Acetoin Promotes Plant Growth and Alleviates Saline Stress by Activating Metabolic Pathways in Lettuce Seedlings
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Response of Hydroponic Lettuce to Acetoin
2.2. RNA Sequencing and Analysis of DEGs
2.3. GO Classification Analysis of DEGs
2.4. KEGG Enrichment Pathway Analysis of DEGs
2.5. Comparison of DEGs Related to Plant Hormone Signal Transduction Pathways
2.6. Comparison of DEGs Related to the MAPK Signaling Pathway–Plant
2.7. Validation of RNA-seq Data by Using qRT-PCR
2.8. Effects of Acetoin on Growth and Alleviation of Saline Stress
2.9. Effects of Acetoin on Leaf Photosynthetic Index and Defense Enzyme Activity
3. Discussion
3.1. Acetoin Promotes Plant Growth and Alleviates Saline Stress
3.2. Expression of Genes Related to Plant Hormones and Signal Transduction
3.3. Expression of Genes Related to MAPK Signaling Pathway–Plant
4. Materials and Methods
4.1. Experimental Materials
4.2. Greenhouse Hydroponic and Pot Experiments
4.3. Growth Parameters and Nutrient Elements Analysis
4.4. Leaf Photosynthetic Index Determination and Defense Enzyme Activity Assays
4.5. Preparation of Samples and Transcriptome Sequencing
4.6. Screening and Analysis of Differentially Expressed Genes
4.7. Quantitative Real-Time PCR
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABA | abscisic acid |
AT | acetoin |
CALM | calmodulin |
CAT | catalase |
Ci | intercellular CO2 concentration |
CTR1 | serine/threonine-protein kinase CTR1 |
DEG | differentially expressed gene |
EIN3 | ethylene-insensitive protein 3 |
EBF1/ EBF2 | EIN3-binding F-box protein 1/2 |
ERF1/2 | ethylene-responsive transcription factor 1/2 |
GO | Gene Ontology |
gsw | stomatal conductance |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MAPKKK | mitogen-activated protein kinase kinase kinase |
MAPK (MPK) | mitogen-activated protein kinase |
MDA | malondialdehyde |
MKK | mitogen-activated protein kinase kinase |
PGPR | plant growth promoting rhizobacteria |
Pn | net photosynthesis rate |
POD | peroxidase |
PP2C | protein phosphatases 2C |
PYL | PYR1-like proteins |
PYR/PYL | abscisic acid receptor PYR/PYL family |
RbohD | respiratory burst oxidase homologous protein D |
ROS | reactive oxygen species |
SnRK2 | SNF1-related type 2 protein kinase |
SOD | superoxide dismutase |
Tr | transpiration rate |
VOC | volatile organic compound |
References
- Zainuddin, N.; Keni, M.F.; Ibrahim, S.A.S.; Masri, M.M.M. Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity. Biocatal. Agric. Biotechnol. 2022, 39, 102237. [Google Scholar] [CrossRef]
- Shen, W.S.; Hu, M.C.; Qian, D.; Xue, H.W.; Gao, N.; Lin, X.G. Microbial deterioration and restoration in greenhouse-based intensive vegetable production systems. Plant Soil 2021, 463, 1–18. [Google Scholar] [CrossRef]
- Thessalia, T.; Ioannis, I. Effects of sand dune, desert and field arbuscular mycorrhizae on lettuce (Lactuca sativa, L.) growth in a natural saline soil. Sci. Hortic.-Amst. 2020, 264, 109191. [Google Scholar] [CrossRef]
- Santander, C.; Aroca, R.; Cartes, P.; Vidal, G.; Cornejo, P. Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. Plant Physiol. Biochem. 2021, 158, 396–409. [Google Scholar] [CrossRef]
