An Isoflavone Synthase Gene in Arachis hypogea Responds to Phoma arachidicola Infection Causing Web Blotch
Abstract
:1. Introduction
2. Results
2.1. Peanut Responses to Inoculation with P. arachidicola
2.2. RNA Sequencing and Novel Gene Prediction
2.3. Differentially Expressed Transcripts
2.4. Gene Ontology (GO) and KEGG Pathway Enrichment of DEGs
2.5. Functional Analysis of the Isoflavanone Synthase Genes
2.6. Expression Patterns forAhIFS Genes
2.7. Overexpression of AhIFS Genes in N. benthamiana Enhance Its Disease Resistance
2.8. Knockout of AhIFS Genes Reduces Disease Resistance
2.9. Detection of Putative Cis-Elements Using Promotor Region Analysis
3. Discussion and Conclusions
4. Materials and Methods
4.1. Plants and Strains
4.2. RNA Sequence (RNA-Seq) Analysis
4.3. Analysis of the DEGs
4.4. GO and KEGG Enrichment Analyses
4.5. Phylogenetic Tree Analysis of the AhIFS Orthologs
4.6. Quantitative PCR Analysis
4.7. Phytophthora Infection Assays
4.8. CRISPR/Cas9 Plasmid Construction and Peanut Transformation
4.9. Mutant Identification
4.10. Mutant Phenotype Analysis
4.11. Promoter Analysis
4.12. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
KEGG | Kyoto Encyclopedia of Genes and Genomes |
ORFs | open reading frames |
QTL | quantitative trait locus |
PAL | phenylalanine ammonia lyase |
CHS | chalcone synthase |
IFS | Isoflavone synthase |
F3H | flavanone-3-hydroxylase |
DEG | differentially expressed genes |
BP | biological process |
CC | cellular component |
MF | molecular function |
References
- Jiang, L.; Hua, D.; Wang, Z.; Xu, S. Aqueous enzymatic extraction of peanut oil and protein hydrolysates. Food Bioprod. Process 2010, 88, 233–238. [Google Scholar]
- Hao, K.; Wang, F.; Nong, X.; Mcneill, M.R.; Liu, S.; Wang, G.; Cao, G.; Zhang, Z. Response of peanut Arachis hypogaea roots to the presence of beneficial and pathogenic fungi by transcriptome analysis. Sci. Rep. 2017, 7, 964. [Google Scholar] [CrossRef] [PubMed]
- Pettit, R.E.; Philley, G.L.; Smith, D.H.; Taber, R.A. Peanut Web Blotch: II Symptoms and Host Range of Pathogen. Peanut Sci. 1986, 13, 27–30. [Google Scholar] [CrossRef]
- Manamgoda, D.S.; Rossman, A.Y.; Castlebury, L.A.; Crous, P.W.; Madrid, H.; Chukeatirote, E.; Hyde, K.D. The genus Bipolaris. Stud. Mycol. 2014, 79, 221–288. [Google Scholar] [CrossRef]
- Taber, R.A.; Pettit, R.E.; Philley, G.L. Peanut Web Blotch: I. Cultural Characteristics and Identity of Causal Fungus. Peanut Sci. 1984, 11, 109–114. [Google Scholar] [CrossRef]
- Pereira, F.A.; Moraes, S.A.D.; Franco, G.A.A.; Montenegro, V.J.F.; Antonio, V.N. Characterization of rust, early and late leaf spot resistance in wild and cultivated peanut germplasm. Scientia Agri. 2009, 66, 110–117. [Google Scholar]
- Zhou, R.-J.; Cui, J.-C.; Fu, J.-F.; Xu, Z.; Xue, C.-Y. Effect of Mixed Infection of Cercospora arachidicola and Phoma arachidicola on their Infection Probability and Latent Periods. Sci. Agric. Sin. 2015, 48, 4264–4271. [Google Scholar]
- Zhang, L. Study on Physiological and Biochemical Resistance of Peanut (Arachis hypogaea L.) against Web Blotch. Master Thesis, Zhengzhou University, Zhengzhou, China, 2019. (In Chinese). [Google Scholar]
- Zhang, X.Y. Inheritance of Main Traits Related to Yield, Quality and Disease Resistance and Their QTLs Mapping in Peanut (Arachis hypogaea L.). Ph.D. Dissertation, Zhejiang University, Hangzhou, China, 2011. (In Chinese). [Google Scholar]
- Mikunthan, G. First report of web blotch of peanut caused by Phoma arachidicola in the dry zone of Sri Lanka. Plant Dis. 1997, 81, 832. [Google Scholar] [CrossRef]
