Effect of High Nighttime Temperatures on Growth, Yield, and Quality of Two Wheat Cultivars During the Whole Growth Period
Abstract
:1. Introduction
2. Results
2.1. Impacts of HNT–Genotype Interactions on Wheat Growth and Development, Leaf Area, Biomass Accumulation, and Distribution
2.2. Interactive Impacts of HNTs and Genotypes on Physiological Processes in Wheat
2.3. Interactive Impacts of HNTs and Genotype on Wheat Yields
2.4. Interactive Impacts of HNTs and Genotype on Wheat Quality
2.5. Principal Component Analysis (PCA) on the Yield and Quality Parameters of Wheat
3. Discussion
3.1. Effects of HNTs on Morphology and Physiological Processes in Wheat
3.2. Effects of HNTs on Wheat Yield
3.3. Effects of HNTs on Wheat Quality
3.4. Climate Change Impacts on Wheat Production in the Future
4. Materials and Methods
4.1. Experimental Site
4.2. Experimental Design
4.3. Measurements of Wheat Leaf Age and Tiller Number
4.4. Determination of Leaf Area and LAI
4.5. Measurements of Wheat Plant Height and Internode Length of Main Stem
4.6. Determination of Above-Ground Biomass
4.7. Chlorophyll Content Measurement
4.8. Determination of Photosynthetic Parameters and Nighttime Respiration Rate
4.9. Measurements of Yield in Wheat
4.10. Determination of Wheat Flour Quality
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
JM22 | Jimai22 |
JM44 | Jimai44 |
HNTs | High nighttime temperatures |
ATs | Ambient temperatures |
GY | Grain yield |
LAI | Leaf area index |
HI | Harvest index |
TKW | Thousand-kernel weight |
DAA | Days after anthesis |
NS | Number of spikes |
GNS | Grain number per spike |
WA | Water absorption |
DDT | Dough development time |
ST | Stability time |
NFS | Number of fertile spikelets |
NSS | Number of sterile spikelets |
SD | Softening degree |
FQN | Farinograph quality number |
LSD | Least significant difference |
PCA | Principal component analysis |
ANOVA | Analysis of variance |
CP | Centipoise |
References
- FAO (Food and Agriculture Organization). Available online: https://www.fao.org/faostat/en/ (accessed on 16 December 2022).
- WMO (World Meteorological Organization). The State of the Global Climate 2021. Available online: https://public.wmo.int/en/our-mandate/climate/wmo-statement-state-of-global-climate (accessed on 18 May 2022).
- AACC (American Association of Cereal Chemists). Approved Methods of the American Association of Cereal Chemists, 10th ed.; Cereals & Grains: St. Paul, MN, USA, 2011; Available online: https://www.cerealsgrains.org/resources/Methods/Pages/54PhysicalDoughTests.aspx (accessed on 1 July 2022).
- Prasad, P.V.V.; Bheemanahalli, R.; Jagadish, S.V.K. Field crops and the fear of heat stress-opportunities, challenges and future directions. Field Crops Res. 2017, 200, 114–121. [Google Scholar] [CrossRef]
- Shew, A.M.; Tack, J.; Nalley, L.L.; Chaminuka, P. Yield reduction under climate warming varies among wheat cultivars in South Africa. Nat. Commun. 2020, 11, 4408. [Google Scholar] [CrossRef] [PubMed]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein, T.A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Jagadish, S.V.; Murty, M.V.; Quick, W.P. Rice responses to rising temperatures-challenges, perspectives and future directions. Plant Cell Environ. 2015, 38, 1686–1698. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Zhang, L.; Zhang, Z.; Chen, Y. Climate warming outweighed agricultural managements in affecting wheat phenology across China during 1981–2018. Agric. For. Meteorol. 2022, 316, 108865. [Google Scholar] [CrossRef]
