Improving Phosphate Acquisition from Soil via Higher Plants While Approaching Peak Phosphorus Worldwide: A Critical Review of Current Concepts and Misconceptions †
Abstract
:1. Introduction
2. Soil Phosphate
3. Plant Strategies to Acquire Phosphate from Soil
4. Morphological Adaptions of the Roots to Low P Availability in Soils
5. Physiological Adaptions of Plants to Low Soil P Availability
6. Release of Carboxylates by Roots and Their Impact on P Uptake by Higher Plants
7. The Mechanisms by Which Carboxylate Release by Roots Affects Soil P Solubility and P Uptake
8. Solubilization of Phosphate Esters by Carboxylates
9. Phytase Mobilization of Soil P from Phytate
10. The Relevance of Phosphate-Mobilizing Microorganisms for Phosphate Uptake by Higher Plants in P-Deficient Soils
11. Heterogeneity in the Rhizosphere: A Clue for the Effect of Root Carboxylates on P Uptake by Plants
12. The Agronomic Effect: Improving P Acquisition in Crop Rotations, Permanent Grassland and Cover Crops with Carboxylate-Releasing Plants
13. Summary and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Batjes, N.H. Global Distribution of Soil Phosphorus Retention Potential; ISRIC-Report 2011/06; International Soil Reference and Information Centre: Wageningen, NL, USA, 2011. [Google Scholar]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.; Paganos, P.; Borelli, P. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 2020, 11, 4566. [Google Scholar] [CrossRef] [PubMed]
- McDowell, P.M.; Noble, A.; Pletnyakov, P.; Haygarth, P.M. A global database of soil plant available phosphorus. Sci. Data 2023, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Blackburn, D.; Giles, C.; Darch, T.; George, T.S.; Blackwell, M.; Stutter, M.; Shand, C.; Lumsdon, D.; Cooper, P.; Wendler, R.; et al. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant Soil 2018, 427, 5–16. [Google Scholar] [CrossRef]
- Cordell, D.; White, S. Life’s bottleneck: Sustaining the world phosphorus for a food secure future. Environ. Res. 2014, 39, 161–168. [Google Scholar] [CrossRef]
- Gerke, J. Carbon accumulation in arable soils: Mechanisms and the effect of cultivation practices and organic fertilizers. Agronomy 2021, 11, 1079. [Google Scholar] [CrossRef]
- Tinker, P.B.; Nye, P.H. Solute Movement in the Rhizosphere; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Jungk, A. Dynamics of Nutrient Movement at the Soil-Root Interface. In Plant Roots, the Hidden Half; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; Dekker: New York, NY, USA, 2002; pp. 587–616. [Google Scholar]
- Jungk, A.; Claassen, N. Ion diffusion in the soil-root system. Adv. Agron. 1997, 61, 53–110. [Google Scholar]
- Chang, S.C.; Jackson, M.L. Fractionation of soil phosphorus. Soil Sci. 1957, 84, 133–144. [Google Scholar] [CrossRef]
- Kurmis, B. Zur Fraktionierung der Bodenphosphate. Phosphorsäure 1972, 29, 118–151. [Google Scholar]
- Zhang, H.; Kovar, J.L. Fractionation of soil phosphorus. In Methods of Phosphorus Analysis in Soils; Kovar, J.L., Pierzyhski, G.M., Eds.; NC State Univ.: Raleigh, NC, USA, 2009; pp. 50–60. [Google Scholar]
- Lindsay, W.L. Chemical Equilibria in Soils; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Barrow, N.J. How understanding soil chemistry can lead to better phosphate fertilizer practice: A 68-year journey (so far). Plant Soil 2022, 476, 117–131. [Google Scholar] [CrossRef]
- Barrow, N.J.; Debnath, A.; Sen, A. Investigating the dissolution of soil phosphate. Plant Soil 2023, 490, 591–599. [Google Scholar] [CrossRef]
- Gerke, J. Humic (organic matter)-Al(Fe)-phosphate complexes: An underestimated phosphate form in soils and source of plant-available phosphate. Soil Sci. 2010, 175, 417–425. [Google Scholar] [CrossRef]
