Google Scholar]
- Hu, F.Q.; Jiang, S.C.; Wang, Z.; Hu, K.; Xie, Y.M.; Zhou, L.; Zhu, J.Q.; Xing, D.Y.; Du, B. Seed priming with selenium: Effects on germination, seedling growth, biochemical attributes, and grain yield in rice growing under flooding conditions. Plant Direct 2022, 6, e378. [Google Scholar] [CrossRef] [PubMed]
- Moulick, D.; Mukherjee, A.; Das, A.; Roy, A.; Majumdar, A.; Dhar, A.; Pattanaik, B.K.; Chowardhara, B.; Ghosh, D.; Upadhyay, M.K.; et al. Selenium—An environmentally friendly micronutrient in agroecosystem in the modern era: An overview of 50-year findings. Ecotoxicol. Environ. Saf. 2024, 270, 115832. [Google Scholar] [CrossRef]
- Setty, J.; Samant, S.B.; Yadav, M.K.; Manjubala, M.; Pandurangam, V. Beneficial effects of bio-fabricated selenium nanoparticles as seed nanopriming agent on seed germination in rice (Oryza sativa L.). Sci. Rep. 2023, 13, 22349. [Google Scholar] [CrossRef]
- Hayat, S.; Ahmad, A.; Ahmad, H.; Hayat, K.; Khan, M.A.; Runan, T. Garlic, from medicinal herb to possible plant bioprotectant: A review. Sci. Hort. 2022, 304, 111296. [Google Scholar] [CrossRef]
- Golubkina, N.A. Selenium biorhythms anf homonal regulation. In Selenium: Sources, Functions and Healthy Effects; Aomori, C., Hokkaido, M., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 33–75. [Google Scholar]
- Nawaz, F.; Zulfiqar, B.; Ahmad, K.S.; Majeed, S.; Shehzad, M.A.; Javeed, H.M.R.; Tahir, M.N.; Ahsan, M. Pretreatment with selenium and zinc modulates physiological indices and antioxidant machinery to improve drought tolerance in maize (Zea mays L.). South Afr. J. Bot. 2021, 138, 209–216. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Mazhar, M.W.; Maqbool, M.; Hussain, T.; Hussain, S.A.; Casini, R.; Abd-El Gawad, A.M.; Elansary, H.O. Seed priming with the selenium nanoparticles maintains the redox status in the water stressed tomato plants by modulating the antioxidant defense enzymes. Plants 2023, 12, 1556. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.-A.A.; Darwesh, O.M.; Alshammari, S.O. Chapter 13 Effect of Selenium Application on Quality Improvements of Seeds and Fruits. In Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement, Sustainable Plant Nutrition in a Changing World; Hossain, M.A., Ed.; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- de Souza Silveira, A.; Pinheiro, D.T.; de Oliveira, R.M.; dos Santos Dias, D.C.F.; da Silva, L.J. Osmopriming with selenium: Physical and physiological quality of tomato seeds in response to water deficit. J. Seed Sci. 2023, 45, e202345012. [Google Scholar] [CrossRef]
- Ali, M.; Hayat, S.; Ahmad, H.; Cheng, Z. Priming of Solanum melongena L. seeds enhances germination, alters antioxidant enzymes, modulates ROS, and improves early seedling growth: Indicating aqueous garlic extract as seed-priming nio-stimulant for eggplant production. Appl. Sci. 2019, 9, 2203. [Google Scholar]