- Fan, Y.; Tian, M.; Qin, B.; Jiang, Q.; Tian, Z.; Han, H.; Jiang, Q.; Cao, W.; Dai, T. Winter night warming improves pre-anthesis crop growth and post-anthesis photosynthesis involved in grain yield of winter wheat (Triticum aestivum L.). Field Crops Res. 2015, 178, 100–108. [Google Scholar] [CrossRef]
- García, G.A.; Dreccer, M.F.; Miralles, D.J.; Serrago, R.A. High night temperatures during grain number determination reduce wheat and barley grain yield: A field study. Glob. Chang. Biol. 2015, 21, 4153–4164. [Google Scholar] [CrossRef]
- Li, Y.; Hou, R.; Tao, F. Interactive effects of different warming levels and tillage managements on winter wheat growth, physiological processes, grain yield and quality in the North China Plain. Agric. Ecosyst. Environ. 2020, 295, 106923. [Google Scholar] [CrossRef]
- Yadav, M.R.; Choudhary, M.; Singh, J.; Lal, M.K.; Jha, P.K.; Udawat, P.; Gupta, N.K.; Rajput, V.D.; Garg, N.K.; Maheshwari, C.; et al. Impacts, tolerance, adaptation, and mitigation of heat stress on wheat under changing climates. Int. J. Mol. Sci. 2022, 23, 2838. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, J.; Chen, J.; Chen, C.; Tian, Y.; Deng, A.; Song, Z.; Nawaz, M.M.; van-Groenigen, K.J.; Zhang, W. Nighttime warming increases winter-sown wheat yield across major Chinese cropping regions. Field Crops Res. 2017, 214, 202–210. [Google Scholar] [CrossRef]
- He, D.; Fang, S.; Liang, H.; Wang, E.; Wu, D. Contrasting yield responses of winter and spring wheat to temperature rise in China. Environ. Res. Lett. 2020, 15, 124038. [Google Scholar] [CrossRef]
- Narayanan, S.; Prasad, P.V.V.; Fritz, A.K.; Boyle, D.L.; Gill, B.S. Impact of high nighttime and high daytime temperature stress on winter wheat. J. Agron. Crop Sci. 2015, 201, 206–218. [Google Scholar] [CrossRef]
- García, G.A.; Serrago, R.A.; Dreccer, M.F.; Miralles, D.J. Post-anthesis warm nights reduce grain weight in field-grown wheat and barley. Field Crops Res. 2016, 195, 50–59. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Hein, N.T.; Wagner, D.; Bheemanahalli, R.; Šebela, D.; Bustamante, C.; Chiluwal, A.; Neilsen, M.L.; Jagadish, S.V.K. Integrating field-based heat tents and cyber-physical system technology to phenotype high night-time temperature impact on winter wheat. Plant Methods 2019, 15, 41. [Google Scholar] [CrossRef]
- Fan, Y.; Qin, B.; Yang, J.; Ma, L.; Cui, G.; He, W.; Yu, T.; Zhang, W.; Ma, S.; Ma, C.; et al. Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis. J. Integr. Agric. 2024, 23, 536–550. [Google Scholar] [CrossRef]
- Kang, X.; Hou, R.; Yang, G. Effects of climactic warming on the starch and protein content of winter wheat grain under conservation tillage in the North China Plain. Soil Till. Res. 2024, 238, 105995. [Google Scholar] [CrossRef]
- Sierra-Gonzalez, A.; Molero, G.; Rivera-Amado, C.; Babar, M.A.; Reynolds, M.P.; Foulkes, M.J. Exploring genetic diversity for grain partitioning traits to enhance yield in a high biomass spring wheat panel. Field Crops Res. 2021, 260, 107979. [Google Scholar] [CrossRef]