- Yu, O. Production of the Isoflavones Genistein and Daidzein in Non-Legume Dicot and Monocot Tissues. Plant Physiol. 2000, 124, 781–794. [Google Scholar] [CrossRef]
- Pueppke, S.G. The genetic and biochemical basis for nodulation of legumes by rhizobia. Crit. Rev. Biotechnol. 1996, 16, 1–51. [Google Scholar] [CrossRef]
- Rhijn, P.V.V.; Vanderleyden, J. The Rhizobium-plant symbiosis. Microbiol. Rev. 1995, 59, 124. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Vargas, L.I.; Schmitthenner, A.F.; Graham, T.L. Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochemistry 1993, 32, 851–857. [Google Scholar] [CrossRef]
- Grotewold, E.; Sainz, M.B.; Tagliani, L.; Hernandez, J.M.; Bowen, B.; Chandler, V.L. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc. Natl. Acad. Sci USA 2000, 97, 13579–13584. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, N.A.; Glover, B.J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci. 2005, 10, 63–70. [Google Scholar] [CrossRef]
- Yi, J.; Derynck, M.R.; Li, X.; Telmer, P.; Marsolais, F.; Dhaubhadel, S. A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J. 2010, 62, 1019–1034. [Google Scholar] [CrossRef]
- Yu, O.; Shi, J.; Hession, A.O.; Maxwell, C.A.; Mcgonigle, B.; Odell, J.T. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 2003, 63, 753–763. [Google Scholar] [CrossRef]
- Robbins, M.P.; Hartnoll, J.; Morris, P. Phenylpropanoid defence responses in transgenic Lotus corniculatus 1. Glutathione elicitation of isoflavan phytoalexins in transformed root cultures. Plant Cell Rep. 1991, 10, 59–62. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, L.; Zhang, C.; Zhou, H.; Tang, Y.; Cao, S.; Chen, J.; Zhang, J. Transcriptomic-Proteomic Analysis Revealed the Regulatory Mechanism of Peanut in Response to Fusarium oxysporum. Int. J. Mol. Sci. 2024, 25, 619. [Google Scholar] [CrossRef]
- García-Calderón, M.; Pérez-Delgado, C.M.; Palove-Balang, P.; Betti, M.; Márquez, A.J. Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration. Plants 2020, 9, 774. [Google Scholar] [CrossRef]
- Wu, N.; Wang, P.-W.; Lin, N.; Lu, S.; Feng, Y.-Q.; Rong, J.; Zhang, Z.; Qu, J. Construction of a chalcone reductase expression vector and transformation of soybean plants. Mol. Med. Rep. 2017, 16, 6178–6183. [Google Scholar] [CrossRef]
- Yin, Y.-C.; Zhang, X.-D.; Gao, Z.-Q.; Hu, T.; Liu, Y. The research progress of chalcone isomerase (CHI) in plants. Mol. Biotechnol. 2019, 61, 32–52. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.Q.; Le, T.H.T.; Nguyen, T.N.L.; Nguyen, T.G.; Sy, D.T.; Tu, Q.T.; Le, V.S.; Chu, H.M.; Vu, T.K.L. Overexpressing GmCHI1A increases the isoflavone content of transgenic soybean (Glycine max (L.) Merr.) seeds. In Vitro Cell. Dev. Biol. Plant 2020, 56, 842–850. [Google Scholar] [CrossRef]
- Xu, L.; Kaopong, R.; Nualkaew, S.; Chullasara, A.; Phongdara, A. Expression and functional analysis of a transgenic cytochrome P450 monooxygenase in Pueraria mirifica. Sains Malays. 2017, 46, 1491–1498. [Google Scholar] [CrossRef]
- Pokhrel, S.; Ponniah, S.K.; Jia, Y.; Yu, O.; Manoharan, M. Transgenic rice expressing isoflavone synthase gene from soybean shows resistance against blast fungus (Magnaporthe oryzae). Plant Dis. 2021, 105, 3141–3146. [Google Scholar] [CrossRef]
- Chu, S.; Wang, J.; Zhu, Y.; Liu, S.; Zhou, X.; Zhang, H.; Wang, C.-E.; Yang, W.; Tian, Z.; Cheng, H.; et al. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genet. 2017, 13, e1006770. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, N.; Dong, L.; Zhang, D.; Fan, S.; Jiang, L.; Wang, X.; Xu, P.; Zhang, S. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean. Front. Plant Sci. 2015, 6, 1024. [Google Scholar] [CrossRef]