- Yang, S.; Hao, X.; Xu, Y.; Yang, J.; Su, D. Meta-Analysis of the Effect of Saline-Alkali Land Improvement and Utilization on Soil Organic Carbon. Life 2022, 12, 1870. [Google Scholar] [CrossRef]
- Tarolli, P.; Luo, J.; Park, E.; Barcaccia, G.; Masin, R. Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. iScience 2024, 27, 108830. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.; Reddy, M.; El Enshasy, H. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Parveen, A.; Ahmar, S.; Kamran, M.; Malik, Z.; Ali, A.; Riaz, M.; Abbasi, G.H.; Khan, M.; Sohail, A.B.; Rizwan, M. Abscisic acid signaling reduced transpiration flow, regulated Na+ ion homeostasis and antioxidant enzyme activities to induce salinity tolerance in wheat (Triticum aestivum L.) seedlings. Environ. Technol. Innov. 2021, 24, 101808. [Google Scholar] [CrossRef]
- Peng, G.; Zhao, X.; Li, Y.; Wang, R.; Huang, Y.; Qi, G. Engineering Bacillus velezensis with high production of acetoin primes strong induced systemic resistance in Arabidopsis thaliana. Microbiol. Res. 2019, 227, 126297. [Google Scholar] [CrossRef]
- Syed-Ab-Rahman, S.F.; Carvalhais, L.C.; Chua, E.T.; Chung, F.Y.; Moyle, P.M.; Eltanahy, E.G.; Schenk, P.M. Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. Sci. Total Environ. 2019, 692, 267–280. [Google Scholar] [CrossRef]
- Fincheira, P.; Parada, M.; Quiroz, A. Volatile organic compounds stimulate plant growing and seed germination of Lactuca sativa. J. Soil Sci. Plant Nutr. 2017, 17, 853–867. [Google Scholar] [CrossRef]
- Jiang, C.H.; Xie, Y.S.; Zhu, K.; Wang, N.; Li, Z.J.; Yu, G.J.; Guo, J.H. Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone. Plant Growth Regul. 2019, 87, 317–328. [Google Scholar] [CrossRef]
- Rath, M.; Mitchell, T.R.; Gold, S.E. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol. Res. 2018, 208, 76–84. [Google Scholar] [CrossRef]
- Marzouk, T.; Chaouachi, M.; Sharma, A.; Jallouli, S.; Mhamdi, R.; Kaushik, N.; Djébali, N. Biocontrol of Rhizoctonia solani using volatile organic compounds of solanaceae seed-borne endophytic bacteria. Postharvest Biol. Technol. 2021, 181, 111655. [Google Scholar] [CrossRef]
- Bilias, F.; Tsolis, V.; Zafeiriou, I.; Koukounaras, A.; Kalderis, D.; Chlouveraki, E.; Gasparatos, D. Effects of Sewage Sludge Biochar and a Seaweed Extract-Based Biostimulant on Soil Properties, Nutritional Status and Antioxidant Capacity of Lettuce Plants in a Saline Soil with the Risk of Alkalinization. J. Soil Sci. Plant Nutr. 2024. [Google Scholar] [CrossRef]
- Ali, M.A.A.; Nasser, M.A.; Abdelhamid, A.N.; Ali, I.A.A.; Saudy, H.S.; Hassan, K.M. Melatonin as a Key Factor for Regulating and Relieving Abiotic Stresses in Harmony with Phytohormones in Horticultural Plants—A Review. J. Soil Sci. Plant Nutr. 2024, 24, 54–73. [Google Scholar] [CrossRef]
- Atero-Calvo, S.; Magro, F.; Masetti, G.; Navarro-León, E.; Blasco, B.; Ruiz, J.M. Salinity stress mitigation by radicular and foliar humic substances application in lettuce plants. Plant Growth Regul. 2024, 104, 151–167. [Google Scholar] [CrossRef]
- Monterisi, S.; Zhang, L.; Garcia-Perez, P.; Alzate Zuluaga, M.Y.; Ciriello, M.; El-Nakhel, C.; Buffagni, V.; Cardarelli, M.; Colla, G.; Rouphael, Y.; et al. Integrated multi-omic approach reveals the effect of a Graminaceae-derived biostimulant and its lighter fraction on salt-stressed lettuce plants. Sci. Rep. 2024, 14, 10710. [Google Scholar] [CrossRef]