- Slafer, G.A.; Foulkes, M.J.; Reynolds, M.P.; Murchie, E.H.; Carmo-Silva, E.; Flavell, R.; Gwyn, J.; Sawkins, M.; Griffiths, S. A ‘wiring diagram’ for sink strength traits impacting wheat yield potential. J. Exp. Bot. 2023, 74, 40–71. [Google Scholar] [CrossRef]
- Kuktaite, R.; Ravel, C. Wheat gluten protein structure and function: Is there anything new under the sun? In Wheat Quality for Improving Processing and Human Health; Igrejas, G., Ikeda, T., Guzmán, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 9–19. [Google Scholar]
- Aono, S.; Nishitsuji, Y.; Iwaki, S.; Hayakawa, K. Effects of environmental temperature during maturation on protein characteristics in spring wheat (Triticum aestivum cv. Haruyokoi). J. Cereal Sci. 2024, 116, 103838. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Ding, M.; Min, D.; Wang, Z.; Gao, X. The influence of night warming treatment on the micro-structure of gluten in two wheat cultivars. Food Res. Int. 2019, 116, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.J.; Graybosch, R.A.; Shelton, D.R.; Baenziger, P.S. Baking quality of hard winter wheat: Response of cultivars to environment in the Great Plains. Euphytica 1998, 100, 157–162. [Google Scholar] [CrossRef]
- Békés, F. New aspects in quality related wheat research: 1. Challenges and achievements. Cereal Res. Commun. 2012, 40, 159–184. [Google Scholar] [CrossRef]
- Hernández-Espinosa, N.; Mondal, S.; Autrique, E.; Gonzalez-Santoyo, H.; Crossa, J.; Huerta-Espino, J.; Singh, R.P.; Guzmán, C. Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crops Res. 2018, 215, 104–112. [Google Scholar] [CrossRef]
- Haddad, L.; Hawkes, C.; Webb, P.; Thomas, S.; Beddington, J.; Waage, J.; Flynn, D. A new global research agenda for food. Nature 2016, 540, 30–32. [Google Scholar] [CrossRef]
- Lin, Z.; Chang, X.; Wang, D.; Zhao, G.; Zhao, B. Long-term fertilization effects on processing quality of wheat grain in the North China Plain. Field Crops Res. 2015, 174, 55–60. [Google Scholar] [CrossRef]
- Battenfield, S.D.; Guzmán, C.; Gaynor, R.C.; Singh, R.P.; Peña, R.J.; Dreisigacker, S.; Fritz, A.K.; Poland, J.A. Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome 2016, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mastilović, J.; Živančev, D.; Lončar, E.; Malbaša, R.; Hristov, N.; Kevrešan, Ž. Effects of high temperatures and drought during anthesis and grain filling period on wheat processing quality and underlying gluten structural changes. J. Sci. Food Agric. 2017, 98, 2898–2907. [Google Scholar] [CrossRef]
- Zi, Y.; Shen, H.; Dai, S.; Ma, X.; Ju, W.; Wang, C.; Guo, J.; Liu, A.; Cheng, D.; Li, H.; et al. Comparison of starch physicochemical properties of wheat cultivars differing in bread-and noodle-making quality. Food Hydrocoll. 2019, 93, 78–86. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, S.; Khan, K.; O»Brien, L. Relationship of protein quantity, quality and dough properties with Chinese steamed bread quality. J. Cereal Sci. 2001, 33, 205–212. [Google Scholar] [CrossRef]
- Dencic, S.S.; Mladenov, N.; Kobiljski, B.D.J. Effects of genotype and environment on breadmaking quality in wheat. Int. J. Plant Prod. 2012, 5, 71–81. [Google Scholar]
- Li, Q.; Liu, R.; Wu, T.; Zhan, M. Interactions between soluble dietary fibers and wheat gluten in dough studied by confocal laser scanning microscopy. Food Res. Int. 2017, 95, 19–27. [Google Scholar] [CrossRef]