- Strauss, R.; Brümmer, G.W.; Barrow, N.J. Effect of crystallinity of goethite: II. Rates of sorption and desorption of phosphate. Eur. J. Soil Sci. 1997, 48, 101–114. [Google Scholar] [CrossRef]
- Barrow, N.J.; Shaw, T.C. The slow reaction between soil and anions. II. The effect of time and temperature on the decrease in phosphate concentration in the soil solution. Soil Sci. 1975, 119, 167–177. [Google Scholar] [CrossRef]
- Bramley, R.G.; Barrow, N.J. The reaction between phosphate and dry soil. II. The effect of time, temperature and moisture status during incubation on the amount of plant available phosphate. J. Soil Sci. 1992, 43, 759–766. [Google Scholar] [CrossRef]
- Bramley, R.G.; Barrow, N.J.; Shaw, T.C. The reaction between phosphate and dry soil. I. The effect of time, temperature and dryness. J. Soil Sci. 1992, 43, 749–758. [Google Scholar] [CrossRef]
- Barrow, N.J. The four laws of soil chemistry: The Leeper lecture 1998. Aust. J. Soil Res. 1999, 37, 787–830. [Google Scholar] [CrossRef]
- Gerard, F. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma 2016, 262, 213–226. [Google Scholar] [CrossRef]
- Gerke, J. Phosphate, aluminium, and iron in the soil solution of three different soils in relation to varying concentrations of citric acid. Z. Pflanzenernähr. Bodenkd. 1992, 155, 339–343. [Google Scholar] [CrossRef]
- Riggle, J.; von Wandruszka, R. Binding of inorganic phosphate to dissolved metal humates. Talanta 2005, 66, 372–375. [Google Scholar] [CrossRef]
- Urrutia, O.; Erro, J.; Guardado, L.; San Francisco, S.; Mandado, M.; Baigorri, R.; Yvin, C.; Garcia-Mina, J. Physico-chemical characterization of humic-metal-phosphate complexes and their potential application to the manufacture of new types of phosphate-based fertilizers. J. Plant Nutr. Soil Sci. 2014, 177, 128–136. [Google Scholar] [CrossRef]
- Van Dijk, H. Cation binding of humic acids. Geoderma 1971, 5, 53–67. [Google Scholar] [CrossRef]
- Gerke, J.; Hermann, R. Adsorption of orthophosphate to humic-Fe complexes and to amorphous Fe-oxides. Z. Pflanzenernähr. Bodenkd. 1992, 155, 233–236. [Google Scholar] [CrossRef]
- Erro, J.; Urrutia, O.; Baigorri, R.; Fuentes, M.; Zammareno, A.M.; Garcia-Mina, J.M. Incorporation of humic-derived active molecules into compound NPK granulated fertilizers: Main technical difficulties and potential solutions. Chem. Biol. Technol. Agric. 2016, 3, 18–33. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Ohno, T.; Zibilske, L.M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 1991, 55, 892–895. [Google Scholar] [CrossRef]
- He, Z.; Olk, D.C.; Honeycutt, W.; Fortuna, A.-M. Enzymatic and ultraviolet-labile phosphorus in humic acid fractions from rice soils. Soil Sci. 2009, 174, 81–87. [Google Scholar] [CrossRef]
- Hermann, R.; Gerke, J.; Ziechmann, W. Photodegradation of the surfactants Na-dodecylbenzenesulfonate and dodecylpyridiniumchloride as affected by humic substances. Water Air Soil Pollut. 1997, 98, 43–55. [Google Scholar] [CrossRef]
- Turner, B.L. Inositol phosphates in soil: Amounts, forms and significance of the phosphorylated inositol stereoisomers. In Inositol Phosphates: Linking Agriculture and Environment; Turner, B., Richardson, A., Mullaney, E., Eds.; CABI: Oxford, UK, 2007; pp. 221–241. [Google Scholar]
- Jorgensen, C.; Turner, B.L.; Reitzel, K. Identification of inositol hexakisphosphate binding sites in soils by selective extraction and solution 31P NMR spectroscopy. Geoderma 2015, 257/258, 22–28. [Google Scholar] [CrossRef]
- Gerke, J. Phytate (Inositol hexakisphosphate) in soil and phosphate acquisition from inositol phosphates by higher plants. Plants 2015, 4, 253–266. [Google Scholar] [CrossRef]