- Fincheira, P.; Venthur, H.; Mutis, A.; Parada, M.; Quiroz, A. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species. Microbiol. Res. 2016, 193, 39–47. [Google Scholar] [CrossRef]
- Cappellari, L.d.R.; Banchio, E. Microbial Volatile Organic Compounds Produced by Bacillus amyloliquefaciens GB03 Ameliorate the Effects of Salt Stress in Mentha piperita Principally Through Acetoin Emission. J. Plant Growth Regul. 2020, 39, 764–775. [Google Scholar] [CrossRef]
- Sun, L.; Wang, D.; Liu, X.; Zhou, Y.; Huang, W.; Guan, X.; Zhang, X.; Xie, Z. The volatile organic compound acetoin enhances the colonization of Azorhizobium caulinodans ORS571 on Sesbania rostrata. Sci. Total Environ. 2024, 912, 169006. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Xie, J.; Wang, Q.; Shi, D.; Jia, L.; Feng, H. Effect of Alternative Respiratory Pathway on Chlorophyll Content and Chlorophyll Fluorescence Characteristics under NaCl Stress. Acta Bot. Boreali-Occident. Sin. 2017, 37, 1175–1181. [Google Scholar]
- Zhao, L.F.; Xu, Y.J.; Shao, X.; Yang, J.Y. Two endophytic Bacillus strains from soybean nodules affect superoxide dismutase and peroxidase activities in soybean seedlings under salt stress Microbiol. China 2022, 49, 1664–1677. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Ali, B.; Ren, X.; Chen, X.; Li, Q.; Saqib, M.; Ahmad, N. Recent progress in understanding salinity tolerance in plants: Story of Na+/K+ balance and beyond. Plant Physiol. Biochem. 2021, 160, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, G.; Cocetta, G.; Trivellini, A.; Garabello, C.; Contartese, V.; Ferrante, A. Effect of exogenous application of salt stress and glutamic acid on lettuce (Lactuca sativa L.). Sci. Hortic.-Amst. 2022, 299, 111027. [Google Scholar] [CrossRef]
- Wang, P.; Liu, W.; Han, C.; Wang, S.; Bai, M.; Song, C. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. J. Integr. Plant Biol. 2024, 66, 330–367. [Google Scholar] [CrossRef]
- Wei, X.; Rahim, M.A.; Zhao, Y.; Yang, S.; Wang, Z.; Su, H.; Li, L.; Niu, L.; Rashid, M.H.-U.; Yuan, Y. Comparative Transcriptome Analysis of Early-and Late-Bolting Traits in Chinese Cabbage (Brassica rapa). Front. Genet. 2021, 12, 119. [Google Scholar] [CrossRef]
- Vaseva, I.I.; Qudeimat, E.; Potuschak, T.; Du, Y.; Genschik, P.; Vandenbussche, F.; Van Der Straeten, D. The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proc. Natl. Acad. Sci. USA 2018, 115, E4130–E4139. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.; Li, Z.; Qiao, J.; Quan, R.; Wang, J.; Huang, R.; Qin, H. SALT AND ABA RESPONSE ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant Physiol. 2022, 189, 1110–1127. [Google Scholar] [CrossRef]
- Lei, P.; Wei, X.; Gao, R.; Huo, F.; Nie, X.; Tong, W.; Song, W. Genome-wide identification of PYL gene family in wheat: Evolution, expression and 3D structure analysis. Genomics 2021, 113, 854–866. [Google Scholar] [CrossRef]
- Wang, B.; Li, L.; Peng, D.; Liu, M.; Wei, A.; Li, X. TaFDL2-1A interacts with TabZIP8-7A protein to cope with drought stress via the abscisic acid signaling pathway. Plant Sci. 2021, 311, 111022. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, Y.; Wang, Y.; Liu, X.; Ma, L.; Zhang, Z.; Mu, C.; Zhang, Y.; Peng, L.; Xie, S.; et al. Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nat. Commun. 2021, 12, 2456. [Google Scholar] [CrossRef] [PubMed]