- Liu, C.W.; Murray, J. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update. Plants 2016, 5, 33. [Google Scholar] [CrossRef]
- Aoki, T.; Akashi, T.; Ayabe, S. Flavonoids of leguminous plants: Structure, biological activity, and biosynthesis. J. Plant Res. 2000, 113, 475–488. [Google Scholar] [CrossRef]
- Dixon, R.A.; Achnine, L.; Kota, P.; Liu, C.J.; Reddy, M.S.S.; Wang, L.J. The phenylpropanoid pathway and plant defence a genomics perspective. Mol. Plant Pathol. 2002, 3, 371–390. [Google Scholar] [CrossRef]
- Kaufman, P.B.; Duke, J.A.; Brielmann, H.; Boik, J.; Hoyt, J.E. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: Implications for human nutrition and health. J. Altern. Complement. Med. 1997, 3, 7–12. [Google Scholar] [CrossRef]
- Jung, W.; Yu, O.; Lau, S.M.; O’Keefe, D.P.; Odell, J.; Fader, G.; McGonigle, B. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat. Biotechnol. 2000, 18, 208–212. [Google Scholar] [CrossRef] [PubMed]
- García-Calderón, M.; Pons-Ferrer, T.; Mrazova, A.; Pal’ove-Balang, P.; Vilkova, M.; Pérez-Delgado, C.M.; Vega, J.M.; Eliášová, A.; Repčák, M.; Márquez, A.J.; et al. Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Front. Plant Sci. 2015, 6, 760. [Google Scholar] [CrossRef] [PubMed]
- Kaducová, M.; Monje-Rueda, M.D.; García-Calderón, M.; Pérez-Delgado, C.M.; Eliášová, A.; Gajdošová, S.; Petruľová, V.; Betti, M.; Márquez, A.J.; Paľove-Balang, P. Induction of isoflavonoid biosynthesis in Lotus japonicus after UV-B irradiation. J. Plant Physiol. 2019, 236, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Grotewold, E. Plant metabolic diversity: A regulatory perspective. Trends Plant Sci. 2005, 10, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Petroni, K.; Tonelli, C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci. 2011, 181, 219–229. [Google Scholar] [CrossRef]
- Eckerstorfer, M.F.; Engelhard, M.; Heissenberger, A.; Simon, S.; Teichmann, H. Plants developed by new genetic modification techniques—Comparison of existing regulatory frameworks in the EU and non-EU countries. Front. Bioeng. Biotechnol. 2019, 7, 26. [Google Scholar] [CrossRef]
- Manghwar, H.; Li, B.; Ding, X.; Hussain, A.; Lindsey, K.; Zhang, X.L.; Jin, S.X. CRISPR/Cas systems in genome editing: Methodologies and tools for sgRNA design, of-target evaluation, and strategies to mitigate of-target efects. Adv. Sci. 2020, 7, 1902312. [Google Scholar] [CrossRef]
- Mehravar, M.; Shirazi, A.; Nazari, M.; Banan, M. Mosaicism in CRISPR/Cas9-mediated genome editing. Dev. Biol. 2019, 445, 156–162. [Google Scholar] [CrossRef]
- Li, A.; Zhou, M.; Liao, G.; Li, X.; Wang, A.; Xiao, D.; He, L.; Zhan, J. CRISPR/Cas9 gene editing in peanut by Agrobacterium tumefaciens-mediated pollen tube transformation. Plant Cell Tissue Organ Cult. 2023, 155, 883–892. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, M.; Simon, J.E. Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J. Chromatogr. A 2003, 1016, 195–209. [Google Scholar] [CrossRef]
- Zhuang, W.; Chen, H.; Yang, M.; Wang, J.; Pandey, M.K.; Zhang, C.; Chang, W.-C.; Zhang, L.; Zhang, X.; Tang, R.; et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 2019, 51, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 259, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Baren, M.J.V.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Huber, A.W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, 1–12. [Google Scholar]