- Liu, X.; Han, R.; Cao, Y.; Turner, B.L.; Ma, L.Q. Enhancing phytate availability in soils and phytate-P acquisition by plants: A review. Environ. Sci. Technol. 2022, 56, 9196–9219. [Google Scholar] [CrossRef]
- Lott, J.N.; Ockenden, I.; Raboy, V.; Batten, G.D. Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Sci. Res. 2000, 10, 11–33. [Google Scholar] [CrossRef]
- Tate, K. Soil phosphorus. In Soil Organic Matter and Biological Activity; Vaughan, D., Malcolm, R., Eds.; Martinius Nijhoff/Dr. W Jung Publishers: Dorderecht, The Netherlands, 1985; pp. 329–377. [Google Scholar]
- Harrison, A.F. Soil Organic Phosphorus: A Review of World Literature; CABI: Wallingford, UK, 1987. [Google Scholar]
- McKercher, R.; Anderson, G. Organic phosphate sorption by neutral and basic soils. Commun. Soil Sci. Plant Anal. 1989, 20, 723–732. [Google Scholar] [CrossRef]
- Celi, L.; Barberis, E. Abiotic stabilization of organic phosphorus in the environment. In Organic Phosphorus in the Environment; Turner, B.I., Frossard, E., Baldwin, D.S., Eds.; CABI: Oxford, UK, 2005; pp. 113–132. [Google Scholar]
- Thomas, R.L.; Bowman, B.T. The occurrence of high molecular weight phosphorus compounds in soil. Soil Sci. Soc. Am. J. 1966, 30, 799–801. [Google Scholar] [CrossRef]
- Moyer, J.; Thomas, R.L. Organic phosphorus and inositol phosphates in molecular size fractions of a soil organic matter extract. Soil Sci. Soc. Am. J. 1970, 34, 80–84. [Google Scholar] [CrossRef]
- Veinot, R.; Thomas, R.L. High molecular weight organic phosphorus complexes in soil organic matter: Inositol and metal content of various fractions. Soil Sci. Soc. Am. J. 1972, 36, 71–73. [Google Scholar] [CrossRef]
- Reusser, J.E.; Tamburini, F.; Neal, A.L.; Verel, R.; Frossard, E.; McLaren, T. The molecular size continuum of soil organic phosphorus and its chemical associations. Geoderma 2022, 412, 115716. [Google Scholar] [CrossRef]
- Sentenac, H.; Grignon, C. Effect of pH on orthophosphate uptake by corn roots. Plant Physiol. 1985, 77, 136–141. [Google Scholar] [CrossRef]
- Lambers, H. Phosphorus acquisition and utilization in plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef]
- Smith, F.W.; Mudge, S.R.; Rae, A.L.; Glassop, D. Phosphate transport in plants. Plant Soil 2003, 248, 71–83. [Google Scholar] [CrossRef]
- Raghothama, K.G.; Kartikeyan, A.S. Phosphate acquisition. Plant Soil 2005, 274, 37–49. [Google Scholar] [CrossRef]
- Chen, J.-H.; Barber, S.A. Soil pH and phosphorus and potassium uptake by maize evaluated with an uptake model. Soil Sci. Soc. Am. J. 1990, 54, 1032–1036. [Google Scholar] [CrossRef]
- Preuss, C.P.; Huang, C.Y.; Tyerman, S.D. Proton-coupled high-affinity phosphate transport revealed from heterologous characterization in Xenopus of barley-root plasma membrane transporter, HvPHT1;1. Plant Cell Environ. 2011, 34, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Gerke, J. Chemische Prozesse der Nährstoffmobilisierung in der Rhizosphäre und ihre Bedeutung für den Übergang vom Boden in die Pflanze; Cuvillier Verlag: Göttingen, Germany, 1995. [Google Scholar]
- Barraclough, P.B. The growth and activity of winter wheat roots in the field: Nutrient inflows of high-yielding crops. J. Agric. Sci. 1986, 106, 53–59. [Google Scholar] [CrossRef]
- Föhse, D.; Claassen, N.; Jungk, A. Phosphorus efficiency of plants. I. External and internal P requirement and P uptake efficiency of different plant species. Plant Soil 1988, 110, 101–109. [Google Scholar] [CrossRef]
- Hoffland, E.; Findenegg, G.; Nelemans, J. Solubilization of rock phosphate. II. Local exudation of organic acids as a response to P starvation. Plant Soil 1989, 113, 161–165. [Google Scholar] [CrossRef]
- Mollier, A.; Pellerin, S. Maize root system growth and development as influenced by phosphorus deficiency. J. Exp. Bot. 1999, 55, 487–497. [Google Scholar] [CrossRef]