- Ghorbel, M.; Zaidi, I.; Ebel, C.; Brini, F.; Hanin, M. The wheat Mitogen Activated Protein Kinase TMPK3 plays a positive role in salt and osmotic stress response. Acta Physiol. Plant. 2023, 45, 71. [Google Scholar] [CrossRef]
- Zhang, M.; Su, J.; Zhang, Y.; Xu, J.; Zhang, S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr. Opin. Plant Biol. 2018, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, H.; Qi, Y.; Zhao, Y.; Duan, C.; Wang, Y.; Meng, Z.; Zhang, Q. Genome-wide identification of PYL/PYR-PP2C (A)-SnRK2 genes in Eutrema and their co-expression analysis in response to ABA and abiotic stresses. Int. J. Biol. Macromol. 2023, 253, 126701. [Google Scholar] [CrossRef]
- Park, H.L.; Seo, D.H.; Lee, H.Y.; Bakshi, A.; Park, C.; Chien, Y.-C.; Kieber, J.J.; Binder, B.M.; Yoon, G.M. Ethylene-triggered subcellular trafficking of CTR1 enhances the response to ethylene gas. Nat. Commun. 2023, 14, 365. [Google Scholar] [CrossRef]
- Parvathaneni, S.; Li, Z.; Sacks, D.B. Calmodulin influences MAPK signaling by binding KSR1. J. Biol. Chem. 2021, 296, 100577. [Google Scholar] [CrossRef]
- Takahashi, F.; Mizoguchi, T.; Yoshida, R.; Ichimura, K.; Shinozaki, K. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol. Cell 2011, 41, 649–660. [Google Scholar] [CrossRef]
- Tavanti, T.R.; de Melo, A.A.R.; Moreira, L.D.K.; Sanchez, D.E.J.; dos Santos Silva, R.; da Silva, R.M.; Dos Reis, A.R. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stresses in plants. Plant Physiol. Biochem. 2021, 160, 386–396. [Google Scholar] [CrossRef]
- Zhou, C.; Li, S.; Zheng, Y.; Lei, P.; Chen, Y.; Ying, H.; Gao, N. An Energy-Rich Phosphate Compound Enhances the Growth of Lettuce Through the Activation of Photosynthesis, Growth, and Induced Systemic Resistance-Related Processes. J. Soil Sci. Plant Nutr. 2022, 22, 1955–1969. [Google Scholar] [CrossRef]
- Fedeli, R.; Loppi, S.; Cruz, C.; Munzi, S. Evaluating Seawater and Wood Distillate for Sustainable Hydroponic Cultivation: Implications for Crop Growth and Nutritional Quality. Sustainability 2024, 16, 7186. [Google Scholar] [CrossRef]
- Fedeli, R.; Cruz, C.; Loppi, S.; Munzi, S. Hormetic Effect of Wood Distillate on Hydroponically Grown Lettuce. Plants 2024, 13, 447. [Google Scholar] [CrossRef] [PubMed]
- Danquah, A.; de Zélicourt, A.; Boudsocq, M.; Neubauer, J.; Frei dit Frey, N.; Leonhardt, N.; Pateyron, S.; Gwinner, F.; Tamby, J.P.; Ortiz-Masia, D. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J. 2015, 82, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Pathway ID | Pathway | Numbers of Significant Genes | Q Value | |
---|---|---|---|---|
CK6-L-vs-AT6-L | ko00941 | Flavonoid biosynthesis | 3 | 1.46 × 10−3 |
ko04075 | Plant hormone signal transduction | 5 | 2.19 × 10−3 | |
ko04016 | MAPK signaling pathway–plant | 3 | 2.25 × 10−2 | |
CK24-L-vs-AT24-L | ko04016 | MAPK signaling pathway–plant | 8 | 9.31 × 10−5 |
ko04075 | Plant hormone signal transduction | 9 | 4.68 × 10−4 | |
ko04626 | Plant–pathogen interaction | 8 | 6.48 × 10−3 | |
CK6-R-vs-AT6-R | ko01110 | Biosynthesis of secondary metabolites | 44 | 1.20 × 10−7 |
ko00940 | Phenylpropanoid biosynthesis | 16 | 7.65 × 10−7 | |
ko00071 | Fatty acid degradation | 7 | 6.97 × 10−4 | |