- Kousar, S.; Salam, M.B.U.; Ahsan, N.M.M.; Ahmad, N. Application of priming of seed (Aqueous Garlic Extract) on germination and growing parameters of maize (Zea mays L.) under salinity stress. Pure Appl. Biol. 2023, 12, 274–283. [Google Scholar] [CrossRef]
- Nossier, M.I.; Abd-Elrahman, S.H.; El-Sayed, S.M. Effect of using garlic and lemon peels extracts with selenium on Vicia faba productivity. Asian J. Agric. Biol. 2022, 4, 202107276. [Google Scholar] [CrossRef]
- Lessa, J.H.L.; Raymundo, J.F.; Corguinha, A.P.B.; Martins, F.A.D.; Araujo, A.M.; Santiago, F.E.M.; Carvalho, H.W.P.; Guilherme, L.R.G.; Lopes, G. Strategies for applying selenium for biofortification of rice in tropical soils and their effect on element accumulation and distribution in grains. J. Cereal Sci. 2020, 96, 103125. [Google Scholar] [CrossRef]
- Lyons, G.H.; Genc, Y.; Soole, K.; Stangoulis, J.C.R.; Liu, F.; Graham, R.D. Selenium increases seed production in Brassica. Plant Soil 2008, 318, 73–80. [Google Scholar]
- Sindireva, A.; Golubkina, N.; Bezuglova, H.; Fedotov, M.; Alpatov, A.; Erdenotsogt, E.; Sękara, A.; Murariu, O.C.; Caruso, G. Effects of high doses of selenate, selenite and nano-selenium on biometrical characteristics, yield and biofortification levels of Vicia faba L. cultivars. Plants 2023, 12, 2847. [Google Scholar] [CrossRef]
- Hayat, S.; Ahmad, H.; Ali, M.; Hayat, K.; Khan, M.A.; Cheng, Z. Aqueous garlic extract as a plant biostimulant enhances physiology, improves crop quality and metabolite abundance, and primes the defense responses of receiver plants. Appl. Sci. 2018, 8, 1505. [Google Scholar] [CrossRef]
- Abd-El-Khair, H.; Haggag, W.M. Application of some Egyptian medicinal plant extracts against potato late and early blights. Res. J. Agric. Biol. Sci. 2007, 3, 66–175. [Google Scholar]
- Wei, T.T.; Cheng, Z.H.; Khan, M.A.; Ma, Q.; Ling, H. The inhibitive effects of garlic bulb crude extract on Fulvia fulva of tomato. Pak. J. Bot. 2011, 43, 2575–2580. [Google Scholar] [CrossRef]
- Mohamed, M.H.; Badr, E.A.; Sadak, M.S.; Khedr, H.H. Effect of garlic extract, ascorbic acid and nicotinamide on growth, some biochemical aspects, yield and its components of three faba bean (Vicia faba L.) cultivars under sandy soil conditions. Bull. Natl. Res. Cent. 2020, 44, 100. [Google Scholar] [CrossRef]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Comp. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Shi, M.; Gu, J.; Wu, H.; Rauf, A.; Emran, T.B.; Khan, Z.; Mitra, S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; et al. Phytochemicals, nutrition, metabolism, bioavailability, and health benefits in lettuce-a comprehensive review. Antioxidants 2022, 11, 1158. [Google Scholar] [CrossRef] [PubMed]
- Danso, O.P.; Asante-Badu, B.; Zhang, Z.; Song, J.; Wang, Z.; Yin, X.; Zhu, R. Selenium biofortification: Strategies, progress and challenges. Agriculture 2023, 13, 416. [Google Scholar] [CrossRef]
- Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhang, L.; Natarajan, S.K.; Becker, D.F. Proline mechanisms of stress survival. Antioxid. Redox Signal. 2013, 19, 998–1011. [Google Scholar] [CrossRef]
- Mattioli, R.; Costantino, P.; Trovato, M. Proline accumulation in plants: Not only stress. Plant Signal Behav. 2009, 4, 1016–1018. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.; Beshbishy, A.M.; Wasef, L.; Elewa, Y.; Al-Sagan, A.A.; Elgammal, M.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef]
- Malagoli, M.; Schiavon, M.; dall’Acqua, S.; Pilon-Smits, E.A.H. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci. 2015, 6, 280. [Google Scholar] [CrossRef]
- Yeasmin, M.; Lamb, D.; Choppala, G.; Rahman, M.M. Impact of sulfur on biofortification and speciation of selenium in wheat grain grown in selenium-deficient soils. J. Soil Sci. Plant Nutr. 2022, 22, 3243–3253. [Google Scholar] [CrossRef]
- Abdalla, M.A.; Lentz, C.; Mühling, K.H. Crosstalk between selenium and sulfur is associated with changes in primary metabolism in lettuce plants grown under Se and S enrichment. Plants 2022, 11, 927. [Google Scholar] [CrossRef] [PubMed]
- Franklin, T.M.S. Sulfur-Selenium Interaction on Biofortificationof Rocket aтd Lettuce Plants. Ph.D.Thesis, Universidade Federal de Lavras (UFLA), Lavras, Brazil, 2019. [Google Scholar]
- Kim, H.D.; Hong, K.B.; Noh, D.O.; Suh, H.J. Sleep-inducing effect of lettuce (Lactuca sativa) varieties on pentobarbital-induced sleep. Food Sci Biotechnol. 2017, 26, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Sayyah, M.; Hadidi, N.; Kamalinejad, M. Analgesic and anti-inflammatory activity of Lactuca sativa seed extract in rats. J. Ethnopharmacol. 2004, 92, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, P.; Li, X.; McKnight, J.R.; Satterfield, M.C.; et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 2011, 40, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Golubkina, N.A.; Papazyan, T.T. Selenium in Nutrition. Plants, Animals, Human Beings; Pechatny Gorod: Moscow, Russia, 2006. [Google Scholar]
- Liu, H.; Xiao, C.; Qiu, T.; Deng, J.; Cheng, H.; Cong, X.; Cheng, S.; Rao, S.; Zhang, Y. Selenium regulates antioxidant, photosynthesis, and cell permeability in plants under various abiotic stresses: A review. Plants 2023, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Li, B.; Liu, Y.; Bian, Z.; Xiong, J.; Wang, Y.; Zhu, B. Multiple physiological and biochemical functions of ascorbic acid in plant growth, development, and abiotic stress response. Int. J. Mol. Sci. 2024, 25, 1832. [Google Scholar] [CrossRef] [PubMed]
- Wafaa, H.A.A.-A.; Rania, M.R.K.; El-Shafay, R.M. M Effect of soraying with extracts of plants and amino acids ongrowth and peoductivity on Coriandrum sativum L. plants inder Shalateen condition. Plant Arch. 2021, 21 (Suppl. 1), 300–307. [Google Scholar]