- Gaume, A.; Mächler, F.; DeLeon, C.; Narro, L.; Frossard, L. Low-P tolerance by maize (Zea Mays L.) genotypes: Significance of root growth and organic acids and acid phosphatases root exudation. Plant Soil 2001, 228, 253–264. [Google Scholar] [CrossRef]
- Lynch, J.P.; Brown, K.M. Topsoil foraging—An architectural adaption of plants to low phosphorus availability. Plant Soil 2001, 237, 225–237. [Google Scholar] [CrossRef]
- Föhse, D.; Jungk, A. Influence of phosphate and nitrate supply on root hair formation of rape, spinach, and tomato plants. Plant Soil 1983, 74, 359–368. [Google Scholar] [CrossRef]
- Bates, T.R.; Lynch, J.P. Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 2001, 236, 243–250. [Google Scholar] [CrossRef]
- Mai, W.; Xue, X.; Feng, G.; Yang, R.; Tian, C. Arbuscular mycorrhizal fungi—A 15-fold enlargement of the soil volume of cotton roots for phosphorus uptake in intensive planting conditions. Eur. J. Soil Biol. 2018, 90, 31–35. [Google Scholar] [CrossRef]
- Jungk, A. Root hairs and the acquisition of plant nutrients from soil. J. Plant Nutr. Soil Sci. 2001, 164, 121–129. [Google Scholar] [CrossRef]
- Brown, L.K.; George, T.S.; Dupny, L.X.; White, P.J. A conceptual model of root hairs ideotypes for future agricultural environments: What combination should be targeted to cope with limited P availability. Ann. Bot. 2013, 112, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Claassen, N. Nährstoffaufnahme Höherer Pflanzen aus dem Boden. Ergebnis von Verfügbarkeit und Aneignungsvermögen; Severin Verlag: Göttingen, Germany, 1990. [Google Scholar]
- Claassen, N.; Syring, K.M.; Jungk, A. verification of a mathematical model of simulating potassium uptake from soil. Plant Soil 1986, 95, 209–220. [Google Scholar] [CrossRef]
- Gerke, J.; Beißner, L.; Römer, W. The quantitative effect of chemical mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determinations of soil parameters. J. Plant Nutr. Soil Sci. 2000, 163, 207–212. [Google Scholar] [CrossRef]
- Gerke, J.; Römer, W.; Beißner, L. The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. II. The importance of soil and plant parameters for uptake of mobilized P. J. Plant Nutr. Soil Sci. 2000, 163, 213–219. [Google Scholar] [CrossRef]
- Gerke, J. The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots. A critical review. J. Plant Nutr. Soil Sci. 2015, 178, 351–364. [Google Scholar] [CrossRef]
- Dinkelaker, B.; Hengeler, C.; Marschner, H. Distribution and function of proteoid roots and other root clusters. Bot. Acta 1995, 108, 183–200. [Google Scholar] [CrossRef]
- Oburger, E.; Jones, D.L.; Wenzel, W.W. Phosphorus saturation and pH differentially regulate the efficiency of organic acid-mediated P solubilization mechanisms in soil. Plant Soil 2011, 341, 363–382. [Google Scholar] [CrossRef]
- Gerke, J. Orthophosphate and organic phosphate in the soil solution of four sandy soils in relation to pH—Evidence for humic-Fe-(Al)-phosphate complexes. Commun. Soil Sci. Plant Anal. 1992, 23, 601–612. [Google Scholar] [CrossRef]
- Barrow, N.J. The effect of pH on phosphate uptake from the soil. Plant Soil 2017, 410, 401–410. [Google Scholar] [CrossRef]
- Barrow, N.J.; Lambers, H. Phosphate-solubilizing microorganisms mainly increase plant phosphate uptake by effects of pH on root physiology. Plant Soil 2022, 476, 397–402. [Google Scholar] [CrossRef]
- Fox, T.R.; Comerford, N.B.; McFee, W.W. Phosphorus and aluminum release from a spodic horizon mediated by organic acids. Soil Sci. Soc. Am. J. 1990, 54, 1763–1767. [Google Scholar] [CrossRef]
- Stumm, W. Coordinative interactions between soil solids and water—An aquatic chemist’s point of view. Geoderma 1986, 38, 19–30. [Google Scholar] [CrossRef]