- Russell, K.; Van-Sanford, D.A. Breeding wheat for resilience to increasing nighttime temperatures. Agronomy 2020, 10, 531. [Google Scholar] [CrossRef]
- Yang, B.; Chen, N.; Dang, Y.; Wang, Y.; Wen, H.; Zheng, J.; Zheng, X.; Zhao, J.; Lu, J.; Qiao, L. Identification and validation of quantitative trait loci for chlorophyll content of flag leaf in wheat under different phosphorus treatments. Front. Plant Sci. 2022, 13, 1019012. [Google Scholar] [CrossRef]
- Gao, L.; Van, B.F.; Lewille, B.; Haesaert, G.; Eeckhout, M. Characterization and comparative study on structural and physicochemical properties of buckwheat starch from varieties. Food Hydrocoll. 2023, 137, 108320. [Google Scholar] [CrossRef]
- Wang, J.; Wang, E.; Feng, L.; Yin, H.; Yu, W. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Res. 2013, 144, 135–144. [Google Scholar] [CrossRef]
- Fang, S.; Cammarano, D.; Zhou, G.; Tan, K.; Ren, S. Effects of increased day and night temperature with supplemental infrared heating on winter wheat growth in North China. Eur. J. Agron. 2015, 64, 67–77. [Google Scholar] [CrossRef]
- Ji, H.; Xiao, L.; Xia, Y.; Song, H.; Liu, B.; Tang, L.; Cao, W.; Zhu, Y.; Liu, L. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agric. For. Meteorol. 2017, 243, 33–42. [Google Scholar] [CrossRef]
- Richards, R.A. The effect of dwarfing genes in spring wheat in dry environments, 1. Agronomic characteristics. J. Agric. Res. 1992, 43, 517–527. [Google Scholar] [CrossRef]
- Flintham, J.E.; Börner, A.; Worland, A.J.; Gale, M.D. Optimizing wheat grain yield: Effects of Rht (gibberellin-insensitive) dwarfing genes. J. Agric. Sci. 1997, 128, 11–25. [Google Scholar] [CrossRef]
- Rivera-Amado, C.; Trujillo-Negrellos, E.; Molero, G.; Reynolds, M.P.; Sylvester-Bradley, R.; Foulkes, M.J. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. Field Crops Res. 2019, 240, 154–167. [Google Scholar] [CrossRef]
- Fan, Y.; Tian, Z.; Yan, Y.; Hu, C.; Abid, M.; Jiang, D.; Ma, C.; Huang, Z.; Dai, T. Winter night-warming improves post-anthesis physiological activities and sink strength in relation to grain filling in winter wheat (Triticum aestivum L.). Front. Plant Sci. 2017, 8, 992. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Piao, S.; Ciais, P.; Myneni, R.B.; Chen, A.; Chevallier, F.; Dolman, A.J.; Janssens, I.A.; Peñuelas, J.; Zhang, G.; et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 2013, 501, 88–92. [Google Scholar] [CrossRef]
- Joshi, J.; Amthor, J.S.; McCarty, D.R.; Messina, C.D.; Wilson, M.A.; Harvey, M.A.; Hanson, A.D. Why cutting respiratory CO2 loss from crops is possible, practicable, and prudential. Mod. Agric. 2023, 1, 16–26. [Google Scholar] [CrossRef]
- Impa, S.M.; Sunoj, V.S.J.; Krassovskaya, I.; Bheemanahalli, R.; Obata, T.; Jagadish, S.V.K. Carbon balance and source-sink metabolic changes in winter wheat exposed to high nighttime temperature. Plant Cell Environ. 2019, 42, 1233–1246. [Google Scholar] [CrossRef]
- Minoli, S.; Müller, C.; Elliott, J.; Ruane, A.C.; Jägermeyr, J.; Zabel, F.; Dury, M.; Folberth, C.; François, L.; Hank, T.; et al. Global response patterns of major rainfed crops to adaptation by maintaining current growing periods and irrigation. Earth’s Future 2019, 7, 1464–1480. [Google Scholar] [CrossRef]