ko01100 | Metabolic pathways | 51 | 4.12 × 10−3 | |
ko00350 | Tyrosine metabolism | 6 | 4.21 × 10−3 | |
ko01040 | Biosynthesis of unsaturated fatty acids | 5 | 5.74 × 10−3 |
Organ | Treatment | Mg2+ | Ca2+ | Na+ | K+ | K+/Na+ |
---|---|---|---|---|---|---|
(mg·g−1 DW) | (mg·g−1 DW) | (mg·g−1 DW) | (mg·g−1 DW) | |||
Shoot | CK | 5.27 ± 0.09 b | 3.57 ± 0.46 ab | 6.07 ± 0.12 c | 9.48 ± 0.42 c | 1.56 ± 0.04 b |
CK + AT | 5.72 ± 0.21 a | 3.93 ± 0.24 ab | 5.98 ± 0.10 c | 10.31 ± 0.42 c | 1.73 ± 0.07 ab | |
NaCl | 4.35 ± 0.13 c | 2.87 ± 0.44 b | 9.07 ± 0.15 a | 12.46 ± 0.41 b | 1.38 ± 0.05 c | |
NaCl + AT | 3.96 ± 0.15 c | 4.30 ± 0.57 a | 7.85 ± 0.19 b | 14.10 ± 0.75 a | 1.79 ± 0.06 a | |
Root | CK | 5.74 ± 0.27 a | 1.44 ± 0.29 c | 6.38 ± 0.16 b | 2.41 ± 0.13 b | 0.38 ± 0.01 b |
CK + AT | 5.84 ± 0.17 a | 3.70 ± 0.18 a | 6.26 ± 0.20 b | 2.03 ± 0.13 b | 0.33 ± 0.03 b | |
NaCl | 4.10 ± 0.16 b | 0.73 ± 0.05 c | 8.40 ± 0.25 a | 5.44 ± 0.33 a | 0.65 ± 0.04 a | |
NaCl + AT | 3.94 ± 0.13 b | 2.45 ± 0.31 b | 6.65 ± 0.64 b | 5.18 ± 0.46 a | 0.82 ± 0.11 a |
Gene Name | Sequence of Forward Primer (5′–3′) | Sequence of Reverse Primer (5′–3′) | Accession Number | Amplified Product Size (bp) |
---|---|---|---|---|
PYL4 | CAAGAGCTGCAACGTGATTCTC | TTGTTTTGTCGCAGTTTGGTGA | XM_023876294 | 218 |
EBF2 | GCGGAACCCTAGAAGTCTTGAA | AAGAACGGCGTACACTTGTTTG | XM_023917299 | 223 |
MKK9 | GCGATATCTGGAGCTTGGGG | GATGCTGTCCACCTCTTGCT | XM_023910820 | 211 |
CP1 | CGATGATGACGGTTGCTGATTC | TCTCCATACCCTACCTTTCCGT | XM_023909929 | 163 |
CTR1 | TCAAATTCCCGACGAGCACA | GCATAGCTACTCCCACTCGA | XM_023902326 | 219 |
CML35 | CTCTGCATCCTCTCCCTCTTTC | TTCATGTGAGTGGGTCGGTAAG | XM_023885715 | 225 |
CML39 | AGATGATGAAGGAAGGGGAGGA | GCCATTAACGTCGAATCTTCCG | XM_023889008 | 170 |
CML41 | CCGTGGAAAACCTGCTTGAAAT | CTGGAGTTCTTGTAAGTGGGCT | XM_023900613 | 232 |
CML46 | TTCCCCGGAACCCTACATGT | TCCAATCTCGGTTGCTCCTC | XM_023915611 | 246 |
PP2CA | ATGCCTCCACCTGACAGTAGTA | TCCAACACATCCTCTCCCAAAG | XM_023906444 | 212 |
ACTIN | ATGGCCGACACTGAGGATATTC | ACATAAGCATCTTTCTGGCCCA | XM_023878805 | 167 |
GAPC | GTTGTTGGTGTGAACGAGAAGG | ACCTCTCCAGTCCTTAGCAGAT | XM_023875356 | 201 |
TUBLIN | CAGATGCCCAGTGACAAAACAG | AGGTCGACGATTTCTTTTCCGA | XM_023889059 | 248 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Shen, H.; Yan, S.; Ma, C.; Leng, J.; Song, Y.; Gao, N. Acetoin Promotes Plant Growth and Alleviates Saline Stress by Activating Metabolic Pathways in Lettuce Seedlings. Plants 2024, 13, 3312. https://doi.org/10.3390/plants13233312
Zhou C, Shen H, Yan S, Ma C, Leng J, Song Y, Gao N. Acetoin Promotes Plant Growth and Alleviates Saline Stress by Activating Metabolic Pathways in Lettuce Seedlings. Plants. 2024; 13(23):3312. https://doi.org/10.3390/plants13233312
Chicago/Turabian StyleZhou, Chaowei, Hui Shen, Shangbo Yan, Changyi Ma, Jing Leng, Yu Song, and Nan Gao. 2024. "Acetoin Promotes Plant Growth and Alleviates Saline Stress by Activating Metabolic Pathways in Lettuce Seedlings" Plants 13, no. 23: 3312. https://doi.org/10.3390/plants13233312
APA StyleZhou, C., Shen, H., Yan, S., Ma, C., Leng, J., Song, Y., & Gao, N. (2024). Acetoin Promotes Plant Growth and Alleviates Saline Stress by Activating Metabolic Pathways in Lettuce Seedlings. Plants, 13(23), 3312. https://doi.org/10.3390/plants13233312