- Geelhoed, J.S.; van Riemsdijk, W.H.; Findenegg, G.H. Simulation of the effect of citrate exudation from roots on the plant availability of phosphorus adsorbed to goethite. Eur. J. Soil Sci. 1999, 50, 379–390. [Google Scholar] [CrossRef]
- Boudot, J.P. Relative efficiency of complexed aluminum, non-crystalline Al hydroxide, allophane and imogolite in retarding the biodegradation of citric acid. Geoderma 1992, 52, 29–39. [Google Scholar] [CrossRef]
- Jones, D.L.; Edwards, A.C. Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol. Biochem. 1998, 30, 1895–1902. [Google Scholar] [CrossRef]
- Fox, T.R.; Comerford, N.B.; McFee, W.W. Kinetics of phosphorus release from a spodic horizon mediated by organic acids. Soil Sci. Soc. Am. J. 1990, 54, 1441–1447. [Google Scholar] [CrossRef]
- Gerke, J. Kinetics of soil phosphate desorption as affected by citric acid. Z. Pflanzenernähr. Bodenkd. 1994, 157, 17–22. [Google Scholar] [CrossRef]
- Schwertmann, U. Solubility and dissolution of iron oxides. Plant Soil 1991, 130, 1–25. [Google Scholar] [CrossRef]
- Gerke, J.; Meyer, U. Phosphate acquisition by red clover and black mustard on a humic podzol. J. Plant Nutr. 1995, 18, 2409–2429. [Google Scholar] [CrossRef]
- Gerke, J.; Jungk, A. Separation of phosphorus bound to organic matrices from inorganic phosphorus in alkaline soil extracts by ultrafiltration. Commun. Soil Sci. Plant Anal. 1991, 22, 1621–1630. [Google Scholar] [CrossRef]
- Van der Zee, S.E.; Van Riemsdijk, W.H. Model for long-term phosphate reaction kinetics in soil. J. Environ. Qual. 1988, 17, 35–41. [Google Scholar] [CrossRef]
- Schwertmann, U. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalatlösung. Z. Pflanzenernähr. Bodenkd. 1964, 105, 169–174. [Google Scholar]
- McKeague, J.A.; Bryden, J.E.; Miles, N.N. Differentiation of forms of extractable iron and aluminum. Soil Sci. Soc. Am. J. 1971, 35, 33–38. [Google Scholar] [CrossRef]
- Nardi, S.; Ertani, A.; Francioso, O. Soil-root crosstalking: The role of humic substances. J. Plant Nutr. Soil Sci. 2017, 180, 5–13. [Google Scholar] [CrossRef]
- Urrutia, O.; Erro, J.; Fuentes, M.; Olaetxea, M.; Garnica, M.; Baigorri, R.; Zamarreno, A.M.; Movila, M.; De Hita, D.; Garcia-Mina, J.-M. The effect of soil organic matter on plant mineral nutrition. In Achieving Sustainable Crop Nutrition; Rengel, Z., Ed.; Burleigh Dodds: Cambridge, UK, 2020; pp. 1–11. [Google Scholar]
- Gerke, J. The effect of humic substances on phosphate and iron acquisition by higher plants: Qualitative and quantitative aspects. J. Plant Nutr. Soil Sci. 2021, 184, 329–338. [Google Scholar] [CrossRef]
- Nardi, S.; Muscolo, A.; Vaccaro, S.; Baiano, S.; Spaccini, R.; Piccolo, A. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and Krebs cycle in maize seedlings. Soil Biol. Biochem. 2007, 39, 3138–3146. [Google Scholar] [CrossRef]
- Albuzio, A.; Ferrari, G. Modulation of the molecular size of humic substances by organic acids of root exudates. Plant Soil 1989, 113, 237–241. [Google Scholar] [CrossRef]
- Gerke, J. Solubilization of Fe(III) from humic-Fe complexes, humic/Fe oxide mixtures and from poorly ordered Fe-oxide by organic acids-consequences for P adsorption. Z. Pflanzenernähr. Bodenkd. 1993, 156, 253–257. [Google Scholar] [CrossRef]
- Nardi, S.; Reniero, F.; Conchieri, G. Soil organic matter mobilization by root exudates of three maize hybrids. Chemosphere 1997, 35, 2237–2244. [Google Scholar] [CrossRef]
- Cozzolino, A.; Conte, P.; Piccolo, A. Conformational changes of humic substances induced by some hydroxyl- keto- and sulfonic acids. Soil Biol. Biochem. 2001, 33, 563–571. [Google Scholar] [CrossRef]