- Ren, S.; Qin, Q.; Ren, H. Contrasting wheat phenological responses to climate change in global scale. Sci. Total Environ. 2019, 665, 620–631. [Google Scholar] [CrossRef]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.J.; Girousse, C.; Motzo, R.; Giunta, F.; Babar, M.A.; et al. Climate change impact and adaptation for wheat protein. Glob. Chang. Biol. 2019, 25, 155–173. [Google Scholar] [CrossRef]
- Hurkman, W.J.; McCue, K.F.; Altenbach, S.B.; Korn, A.M.; Tanaka, C.K.; Kothari, K.M.; Johnson, E.L.; Bechtel, D.B.; Wilson, J.D.; Anderson, O.D.; et al. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci. 2003, 164, 873–881. [Google Scholar] [CrossRef]
- Impa, S.M.; Vennapusa, A.R.; Bheemanahalli, R.; Sabela, D.; Boyle, D.; Walia, H.; Jagadish, S.V.K. High night temperature induced changes in grain starch metabolism alters starch, protein, and lipid accumulation in winter wheat. Plant Cell Environ. 2020, 43, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Corbellini, M.; Canevar, M.G.; Mazza, L.; Ciaffi, M.; Lafiandra, D.; Borghi, B. Effect of the duration and intensity of heat shock during grain filling on dry matter and protein accumulation, technological quality and protein composition in bread and durum wheat. Funct. Plant Biol. 1997, 24, 245–260. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Q.; Chen, H.; Wu, D.; Dai, C.; Chen, Y.; Ma, Y.; Wang, Z.; Li, H.; Cao, X.; et al. Moderate addition of B-type starch granules improves the rheological properties of wheat dough. Food Res. Int. 2022, 160, 111748. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Pan, Y.; Yu, L.; Tian, R.; Wu, D.; Xie, Y.; Wang, Z.; Chen, X.; Gao, X. Starch other than gluten may make a dominant contribution to wheat dough mixing properties: A case study on two near-isogenic lines. LWT-Food Sci. Technol. 2021, 152, 112413. [Google Scholar] [CrossRef]
- Yu, L.; Ma, Y.; Zhao, Y.; Rehman, A.U.; Guo, L.; Liu, Y.; Yang, Y.; Wang, Z.; Cao, X.; Gao, X. Interaction of B-type starch with gluten skeleton improves wheat dough mixing properties by stabilizing gluten micro-structure. Food Chem. 2022, 371, 131390. [Google Scholar] [CrossRef] [PubMed]
- Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef]
- Mamrutha, H.M.; Rinki, K.; Venkatesh, K.; Gopalareddy, K.; Khan, H.; Mishra, C.N.; Kumar, S.; Kumar, Y.; Singh, G.; Singh, G.P. Impact of high night temperature stress on different growth stages of wheat. Plant Physiol. Rep. 2020, 25, 707–715. [Google Scholar] [CrossRef]
- Hein, N.T.; Impa, S.M.; Dan, W.; Bheemanahalli, R.; Kumar, R.; Tiwari, M.; Prasad, V.P.V.; Tilley, M.; Wu, X.R.; Neilsen, M.; et al. Grain micronutrient composition and yield components in field-grown wheat are negatively impacted by high nighttime temperature. Cereal Chem. 2022, 99, 615–624. [Google Scholar] [CrossRef]
- Sekularac, A.; Torbica, A.; Živančev, D.; Tomić, J.; Knežević, D. The influence of wheat genotype and environmental factors on gluten index and the possibility of its use as bread quality predictor. Genetika 2018, 50, 85–93. [Google Scholar] [CrossRef]
- R-Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 1 November 2022).
Cultivar | Treatment | Net Photosynthetic Rate (μmol m−2 s−1) | Nighttime Respiration Rate (μmol m−2 s−1) | ||||
---|---|---|---|---|---|---|---|
7 DAA | 14 DAA | 21 DAA | 7 DAA | 14 DAA | 21 DAA | ||
JM22 | HNTs | 22.29 ± 0.85 a | 13.69 ± 1.38 c | 9.69 ± 0.87 a | 1.54 ± 0.15 a | 1.75 ± 0.16 a | 0.83 ± 0.09 a |