- Alfthan, G.V. A micromethod for the determination of selenium in tissues and biological fluids by single-test-tube fluorimetry. Anal. Chim. Acta 1984, 165, 187–194. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Kekina, H.G.; Molchanova, A.V.; Antoshkina, M.S.; Nadezhkin, S.M.; Soldatenko, A.V. Plants Antioxidants and Methods of Their Determination; Infra M: Moscow, Russia, 2020. [Google Scholar]
- AOAC Association Official Analytical Chemists. The Official Methods of Analysis of AOAC International; 22. Vitamin C; AOAC: Rockville, MD, USA, 2012. [Google Scholar]
- Ouertani, R.N.; Abid, G.; Karmous, C.; Chikha, M.B.; Boudaya, O.; Mahmoudi, H.; Mejri, S.; Jansen, K.; Ghorbel, A. Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress. AoB Plants 2021, 13, plab034. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic bio-membranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
Parameter | Cultivar | M ± SD | CV (%) | Range |
---|---|---|---|---|
Weight of 1000 seeds (g) | Bouquet | 1.29 ± 0.01 a | 0.80 | 1.28–1.30 |
Picnic | 1.12 ± 0.06 b | 5.36 | 1.04–1.14 | |
M. parnikovy | 1.19 ± 0.02 b | 1.68 | 1.16–1.20 | |
Cavalier | 1.29 ± 0.01 a | 0.80 | 1.28–1.30 | |
Germination energy (%) | Bouquet | 91.5 ± 1.3 ab | 1.42 | 90–93 |
Picnic | 94.0 ± 2.2 a | 2.34 | 91–95 | |
M. parnikovy | 94.0 ± 1.7 a | 1.81 | 91–97 | |
Cavalier | 90.3 ± 1.7 b | 1.88 | 88–92 | |
Germination capacity (%) | Bouquet | 95.8 ± 1.7 a | 1.77 | 94–98 |
Picnic | 94.8 ± 2.2 a | 2.32 | 92–97 | |
M. parnikovy | 92.9 ± 3.7 а | 3.98 | 86–96 | |
Cavalier | 93.5 ± 1.3 a | 1.39 | 91–95 |
Cultivar | Control | Se | Garlic | Garlic + Se |
---|---|---|---|---|
Bouquet | 2.2 ± 0.2 c | 3.1 ± 0.2 a | 2.5 ± 0.2 bc | 2.8 ± 0.2 ab |
Picnic | 4.0 ± 0.3 b | 5.0 ± 0.4 a | 4.9 ± 0.4 a | 5.2 ± 0.4 a |
M. parnikovy | 3.0 ± 0.2 b | 3.7 ± 0.3 a | 3.3 ± 0.2 ab | 3.5 ± 0.2 a |
Cavalier | 2.8 ± 0.2 b | 3.3 ± 0.2 a | 3.0 ± 0.2 a | 3.1 ± 0.2 ab |
Parameter | Cultivar | Control | Selenium | Garlic | Garlic + Se |
---|---|---|---|---|---|
Proline (mg g−1 d.w.) | Bouquet | 1.08 ± 0.05 d | 1.77 ± 0.07 a | 1.58 ± 0.07 b | 1.41 ± 0.05 c |
Picnic | 0.81 ± 0.04 b | 1.23 ± 0.06 a | 1.19 ± 0.04 a | 0.94 ± 0.04 b | |
M. parnikovy | 1.25 ± 0.06 c | 1.65 ± 0.07 a | 1.37 ± 0.05 b | 1.36 ± 0.05 bc | |
Cavalier | 1.43 ± 0.07 c | 2.15 ± 0.08 a | 1.58 ± 0.07 b | 1.59 ± 0.07 b | |
M ± SD | 1.14 ± 0.29 | 1.70 ± 0.38 | 1.43 ± 0.21 | 1.33 ± 0.28 | |
CV (%) | 25.4 | 22.4 | 14.7 | 21.1 | |
AOA (mg-GAE g−1 d.w.) | Bouquet | 22.9 ± 0.9 b | 25.7 ± 0.9 a | 22.0 ± 0.8 b | 21.3 ± 0.8 b |
Picnic | 22.3 ± 0.8 b | 26.3 ± 0.9 a | 23.0 ± 0.8 b | 22.5 ± 0.8 b | |
M. parnikovy | 20.2 ± 0.7 b | 24.2 ± 0.8 a | 18.5 ± 0.6 c | 17.5 ± 0.5 c | |
Cavalier | 19.6 ± 0.6 b | 22.1 ± 0.7 a | 18.6 ± 0.6 b | 18.5 ± 0.6 b | |
M ± SD | 21.2 ± 1.6 | 24.6 ± 1.9 | 20.5 ± 2.3 | 20.0 ± 2.3 | |
CV (%) | 7.5 | 7.7 | 11.2 | 11.5 | |
TP (mg-GAE g−1 d.w.) | Bouquet | 21.5 ± 1.0 a | 22.4 ± 1.0 a | 21.1 ± 1.0 a | 20.5 ± 0.9 a |
Picnic | 21.6 ± 1.0 a | 23.5 ± 1.1 a | 23.0 ± 1.1 a | 21.9 ± 1.0 a | |
M. parnikovy | 19.2 ± 0.9 ab | 21.0 ± 0.9 a | 19.0 ± 0.9 b | 16.0 ± 0.7 c | |