- Piccolo, A.; Conte, P.; Spaccini, R.; Chiarella, M. Effects of some dicarboxylic acids on the association of dissolved humic substances. Biol. Fertil. Soils 2003, 37, 255–259. [Google Scholar] [CrossRef]
- García, A.C.; Olaetxea, M.; Santos, L.A.; Mora, V.; Baigorri, R.; Fuentes, M.; Zamarreño, A.M.; Berbara, R.L.L.; Garcia-Mina, J.M. Involvement of hormone-and ROS-signaling pathways in the beneficial action of humic substances on plants growing under normal and stressing conditions. BioMed Res. Int. 2016, 2016, 3747501. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G. Assessing organic phosphorus in soils. In The Role of Phosphorus in Agriculture; Khasawneh, F.E., Sample, E.C., Kamprath, E.J., Eds.; American Society of Agronomy: Madison, WI, USA, 1980; pp. 411–443. [Google Scholar]
- Amadou, J.; Fanon, M.-P.; Houben, D. Role of soil minerals on organic phosphorus uptake by plants. Geoderma 2022, 428, 116125. [Google Scholar] [CrossRef]
- Celi, L.; Barberis, E. Abiotic reactions of inositol phosphates in soil. In Inositol Phosphates. Linking Agriculture and Environment; Turner, B.L., Richardson, A.E., Mullaney, E.J., Eds.; CABI: Wallingford, UK; Cambridge, UK, 2007; pp. 207–220. [Google Scholar]
- Yan, Y.; Wan, B.; Liu, F.; Tan, W.; Liu, M.; Feng, X. Adsorption-desorption of myo-inositol hexakisphosphate on hematite. Soil Sci. 2014, 179, 476–485. [Google Scholar] [CrossRef]
- Adams, M.A.; Pate, J.S. Availability of organic and inorganic forms of phosphorus to lupins (Lupinus ssp.). Plant Soil 1992, 145, 107–113. [Google Scholar] [CrossRef]
- Keerthisinghe, G.; Hocking, P.; Ryan, P.R.; Delhaize, E. Proteoid roots of lupin (Lupinus albus L.): Effect of phosphorus supply on formation and spatial variation in citrate efflux and enzyme activity. Plant Cell Environ. 1998, 21, 467–478. [Google Scholar] [CrossRef]
- Neumann, G.; Massoneau, A.; Martinoia, E.; Römheld, V. Physiological adaptions to phosphorus deficiency during proteid root development in white lupin. Planta 1999, 208, 373–382. [Google Scholar] [CrossRef]
- Watt, M.; Evans, J.R. Proteoid roots: Physiology and development. Plant Physiol. 1999, 121, 317–323. [Google Scholar] [CrossRef]
- Negrin, M.A.; Gonzalez-Carcedo, S.; Hernandez-Moreno, J.M. P fractionation in sodium bicarbonate extracts of andic soils. Soil Biol. Biochem. 1997, 27, 761–766. [Google Scholar] [CrossRef]
- Garcia-Lopez, A.M.; Recena, R.; Delgado, A. The adsorbent capacity of growing media does not constrain myo-inositol hexakisphosphate hydrolysis but its use as a phosphorus source by plants. Plant Soil 2021, 459, 277–288. [Google Scholar] [CrossRef]
- Jarosch, K.A.; Kandeler, E.; Frossard, E.; Bünemann, E.K. Is the enzymatic hydrolysis of soil organic phosphorus compounds limited by enzyme or substrate availability? Soil Biol. Biochem. 2019, 139, 107628. [Google Scholar] [CrossRef]
- Tarafdar, J.C.; Claassen, N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol. Fertil. Soils 1988, 5, 308–312. [Google Scholar] [CrossRef]
- Beißner, L. Mobilisierung von Phosphor aus Organischen und Anorganischen Verbindungen durch Zuckerrübenwurzeln. Ph.D. Thesis, Georg-August Universität Göttingen, Göttingen, Germany, 1997. [Google Scholar]
- Lung, S.C.; Lim, B.L. Assimilation of phytate-phosphorus by extracellular phytase activity of tobacco (Nicotiana tobaccum L.) is affected by the availability of soluble phytate. Plant Soil 2006, 278, 187–199. [Google Scholar] [CrossRef]
- Hayes, J.E.; Simpson, R.J.; Richardson, A.E. The growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose-1-phosphate, or inorganic phosphate. Plant Soil 2000, 220, 165–174. [Google Scholar] [CrossRef]
- George, T.S.; Richardson, A.E.; Hadobas, P.A.; Simpson, R.J. Characterization of transgenic Trifolium subterraneum L. which expresses phyA and releases extracellular phytase: Growth and phosphorus nutrition in laboratory media and soil. Plant Cell Environ. 2004, 27, 1351–1361. [Google Scholar] [CrossRef]