ATs | 19.52 ± 0.30 b | 14.37 ± 0.86 c | 11.41 ± 0.57 a | 1.19 ± 0.12 ab | 0.90 ± 0.14 c | 0.67 ± 0.03 a | |
JM44 | HNTs | 20.16 ± 0.63 b | 15.84 ± 0.72 b | 9.92 ± 1.01 a | 1.07 ± 0.06 ab | 1.33 ± 0.13 b | 0.39 ± 0.07 a |
ATs | 19.43 ± 0.44 b | 19.37 ± 0.18 a | 10.99 ± 0.25 a | 0.82 ± 0.26 b | 0.89 ± 0.11 c | 0.68 ± 0.25 a |
Cultivar | Treatment | Moisture (%) | Protein Content (%) | Starch Content (%) | Gluten Index (%) | Dry Gluten Content (%) | Whiteness (%) |
---|---|---|---|---|---|---|---|
JM22 | HNTs | 10.5 ± 0.3 a | 14.7 ± 0.3 bc | 57.1 ± 0.2 b | 50.7 ± 10.3 d | 13.8 ± 0.9 a | 77.6 ± 0.9 a |
ATs | 10.7 ± 0.6 a | 14.1 ± 0.3 c | 57.6 ± 0.1 a | 61.8 ± 8.7 c | 12.4 ± 1.0 b | 78.7 ± 0.9 a | |
JM44 | HNTs | 10.5 ± 0.4 a | 16.0 ± 0.5 a | 56.6 ± 0.2 c | 87.8 ± 0.1 b | 11.3 ± 0.7 bc | 76.2 ± 2.9 b |
ATs | 10.4 ± 0.2 a | 15.3 ± 0.8 ab | 57.0 ± 0.2 b | 97.2 ± 1.3 a | 10.9 ± 0.7 c | 76.7 ± 3.6 ab |
Cultivar | Treatment | Trough Viscosity (cP) | Peak Viscosity (cP) | Breakdown Viscosity (cP) | Final Viscosity (cP) | Setback Viscosity (cP) | Pasting Temperature (°C) |
---|---|---|---|---|---|---|---|
JM22 | HNTs | 1577.3 ± 30.2 b | 1804.0 ± 81.5 c | 226.7 ± 57.2 c | 2894.0 ± 91.0 b | 1316.7 ± 86.6 a | 71.8 ± 7.0 a |
ATs | 1647.5 ± 30.3 b | 2141.0 ± 83.1 b | 493.5 ± 75.3 ab | 2989.9 ± 41.1 b | 1342.4 ± 18.7 a | 80.1 ± 3.2 a | |
JM44 | HNTs | 1967.7 ± 88.3 a | 2229.3 ± 141.2 ab | 261.7 ± 53.8 bc | 3052.0 ± 64.6 b | 1084.3 ± 27.1 b | 72.6 ± 6.6 a |
ATs | 1972.8 ± 30.1 a | 2493.9 ± 59.7 a | 521.1 ± 56.0 a | 3309.1 ± 40.1 a | 1336.4 ± 26.8 a | 70.8 ± 3.1 a |
Cultivar | Treatment | MT (min) | DDT (min) | WA (%) | ST (min) | SD (ICC) (FE) | FQN (mm) |
---|---|---|---|---|---|---|---|
JM22 | HNTs | 20 | 3.05 ± 0.29 b | 65.20 ± 4.84 a | 4.05 ± 1.15 b | 100.00 ± 3.51 a | 59.33 ± 8.00 b |
ATs | 20 | 3.19 ± 1.12 b | 59.68 ± 4.43 b | 4.25 ± 1.72 b | 91.13 ± 7.26 a | 57.38 ± 7.50 b | |
JM44 | HNTs | 45 | 22.45 ± 3.12 a | 66.10 ± 0.70 a | 17.95 ± 0.88 a | 35.56 ± 8.31 b | 347.00 ± 21.63 a |
ATs | 45 | 26.07 ± 1.85 a | 66.00 ± 0.91 a | 18.39 ± 1.19 a | 30.00 ± 5.29 b | 366.56 ± 23.21 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Xiao, Y.; Guo, L.; Shan, B.; Liu, X.; Duan, X.; Rehman, A.-u.; Guo, C.; Zhang, W.; Li, H.; et al. Effect of High Nighttime Temperatures on Growth, Yield, and Quality of Two Wheat Cultivars During the Whole Growth Period. Plants 2024, 13, 3071. https://doi.org/10.3390/plants13213071
Li D, Xiao Y, Guo L, Shan B, Liu X, Duan X, Rehman A-u, Guo C, Zhang W, Li H, et al. Effect of High Nighttime Temperatures on Growth, Yield, and Quality of Two Wheat Cultivars During the Whole Growth Period. Plants. 2024; 13(21):3071. https://doi.org/10.3390/plants13213071
Chicago/Turabian StyleLi, Danping, Yanjun Xiao, Lei Guo, Baoxue Shan, Xiukun Liu, Xiaoyan Duan, Ata-ur Rehman, Can Guo, Wenjia Zhang, Haosheng Li, and et al. 2024. "Effect of High Nighttime Temperatures on Growth, Yield, and Quality of Two Wheat Cultivars During the Whole Growth Period" Plants 13, no. 21: 3071. https://doi.org/10.3390/plants13213071
APA StyleLi, D., Xiao, Y., Guo, L., Shan, B., Liu, X., Duan, X., Rehman, A.-u., Guo, C., Zhang, W., Li, H., Liu, J., Gao, X., & Cao, X. (2024). Effect of High Nighttime Temperatures on Growth, Yield, and Quality of Two Wheat Cultivars During the Whole Growth Period. Plants, 13(21), 3071. https://doi.org/10.3390/plants13213071