Cavalier | 12.2 ± 0.5 a | 12.5 ± 0.5 a | 13.3 ± 0.6 a | 12.2 ± 0.5 a | |
M ± SD | 18.6 ± 4.4 | 19.9 ± 5.0 | 19.1 ± 4.2 | 17.7 ± 4.4 | |
CV (%) | 23.7 | 25.1 | 22.0 | 24.9 | |
Selenium (µg kg−1 d.w.) | Bouquet | 106 ± 9 c | 5138 ± 420 b | 93 ± 8 c | 6245 ± 511 a |
Picnic | 116 ± 11 c | 4357 ± 395 b | 115 ± 10.0 c | 5569 ± 455 a | |
M. parnikovy | 89 ± 8 c | 4092 ± 324 b | 79 ± 7 c | 5146 ± 487 a | |
Cavalier | 110 ± 10 c | 4240 ± 388 b | 104 ± 9 c | 5469 ± 442 a | |
M ± SD | 115 ± 28 | 4457 ± 467 | 98 ± 15 | 5607 ± 462 | |
CV (%) | 24.3 | 10.5 | 15.3 | 8.2 |
Parameter | Cultivar | Control | Selenate | Garlic | Garlic + Se |
---|---|---|---|---|---|
Chl a (mg g−1 f.w.) | Bouquet | 0.71 ± 0.02 b | 0.78 ± 0.03 a | 0.66 ± 0.02 c | 0.70 ± 0.02 b |
Picnic | 0.65 ± 0.02 c | 0.78 ± 0.03 a | 0.59 ± 0.01 d | 0.70 ± 0.02 b | |
M. parnikovy | 0.67 ± 0.02 b | 0.81 ± 0.04 a | 0.69 ± 0.02 b | 0.79 ± 0.03 a | |
Cavalier | 0.64 ± 0.02 c | 0.86 ± 0.04 a | 0.59 ± 0.01 d | 0.70 ± 0.02 b | |
M ± SD | 0.66 ± 0.03 b | 0.81 ± 0.04 a | 0.63 ± 0.05 b | 0.72 ± 0.04 b | |
Chl b (mg g−1 f.w.) | Bouquet | 0.38 ± 0.01 b | 0.44 ± 0.01 a | 0.36 ± 0.01 b | 0.42 ± 0.01 a |
Picnic | 0.37 ± 0.01 b | 0.41 ± 0.01 a | 0.33 ± 0.01 c | 0.41 ± 0.01 a | |
M. parnikovy | 0.38 ± 0.01 c | 0.47 ± 0.01 a | 0.42 ± 0.01 b | 0.43 ± 0.01 b | |
Cavalier | 0.39 ± 0.01 b | 0.48 ± 0.01 a | 0.36 ± 0.01 c | 0.39 ± 0.01 b | |
M ± SD | 0.38 ± 0.01 b | 0.45 ± 0.03 a | 0.37 ± 0.03 b | 0.41 ± 0.02 ab | |
Total chl (mg g−1 f.w.) | Bouquet | 1.09 ± 0.04 bc | 1.22 ± 0.05 a | 1.02 ± 0.04 c | 1.12 ± 0.04 b |
Picnic | 1.02 ± 0.04 b | 1.19 ± 0.04 a | 0.92 ± 0.04 b | 1.11 ± 0.04 a | |
M. parnikovy | 1.05 ± 0.04 b | 1.28 ± 0.05 a | 1.11 ± 0.04 b | 1.22 ± 0.04 a | |
Cavalier | 1.03 ± 0.04 bc | 1.34 ± 0.05 a | 0.95 ± 0.04 c | 1.09 ± 0.04 b | |
M ± SD | 1.04 ± 0.03 c | 1.26 ± 0.06 a | 1.00 ± 0.08 c | 1.14 ± 0.05 b | |
Carotene (mg g−1 f.w.) | Bouquet | 0.13 ± 0.01 b | 0.16 ± 0.01 a | 0.14 ± 0.01 ab | 0.16 ± 0.01 a |
Picnic | 0.14 ± 0.01 bc | 0.18 ± 0.01 a | 0.13 ± 0.01 c | 0.15 ± 0.01 b | |
M. parnikovy | 0.15 ± 0.01 c | 0.18 ± 0.01 a | 0.16 ± 0.01 bc | 0.17 ± 0.01 ab | |
Cavalier | 0.14 ± 0.01 b | 0.16 ± 0.01 a | 0.13 ± 0.01 c | 0.17 ± 0.01 a | |
M ± SD | 0.14 ± 0.01 b | 0.17 ± 0.01 a | 0.14 ± 0.01 b | 0.16 ± 0.01 ab |
Parameter | Cultivar | Control | Selenium | Garlic | Garlic + Se |
---|---|---|---|---|---|
Proline (mg g−1 d.w.) | Bouquet | 2.02 ± 0.08 a | 2.01 ± 0.08 a | 1.88 ± 0.07 a | 1.84 ± 0.07 b |
Picnic | 2.17 ± 0.09 a | 1.82 ± 0.07 b | 1.75 ±0.07 b | 1.75 ± 0.07 b | |
M. parnikovy | 2.13 ± 0.08 a | 2.00 ± 0.08 ab | 2.02 ± 0.08 ab | 1.86 ± 0.07 b | |
Cavalier | 1.99 ± 0.08 a | 1.79 ± 0.07 a | 1.69 ± 0.07 a | 1.66 ± 0.07 a | |
M ± SD | 2.08 ± 0.08 a | 1.91 ± 0.11 ab | 1.84 ± 0.14 b | 1.78 ± 0.09 b | |
AOA (mg-GAE g−1 d.w.) | Bouquet | 25.2 ± 0.8 b | 28.7 ± 0.9 a | 25.7 ± 0.8 b | 27.7 ± 0.9 a |
Picnic | 21.6 ± 0.7 c | 26.3 ± 0.9 ab | 24.6 ± 0.8 b | 28.2 ± 0.9 a | |