- Espinoza, M.; Turner, B.L.; Haygarth, P.M. Preconcentration and separation of trace phosphorus compounds in soil leachates. J. Environ. Qual. 1999, 28, 1497–1504. [Google Scholar] [CrossRef]
- Whitelaw, M.A.; Harden, T.J.; Bender, G.L. Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Soil Res. 1997, 35, 291–300. [Google Scholar] [CrossRef]
- Gomez-Munoz, B.; Jensen, L.S.; de Neegard, A.; Richardson, A.E.; Magid, J. Effects of Penicillium bilaii on maize growth are mediated by available phosphorus. Plant Soil 2018, 431, 159–173. [Google Scholar] [CrossRef]
- Schütz, L.; Gattinger, A.; Meier, M.; Müller, A.; Boller, T.; Mäder, P.; Mathimaran, N. Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Front. Plant Sci. 2018, 8, 2204. [Google Scholar] [CrossRef] [PubMed]
- Hoffland, E.; van den Boorgaard, R.; Nelemans, J.; Findenegg, G. Biosynthesis and root exudation of citric and malic acid in phosphate starved rape plants. New Phytol. 1992, 122, 675–680. [Google Scholar] [CrossRef]
- Hocking, P.; Jeffery, S. Cluster root production and organic acid exudation in a group of old-world lupins and in a new-world lupin. Plant Soil 2004, 258, 135–150. [Google Scholar] [CrossRef]
- Dinkelaker, B.; Hengeler, C.; Neumann, G.; Eltrop, L.; Marschner, H. Root exudates and mobilization of nutrients. In Trees-Contribution to Modern Tree Physiology; Renneberg, H., Escherich, W., Ziegler, H., Eds.; Backhuys Publishers: Leiden, NL, USA, 1997; pp. 441–452. [Google Scholar]
- Shane, M.W.; Cramer, M.D.; Funayama-Nogushi, S.; Cawthray, G.R.; Millar, A.H.; Day, D.A.; Lambers, H. Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh Hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol. 2004, 135, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Shane, M.W.; Cawthray, G.R.; Cramer, M.D.; Kuo, J.; Lambers, H. Specialized dauciform roots of cyperaceae are structurally distinct but functionally analogous with cluster roots. Plant Cell Environ. 2006, 29, 1989–1999. [Google Scholar] [CrossRef]
- Keller, H. Einfluss Wurzelbürtiger Organischer Säuren auf das Cu-, Zn-, und Cd-Aneignungsvermögen von Spinatgenotypen. Ph.D. Thesis, Universität Kaiserslautern, Kaiserslautern, Germany, 2000. [Google Scholar]
- Römer, W.; Kang, D.G.; Egle, K.; Gerke, J.; Keller, H. The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L., and Lolium multiflorum Lam. J. Plant Nutr. Soil Sci. 2000, 163, 623–662. [Google Scholar] [CrossRef]
- Jungk, A.; Asher, C.J.; Edwards, D.G.; Meyer, D. Influence of phosphate status on phosphate uptake kinetics of maize (Zea mays) and soybean (Glycine max). Plant Soil 1990, 124, 175–182. [Google Scholar] [CrossRef]
- Vorster, P.W.; Jooste, J.H. Potassium and phosphate absorption by excised ordinary and proteoid roots of Proteaceae. S. Afr. J. Bot. 1986, 52, 277–281. [Google Scholar] [CrossRef]
- Robinson, D. Integrated root response s to variations in nutrient supply. In Nutrient Acquisition by Plants; BassiriRad, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 43–61. [Google Scholar]
- Gardner, W.R. Dynamic aspects of water availability to plants. Soil Sci. 1960, 89, 63–73. [Google Scholar] [CrossRef]
- Nye, P.H.; Marriott, F.H.C. A theoretical study of the distribution of substances around roots resulting from simultaneous diffusion and mass flow. Plant Soil 1969, 30, 459–472. [Google Scholar] [CrossRef]
- Nye, P.H.; Tinker, P.B. Solute Movement in the Soil-Root System; Blackwell: Oxford, UK, 1977. [Google Scholar]
- Baldwin, J.P. A quantitative analysis of the factors affecting plant nutrient uptake from soils. J. Soil Sci. 1975, 26, 195–206. [Google Scholar] [CrossRef]