- Storey, J.D. The Positive False Discovery Rate: A Bayesian Interpretation and the Q-value. Ann. Stats 2003, 31, 2013–2035. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef]
- Yu, J.; Ai, G.; Shen, D.; Chai, C.; Jia, Y.; Liu, W.; Dou, D. Bioinformatical analysis and prediction of Nicotiana benthamiana bHLH transcription factors in Phytophthora parasitica resistance. Genomics 2019, 111, 473–482. [Google Scholar] [CrossRef]
- Shelton, D.; Stranne, M.; Mikkelsen, L.; Pakseresht, N.; Welham, T.; Hiraka, H.; Tabata, S.; Sato, S.; Paquette, S.; Wang, T.L.; et al. Transcription factors of Lotus: Regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity. Plant Physiol. 2012, 159, 531–547. [Google Scholar] [CrossRef]
- Song, T.; Ma, Z.; Shen, D.; Li, Q.; Li, W.; Su, L.; Ye, T.; Zhang, M.; Wang, Y.; Dou, D. An oomycete CRN effector reprograms expression of plant HSP genes by targeting their promoters. PLoS Pathog. 2015, 11, e1005348. [Google Scholar] [CrossRef] [PubMed]
- Asai, S.; Ohta, K.; Yoshioka, H. MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 2008, 20, 1390–1406. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, H.; Numata, N.; Nakajima, K.; Katou, S.; Kawakita, K.; Rowland, O.; Jones, J.D.G.; Doke, N. Nicotiana benthamiana gp91 phoxhomologs Nbrboh A and Nbrboh B participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 2003, 15, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, S.; Hamada, W.; Huitema, E. Agrosuppression: A bioassay for the hypersensitive response suited to high-throughput screening. Mol. Plant Microbe Interact. 2003, 16, 7–13. [Google Scholar] [CrossRef]
- Ma, J.; Sun, S.; Whelan, J.; Shou, H. CRISPR/Cas9-Mediated Knockout of GmFATB1 Significantly Reduced the Amount of Saturated Fatty Acids in Soybean Seeds. Int. J. Mol. Sci. 2021, 22, 3877. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, M.L.; Wu, J.X.; Dong, W.B.; Chen, D.X.; Wang, L.; Chi, Y.C. Draft Genome Sequence of Phoma arachidicola Wb2 Causing Peanut Web Blotch in China. Curr. Microbiol. 2019, 76, 200–206. [Google Scholar] [CrossRef]
- Liu, H.; Sun, Z.; Zhang, X.; Qin, L.; Qi, F.; Wang, Z.; Du, P.; Xu, J.; Zhang, Z.; Han, S.; et al. QTL Mapping of Web Blotch Resistance in Peanut by High-throughput Genome-wide Sequencing. BMC Plant Biol. 2020, 1, 249. [Google Scholar] [CrossRef]
- Li, L.C.; Dahiya, R. MethPrimer: Designing primers for methylation PCRs. Bioinformatics 2002, 18, 1427–1431. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Li, Y.; Zhang, X.; Hsiang, T.; Xu, M.; Guo, Z.; He, K.; Yu, J. An Isoflavone Synthase Gene in Arachis hypogea Responds to Phoma arachidicola Infection Causing Web Blotch. Plants 2024, 13, 2948. https://doi.org/10.3390/plants13212948
Song X, Li Y, Zhang X, Hsiang T, Xu M, Guo Z, He K, Yu J. An Isoflavone Synthase Gene in Arachis hypogea Responds to Phoma arachidicola Infection Causing Web Blotch. Plants. 2024; 13(21):2948. https://doi.org/10.3390/plants13212948
Chicago/Turabian StyleSong, Xinying, Ying Li, Xia Zhang, Tom Hsiang, Manlin Xu, Zhiqing Guo, Kang He, and Jing Yu. 2024. "An Isoflavone Synthase Gene in Arachis hypogea Responds to Phoma arachidicola Infection Causing Web Blotch" Plants 13, no. 21: 2948. https://doi.org/10.3390/plants13212948
APA StyleSong, X., Li, Y., Zhang, X., Hsiang, T., Xu, M., Guo, Z., He, K., & Yu, J. (2024). An Isoflavone Synthase Gene in Arachis hypogea Responds to Phoma arachidicola Infection Causing Web Blotch. Plants, 13(21), 2948. https://doi.org/10.3390/plants13212948