M. parnikovy | 23.1 ± 0.7 b | 28.3 ± 0.9 a | 27.1 ± 0.9 a | 28.7 ± 0.9 a | |
Cavalier | 24.1 ± 0.7 b | 27.8 ± 0.9 a | 27.8 ± 0.9 a | 28.3 ± 0.9 a | |
M ± SD | 23.5 ± 1.5 b | 27.8 ± 1.0 a | 26.3 ± 1.4 ab | 28.2 ± 0.4 a | |
TP (mg-GAE g−1 d.w.) | Bouquet | 17.3 ± 0.7 b | 19.4 ± 0.9 a | 20.2 ± 0.9 a | 20.6 ± 0.9 a |
Picnic | 17.5 ± 0.7 b | 18.4 ± 0.8 ab | 19.9 ± 0.9 a | 17.9 ± 0.8 b | |
M. parnikovy | 18.4 ± 0.8 a | 19.9 ± 0.9 a | 19.0 ± 0.8 a | 19.0 ± 0.8 a | |
Cavalier | 17.1 ± 0.7 b | 20.3 ± 0.9 a | 19.8 ± 0.9 a | 18.4 ± 0.8 b | |
M ± SD | 17.6 ± 0.6 b | 19.5 ± 0.8 a | 19.7 ± 0.5 a | 18.9 ± 1.1 ab | |
AA (mg 100 g−1 f.w.) | Bouquet | 11.5 ± 0.9 b | 18.3 ± 1.2 a | 16.7 ± 1.1 a | 16.8 ± 1.1 a |
Picnic | 17.8 ± 1.2 b | 25.4 ± 1.3 a | 19.5 ± 1.3 b | 19.4 ± 1.3 b | |
M. parnikovy | 12.3 ± 0.9 b | 17.6 ± 1.2 a | 17.4 ± 1.2 a | 16.1 ± 1.1 a | |
Cavalier | 10.3 ± 0.7 c | 15.8 ± 1.1 a | 12.8 ± 1.0 b | 12.2 ± 0.9 bc | |
M ± SD | 12.9 ± 3.3 b | 19.3 ± 4.2 a | 16.6 ± 2.8 b | 16.1 ± 3.0 b |
Seed Proline | Seed Se | Seed AOA | Plant Weight | Leaf AA | Leaf AOA | Chl | |
Seed productivity | −0.401 | 0.250 | 0.379 | −0.358 | 0.758 a | 0.007 | 0.023 |
Seed proline | 0.298 | −0.030 | 0.868 a | 0.482 | 0.815 a | 0.811 a | |
Seed Se | 0.196 | 0.621 c | 0.346 | 0.730 a | 0.672 b | ||
Seed AOA | 0.340 | 0.635 c | −0.051 | 0.292 | |||
Plant weight | 0.665 b | 0.924 a | 0.921 a | ||||
Ascorbic acid | 0.727 a | 0.743 a | |||||
Leaf AOA | 0.945 a |
Month | Temperature (°C) | Rainfall (mm) | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
May | 13.8 | 10.7 | 81 | 61 |
June | 21.8 | 18.9 | 20 | 42 |
July | 22.0 | 20.7 | 38 | 91 |
August | 19.4 | 21.9 | 36 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golubkina, N.; Kharchenko, V.; Moldovan, A.; Antoshkina, M.; Ushakova, O.; Sękara, A.; Stoleru, V.; Murariu, O.C.; Tallarita, A.V.; Sannino, M.; et al. Effect of Selenium and Garlic Extract Treatments of Seed-Addressed Lettuce Plants on Biofortification Level, Seed Productivity and Mature Plant Yield and Quality. Plants 2024, 13, 1190. https://doi.org/10.3390/plants13091190
Golubkina N, Kharchenko V, Moldovan A, Antoshkina M, Ushakova O, Sękara A, Stoleru V, Murariu OC, Tallarita AV, Sannino M, et al. Effect of Selenium and Garlic Extract Treatments of Seed-Addressed Lettuce Plants on Biofortification Level, Seed Productivity and Mature Plant Yield and Quality. Plants. 2024; 13(9):1190. https://doi.org/10.3390/plants13091190
Chicago/Turabian StyleGolubkina, Nadezhda, Viktor Kharchenko, Anastasia Moldovan, Marina Antoshkina, Olga Ushakova, Agnieszka Sękara, Vasile Stoleru, Otilia Cristina Murariu, Alessio Vincenzo Tallarita, Maura Sannino, and et al. 2024. "Effect of Selenium and Garlic Extract Treatments of Seed-Addressed Lettuce Plants on Biofortification Level, Seed Productivity and Mature Plant Yield and Quality" Plants 13, no. 9: 1190. https://doi.org/10.3390/plants13091190