- Brewster, J.L.; Bhat, K.K.S.; Nye, P.H. The possibility of predicting solute uptake and plant growth response from independently measured soil and plant characteristics. V. The growth and phosphorus uptake of rape in soil at a range of phosphorus concentrations and a comparison of the results with the predictions of a simulation model. Plant Soil 1976, 44, 295–328. [Google Scholar]
- Nye, P.H. The diffusion of two interacting solutes in soil. J. Soil Sci. 1983, 34, 677–691. [Google Scholar] [CrossRef]
- Nye, P.H. On estimating the uptake of nutrients solubilized near roots or other surfaces. J. Soil Sci. 1984, 35, 439–446. [Google Scholar] [CrossRef]
- Kirk, G.J.; Santos, E.E.; Santos, M.B. Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: Rate of excretion and decomposition, effects on rhizosphere pH and effects on phosphate solubility and uptake. New Phytol. 1999, 142, 185–200. [Google Scholar] [CrossRef]
- Horst, W.J.; Waschlies, C. Phosphatversorgung von Sommerweizen (Triticum aestivum L.) in Mischkultur mit weißer Lupine (Lupinus albus L.). Z. Pflanzenernähr. Bodenkd. 1987, 150, 1–8. [Google Scholar] [CrossRef]
- Kamh, M.; Horst, W.J.; Amer, F.; Mostafa, H.; Maier, P. Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 1999, 211, 19–27. [Google Scholar] [CrossRef]
- Horst, W.J.; Waschkies, C. Verbesserung der Phosphatversorgung von Sommerweizen durch den Anbau von weißer Lupine auf einem Boden niedriger Phosphatverfügbarkeit. VDLUFA-Schriftenreihe 1985, 16, 179–183. [Google Scholar]
- Cu, S.T.T.; Hutson, J.; Schuller, K.A. Mixed culture of wheat (Triticum aestivum L.) with white lupin (Lupinus albus L.) improves the growth and phosphorus nutrition of wheat. Plant Soil 2005, 272, 143–151. [Google Scholar] [CrossRef]
- Lelei, J.J.; Onwonga, R.N. White lupin (Lupinus albus L., cv. Amiga) increases solubility of Minjingu phosphate rock phosphorus balances and maize yields in Njoro Kenya. Sustain. Agric. Res. 2014, 3, 37–49. [Google Scholar] [CrossRef]
- Schultz-Lupitz, A. Zwischenfruchtanbau auf Leichten Böden; Fachbuchverlag: Dresden, Germany, 2017. [Google Scholar]
- Nuruzzaman, M.; Lambers, H.; Bolland, M.D.A.; Veneklaas, E.J. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils in Western Australia. Plant Soil 2005, 271, 175–187. [Google Scholar] [CrossRef]
- Klapp, E. Wiesen und Weiden; Paul Parey: Berlin, Germany; Hamburg, Germany, 1971. [Google Scholar]
- Bi, Y.; Zhou, P.; Li, S.; Wei, Y.; Xiong, X.; Shi, Y.; Liu, N.; Zhang, Y. Interspecific interactions contribute to higher forage yield and are affected by phosphorus application in a fully mixed perennial legume and grass intercropping system. Field Crops Res. 2019, 249, 107636. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerke, J. Improving Phosphate Acquisition from Soil via Higher Plants While Approaching Peak Phosphorus Worldwide: A Critical Review of Current Concepts and Misconceptions. Plants 2024, 13, 3478. https://doi.org/10.3390/plants13243478
Gerke J. Improving Phosphate Acquisition from Soil via Higher Plants While Approaching Peak Phosphorus Worldwide: A Critical Review of Current Concepts and Misconceptions. Plants. 2024; 13(24):3478. https://doi.org/10.3390/plants13243478
Chicago/Turabian StyleGerke, Jörg. 2024. "Improving Phosphate Acquisition from Soil via Higher Plants While Approaching Peak Phosphorus Worldwide: A Critical Review of Current Concepts and Misconceptions" Plants 13, no. 24: 3478. https://doi.org/10.3390/plants13243478
APA StyleGerke, J. (2024). Improving Phosphate Acquisition from Soil via Higher Plants While Approaching Peak Phosphorus Worldwide: A Critical Review of Current Concepts and Misconceptions. Plants, 13(24), 3478. https://doi.org/10.3390/plants13243478